Точка росы в стене каркасного дома: Точка росы в каркасном доме

Содержание

Точка росы в каркасном доме

25.01.2018Владимир Баженов

Строительство каркасного дома считается отличным вариантом получить недорогое, теплое и комфортабельное жилье. Работы по возведению постройки выполняются в течение 1-2 месяцев, коттедж не дает усадки и может использоваться по назначению сразу после сдачи. Но эксплуатация дома имеет свои особенности, связанные с конструкцией здания. Одним из таких факторов считается наличие точки росы.

Расположение точки росы

Конструкция стены каркасного здания похожа на многослойный пирог из несущих элементов, утеплителя, обшивки, гидро- и пароизоляции. При значительной разнице температуры внутри помещения и за его пределами, выводимый пар конденсируется. Точка росы – это место внутри стены или на ее поверхности, на котором происходит выпадение конденсата. Если на этапе строительства не знать расположения этой точки и не принять мер по защите конструкции, очень быстро стены придут в негодность.

При стабильной температуре воздуха точка росы располагается ровно посередине стены. Такой вариант считается идеальным, так как предполагает длительный эксплуатационный ресурс здания. При понижении температуры стены с внешней стороны начинают промерзать, а место выпадения конденсата сдвигается внутрь. В результате вблизи внутренних стен скапливается жидкость, которая быстро разрушает древесину и вызывает необходимость ремонта.

При строительстве каркасного дома учитываются следующие факторы:

  • До начала строительства производится тщательный расчет нахождения места выпадения конденсата и возможные его сдвижки при перепадах температуры.

  • Стены дома тщательно утепляются, особенно внутренние. Такой подход поможет удержать точку росы в границах утеплителя, что позволит сохранить эксплуатационные показатели на прежнем уровне.

  • Монтаж дома должен осуществляться в соответствии с требованиями технологического процесса. Это поможет избежать лишних проблем в будущем.

  • Процесс выпадения конденсата необходимо снизить, так как кроме гниения, во влажной среде развивается грибок и плесень.

При выборе утеплителя необходимо предусмотреть золотую середину. Излишне тонкий материал будет способствовать преждевременному развитию вредных микроорганизмов и гниению конструкции. Если выбрать утеплитель большой толщины, в доме будет слишком влажно. Пароизоляция не будет справляться с задачей.

Расчет точки росы

Расчет точки росы зависит от нескольких факторов, таких как: типовая температура во внутренних помещениях, климатические особенности региона, в котором монтируется каркасный дом, характеристики используемого утеплителя и пароизолирующих материалов. При выполнении расчетов указанные показатели, а также другие параметры, учитываются.

При определении точки росы используется один из трех методов: табличный, расчетный и применение термогигрометра. Самым простым, но и наименее точным, считается первый вариант. На основании данных, приведенных в нормативных документах, расчетная точка определяется по характерным показателям температуры и влажности. Использование гигрометра позволяет точно выявить точку росы для конкретного места расположения здания. Для расчетного способа применяются специальные формулы, простые и более сложные. Все три указанных технологии востребованы в равной степени.

Расчет точки росы позволяет избежать преждевременного ремонта здания и увеличить временной интервал его эксплуатации.

Точка росы в каркасном доме

Точка росы в каркасном доме

Что такое «точка росы»

Точка росы — место, где степень охлаждения воздуха или материала доводит уровень относительной влажности до 100%. При охлаждении до определённой степени вода, находящаяся в газообразном состоянии, образует туман, а на твёрдых материалах конденсируется. Часто локация этой точки находится в месте соприкосновении тёплой и влажной воздушной среды с охлаждённой поверхностью в отапливаемых жилых, промышленных зданиях, банях и т. д.

Неправильно рассчитанная точка росы в каркасном доме ведёт к накоплению влаги на поверхности или внутри стен, что вызывает ускоренную коррозию сооружений, ухудшение тепло- и водоизоляционных свойств материалов. Более других материалов возникновение конденсата опасно для металла и дерева.

На практике эффект возникает при следующих условиях — допустим, что внутри здания +25 °C с относительной влажностью 40%. Тогда вода будет конденсироваться на материалах (допустим — окнах или водопроводных трубах) с температурой +10,5 °C, при повышении относительной влажности до 60% конденсат проявляется при охлаждении поверхностей до +16,7 °C и т. д.

Защита каркасных строений от возникновения конденсата

В зависимости от комплектующих, применяемых для тепло- и гидроизоляции конструкций, а также варианта их монтажа, точка росы находится разных местах в пределах стены — от её внутренней до наружной поверхности.

Если критическая точка на внутренней поверхности или непосредственно под нею, то в течение считанных лет стена покрывается плесенью или грибком, что ведёт к разрушению отделочных материалов, утеплителя и деревянного каркаса, дискомфорту, нарушению санитарных норм. Исходя из сути, чтобы переместить точку росы как возможно дальше от внутренней поверхности, требуется снизить потери тепла и/или понизить относительную влажность воздуха. Это возможно, благодаря технически грамотному применению влагоизоляционных и теплоизоляционных покрытий.

При должном планировании строительства точка росы должна быть максимально приближена к внешней поверхности, оставив пирог стены максимально тёплым и сухим. Но даже по самым идеальным расчётам во время отопительного сезона на стыке тёплого и холодного материала будет конденсироваться некоторое количество влаги. Её отвод призвана обеспечить правильно обустроенная система вентиляции.

Последствия использования утеплителя с внутренней стороны стен

Вопреки стремлению понадёжнее утеплить жилое помещение, крайне не рекомендуется применение теплоизоляции с внутренней стороны. В таком случае влага начинает накапливаться близко к поверхности, а чаще — между стеной и изоляцией, что имеет очень негативные последствия. Известно, что заброшенные строения разрушаются намного быстрее, чем эксплуатируемые. Это происходит в связи с тем, что несущие конструкции не защищены от негативных климатических явлений. В случае утепления со внутренней стороны стены вся конструкция также оказывается под интенсивным воздействием внешней среды.

Учёт точки росы в разрабатываемых проектах

Представленные типовые проекты учитывают климатические особенности региона. Правильное применение всех материалов в точном соответствии с проектом гарантируют не только тепло в доме, но и долгий срок эксплуатации. В связи с этим недопустима экономия в виде изменений размеров элементов конструкций или исключения их части — даже незначительная коррекция проекта может свести на нет весь инженерный замысел.

В интернете можно найти онлайн калькуляторы для предварительного расчёта местоположения точки росы, но эти вычисления приблизительны, и ни один из калькуляторов не даст гарантий на случай, если “пирог” стены сформирован неправильно.

Точка росы в каркасном доме

Точка росы является очень важным понятием в технологии строительства каркасных домов из-за многослойной структуры наружных стен. От того, в каком месте стенового пирога она будет находиться, зависит, в первую очередь, долговечность и теплоизоляционные свойства жилья. Кроме того, пренебрежение точкой росы может привести к некомфортным условиям проживания в каркасном доме, и к непомерному образованию конденсата прямо на внутренней отделке.

Что такое точка росы простыми словами?

Для лучшего понимания этого явления объяснения стоит начать с простейшего примера. Представим помещение с обычным окном, в котором есть только одно стекло. Внутри помещения тепло и влажно, снаружи мороз.

Влага находится в газообразном невидимом состоянии. Точка росы в данном примере находится на поверхности стекла со стороны помещения.

По чему это видно? Все очень просто. В точке росы пересекаются сильно различающиеся температуры (в помещении тепло, снаружи мороз), что приводит к преобразованию имеющейся влаги в воздухе в воду. Ее капли можно наглядно увидеть на таком окне.

Что изменится, если снаружи такое окно утеплить? А изменится расположение точки росы. Теперь различающиеся температуры будут пересекаться дальше от помещения, и ближе к улице. Соответственно, если в этой точке будет влага, то она конденсируется и превратится в капельки воды.

Стоит заметить, что в данном примере стекло не пропускает влагу из помещения в сторону условного утеплителя, то есть является пароизоляционным слоем. А поскольку зимой наружный воздух сухой (содержит мало влаги), то капель конденсата не будет и в утеплителе. Это важный момент в технологии строительства каркасных домов, его следует понять и запомнить для понимания нижеприведенного материала.

Теперь рассмотрим, что такое точка росы в каркасном доме. Его наружные стены состоят из следующих слоев (от помещения к улице):

  1. Внутренняя отделка.
  2. Пароизоляционная мембрана.
  3. Утеплитель.
  4. Ветрогидроизоляционная мембрана.
  5. Наружная отделка.

Представим, что на улице зима, мороз, а в помещении нормальная комнатная температура и влажность. Где будет в таком случае точка росы, и как ее можно увидеть? Если стеновой пирог собран правильно, то точка росы будет между 4-м и 5-м слоями, и увидеть ее невооруженным глазом будет невозможно, так как там нечему будет конденсироваться (зимой атмосферный воздух сухой).

От чего зависит положение точки росы в каркасном доме?

По приведенным выше примерам уже будет проще сориентироваться, как будет «гулять» точка росы при тех, или иных условиях, и к каким последствиям она может привести в каркасном доме. Рассмотрим несколько разных нарушений этой технологии строительства.

Первое нарушение – отсутствие пароизоляционной мембраны (слой №2). Этот материал призван ограничивать доступ влаги внутрь стенового пирога. Соответственно, если влаги там не будет, конденсироваться будет нечему. Если же пароизоляции нет, либо она негерметична, влажный воздух из помещения будет проходить внутрь стены, испортит утеплитель и увеличит шансы на образование воды там, где это пагубно скажется на материалах.

Второе нарушение – недостаточной толщины утеплитель. В этом случае точка росы смещается к помещению. И смещаться она может до такой степени, что холодный воздух с теплым пересекутся прямо на поверхности отделки или непосредственно под ней. Какой будет результат? Влажный воздух преобразуется в конденсат, будет происходить регулярное намокание облицовки, на ней образуется плесень, грибок, а в помещении – нездоровый микроклимат.

Еще одно нарушение, влияющее на точку росы в каркасном доме – отсутствие воздушной прослойки между 4-м и 5-м слоями. Зачем она там нужна? Дело в том, что, утепляя каркасный дом, строители «выгоняют» точку росы как раз в это место. И если здесь из-за увеличения влажности наружного воздуха образуется конденсат, то он непременно испортит фасад дома. Чтобы избежать таких последствий, под облицовкой оставляется зазор, который будет способствовать нормальной вентиляции и отводу влаги естественным путем.

Итог

Из всего вышесказанного можно сделать вывод, что точка росы в каркасном доме – это явление, которое нужно смещать подальше от помещения, внутренней отделки и утеплителя. Сделать это очень просто – нужна пароизоляция внутри, достаточной толщины теплоизоляция и воздушная прослойка между ею и наружной облицовкой.

Проекты крыш домов из бруса

В проектах домов из бруса встречается несколько разновидностей крыш, отличающихся формой, названием, преимуществами и недостатками. Некоторые из них имеют простое устройство, другие оптимально подходят для обустройства мансардного этажа.

Читать далее…

Расчет точки росы в каркасном доме

Как рассчитать точку росы в каркасном доме и почему мокнет утеплитель

При выстраивании и проектировании всех домов крайне важным будет грамотный расчет точки росы в каркасном доме при выстраивании стен. Неправильный расчет точки росы и/или полное игнорирование такого показателя сможет разрушить дом изнутри.

Учет точки росы в области строительства может обезопасить от разрушительного влияния внешней среды.

Точка росы – что это такое

Итак, точка росы – определенный температурный предел воздуха, ниже которой пар будет содержаться в воздухе, а еще станет насыщенным и преобразуется в жидкость.

Точка росы является еще и тем местом, где холодный и теплый воздух встречаются, и в том месте при их взаимодействии появляется жидкость в виде конденсата. На примере строительный построек точка росы будет проявляться как конденсат на окнах, и всегда при резких похолоданиях на улице заметно, как на ранее сухом стекле окна появляется запотевание и капли воды. Это безвредное и ближайшее проявление точки росы. В природе точка росы появляется как капельки утренней росы на листиках растений и остальных объектах. Все это появится в результате взаимодействия ночного холодного воздуха и нагреваемого солнечными лучами утреннего теплого воздуха. В случае с нагреваемым помещением точка росы будет создавать искусственного в любое время суток, при температурных условиях ниже нуля на улице.

Совсем иным будет то, если образование точки росы (т.е. конденсата) будет обнаружено внутри домовой стены. Даже не самый опытный строитель обеспокоиться образованием излишней влаги в помещении, которое ранее было сухим. Так как последствия такого скопления влажности могут быть наиболее неблагоприятными. Но внутренняя домовая стена не единственное место для разрушения, где можно проявить себя неграмотный расчет точки росы или даже его полное отсутствие. Неправильно выполненный расчет и размещение точки росы станет врагом №1 в сфере строительства, который медленно изнутри будет разрушать все крепкие строения.

Подробности

Где должна быть ТР

Лучшим местом для появления точки росы в стене будет утеплитель, размещенный извне стены. Толщина утеплительного слоя на стенке должна быть такой, чтобы в прохладное время года конденсат не смещался в саму стенку или если начал смещаться, но не на долгое время. О разрушительных последствиях нахождения ТР в теле стены несущего типа рассмотрим дальше. Стены, базой которой стали пористые материалы (газоблоки и пеноблоки), ракушечник и иные материалы нуждаются в большем слое утеплителя, так как они прекрасно впитывают и сохраняют влагу. Получается, что даже не долгосрочное (несколько дней) пребывание в пористой стенке ТР может разрушительным образом будет сказываться на внутренней целостности. И потому теплые материалы для укладки стен могут быть эффективными лишь в определенных регионах, далеко с не самыми морозными зимами.

Если по расчетам точка росы будет время от времени перемещаться в стену дома или есть большая вероятность сдвига, то такой факт важно учитывать при выборе материала для стеновой укладки. Для такого случая прекрасно подойдут стеновые материалы с высокой степенью плотностью, и те, что выдерживают множество циклов заморозки и оттаивания, без повреждений, с огромным коэффициентом морозустойчивости. К материалам, устойчивым к морозу, отнесется кирпич и керамзитобетон. В таблице представлены все показатели устойчивости к морозу наиболее популярных стеновых материалов.

Как рассчитать точку росы в каркасном доме с утеплением

Рассчитать одно, определенное место на стене, где будет проявлять себя конденсат, нереально. Так как нахождение точки росы будет зависеть от определенных параметров и такой показатель переменчивый. Рассчитать можно лишь определенную дистанцию в стеновой толщине, где будет появляться жидкость при разных изменениях температуры снаружи дома. К примеру, если в помещении температура стабильная, а на улице стало резко холодно, то точка росы станет сдвигаться по толщине стен поближе к помещению. Посредством формулы можно получать по максимуму точные расчеты росы и однородной, и многослойной стены. Вычислять место появления точки росы во всех многслойных стенах крайне просто, и для того, чтобы узнать точку росы в каркасном доме, нужны такие показатели:

  •  Температура воздуха в помещении.
  • Температура на улице.
  • Отдельная толщина всех слоев стен.
  • Коэффициент теплового сопротивления материалов, из которых выстроены домовые стены.
  • ТР при относительной влажности воздуха в регионе (таблица представлена ниже).

Для определения части планируемой стены, в которой будет точка росы и выделение конденсата, важно знать о таких показателях.

  1. Температура ТР в регионе, с нужными для вас показателями влажности и воздушной температуры в помещении. Такой показатель можно просмотреть в таблице выше.
  2. Воздушная температура, которая появляется на границе пары слоев стен, при интересующих показателях. Назовем это ТС (точка между слоев).

Если разница выделенных выше показателей станет положительной, то ТР будет в утеплителе, если показатель будет отрицательный, и ТР начнет накапливать жидкость в доме или стене. Иными словами, если температура стыка утеплителя и стен будет выше и иметь знак  +, чем температура ТР по таблице, и тогда конденсат будет появляться в утеплителе. Рассмотрим пример. Температура ТР в регионе со влажностью 60% и температурой в комнате +21 градус, по таблице будет составлять +12.9 градусов. Температура воздуха на границе утеплительного слоя и стены составляет +15 градусов. Разница между показателями составляет +2.1 градус. Если разница показателей, отмеченных выше, будет положительной, как в этом случае, то точка росы будет в утеплителе, если показатель отрицательный, то ТР начнет скапливать жидкость в домовой стене.

В нашем случае температура выделения жидкости из пара будет раньше, нежели насыщенный влагой воздух дойдет до главной стены. Конденсат выпадет в утеплителе, а не в несущей стеновой части или внутри него. Появляется вопрос о том, что если температуру ТР при заданной влажности выберем из таблицы, то так вычислять температуру между стеновыми слоями.

Расчет температуры воздуха на границе пары слоев стен очень просто, применяя такую формулу:

ТС=(Т2-Т1)*(С1*0.01/к)/(С2*0,01/к)

Т2 – воздушная температура внутри помещения.

Т1 – температура воздуха со стороны улицы.

С1 – толщина стенового материала.

К – коэффициент тепла стенового материала.

К примеру, выберем регион, где точка росы +12.9 градусов со влажностью в 60%, температура в комнате +21 градус и температура на улице -12 градусов. Далее вам требуется вычислить для таких условий, какая будет температура между обычной стеной в 1.5 кирпича с толщиной 0.38 метров и наружным видом утеплителя из пенопласта, толщина в 0.1 метр. Чтобы убрать температуру ТР из таблицы. Для этого применяйте формулу. Получится следующее:

Т2 составляет =21 градусов (воздушная температура в помещении).

Т1 составляет – 13 градусов (воздушная температура на улице).

С1 составляет 0.38 метров (толщина стенового материала).

К1 – 0.6 (коэффициент теплового вида сопротивляемости кирпичей).

С2 – 0.1 метр (толщина слоя утеплителя, сделанного из пенопласта).

К2 составляет 0.04 (коэффициент теплового сопротивления пенопластовых листов).

Расчет температуры между стеной из кирпича утеплителе из пенопласта, в выбранных нами условиях климата 9.52.

По вычислениям температура воздуха между пенопластовым утеплителем в 0.1 метр и стеной из кирпича в 0.38 метра при температуре воздуха на улице -13 градусов и температуре в доме +21, составляет 9.52. так, если произвести вычисления, точка росы, из-за которой намокает утеплитель, будет -3.38. Как вы видите, получится отрицательный показатель, т.е. состояние конденсата воздух достигнет в кирпичной стене и в нем начнет накапливаться влажность. Приведенный расчет ТР будет самым точным, с погрешностью до ½ градуса, в отличие от определенных онлайн-калькуляторов и остальных приборов, которые не способны учесть разную материальную структуру.

Расчет точки росы на калькуляторе/приборе

В Интернете есть много онлайн-программ (калькуляторов), посредством которых можно рассчитывать приблизительное размещение ТР в стене. Программа рассчитает ТР, основываясь на множество показателей, которые важно вводить вручную. Это информация о материалах, из которых вы планируете возводить стены, число стеновых слоев и их толщина, температура воздуха внутри и снаружи, а также влажность воздуха. Калькуляторы удобны в расчетах, и вместе с цифровыми расчетами можно будет увидеть диаграммы и графики перемещения ТР в зависимости от изменений воздушной температуры. Но результаты расчетов у большинства калькуляторов отличаются и насколько точны расчеты, неизвестно.

ТР можно определять даже в реальном времени, посредством особого устройства. Это электроприбор с монитором, где отображены сведения про влажность внутри помещения, отображается температура воздуха и ТР. Эти приборы актуальны для изменения точки росы в уже законченной и возведенной строительной конструкции. При проектировании стеновой толщины и здания этот прибор не поможет.

Вред точки росы для домовых стен

Мы рассмотрели, что ТР может быть размещена в 3 разных стеновых участках:

  • В наружном виде утеплителя стен.
  • В стенах, поближе к наружной части.
  • В стеновой поверхности, поближе ко внутренней части.

В каждом из мест, которые перечислены, ТР будет проявляться себя по-разному. Если в одном месте она будет безвредной, то внутри дома/стене будет оказывать разрушительные последствия на стеновую целостность. Ниже мы рассмотрим поведение ТР в каждом из описанных мест.

Точка росы в утеплителе наружного вида

Это наиболее безвредное нахождение ТР для дома, и в таком случае:

  1. Конденсат при попадании ТР образуется в самом утеплителе.
  2. Слой утеплительного материала не гигроскопичный, и потому влага не станет задерживаться в стеновом конструктиве и испаряется при изменении воздушной температуры.
  3. За счет пароизоляционных качеств утеплительного материала, влажность, которая появляется во время испарения конденсата, выйдет на улицу и не будет взаимодействовать с домовой стеной.
  4. Домовые стены сухие в течение года, причем и снаружи, и изнутри.
  5. Стены сохранят прочность и целостность в течение многих десятков лет.

Рассмотрим еще один вариант.

Точка росы в домовой стене, ближе к наружной части

Поведение стен будет во многом зависеть от материала, из которого она сделана. Лучше всего переносят ТР стены из тяжелых и плотных стройматериалов, таких как керамзитобетон, кирпич, древесина и камень, потому что они в меньшей мере подвержены разрушению и обладают огромный коэффициент морозоустойчивости. Домовые стены выстроенных из пористых материалов, отлично впитывают влагу и тех, которые пропускают пар. Это газоблоки, пеноблоки и подобные материалы, а у них действие точки росы должны быть по минимуму коротким.

При появлении конденсата внутри стен, материал начнет насыщаться жидкостью. При дальнейшем понижении температуры воздуха накопленная жидкость станет замерзать и расширяться, а увеличение объема жидкости разрушит любые материал стен внутри. Это приведет к появлению и мелких, и больших трещин к стеновой структуре. Так они окончательно потеряют свою прочность. В случае, когда стена, в которой точка росы внутри, а еще утеплена снаружи, то материал не станет препятствовать выходу влаги наружу.

По этой причине вся жидкость будет накапливаться на поверхности, между стеной и утеплителем. Это влечет образование грибковых колоний и плесени, со всеми последствиями, которые вредят и зданию, и человеческому здоровью. Если домовые стены не утеплены снаружи, то жидкость будет выходить с повышением воздушной температуры, но это не спасет стены от внутренних разрушений после замерзания воды. Такие испарения жидкости от влажных стен вы сможете наблюдать в виде белоснежного налета на стенах из кирпичей.

Точка росы в каркасном доме

Расположение точки росы в каркасном доме

Точка росы – температура, при которой охлажденный воздух превращается в пар и начинает оседать в виде конденсата. При строительстве каркасного дома параметры точки росы просчитываются специалистами с особой тщательностью. Пароизоляционные и теплоизоляционные слои, а также необходимость вентиляции – это все то, что позволяет свести к минимуму появление конденсата внутри каркасных стен и предотвратить повышенный уровень влаги.

Расчет каркасной стены нашего производства. Дом для круглогодичного проживания

 

Расчет точки росы в каркасном доме

  1. «Пирог» стены каркасного дома состоит из внешних и внутренних обшивочных плит, внутри которых находится слой пароизоляционного и теплоизоляционного материала. Если толщина данного слоя будет недостаточной или инженеры проектировщики составят проект, в котором не будет вентиляционных зазоров, в зимнее время теплые воздушные массы будут неизбежно встречаться с холодным потоком воздуха, а повышенное давление водяных паров приведет к образованию большого количества конденсата.

      

  2. В результате все теплоизоляционные материалы могут намокнуть, что в свою очередь приведет к быстрому разрушению деревянного каркаса и других несущих конструкций, изготовленных из дерева.

  3. Вот почему так важно правильно рассчитать все параметры при создании проекта и применить на практике все расчеты инженеров во время строительства.

  4. На официальном сайте компании ООО «ПРОЕКТСТРОЙ-П» вы можете самостоятельно произвести расчет точки росы, воспользовавшись онлайн калькулятором.

      

  5. В соответствующие графы просто введите требуемые параметры и нажмите «рассчитать». Вы получите результат, который и будет применимым к вашей конструкции каркасного дома.

  6. Стоит отметить, если вы оформляете заказ в компании ООО «ПРОЕКТСТРОЙ-П» на строительство каркасного дома под ключ, будьте уверены, вам проведут все работы в соответствии с техническими нормами и требованиями. Наши клиенты могут не заботиться буквально ни о чем.

  7. Высококвалифицированные специалисты учтут все, чтобы ваш каркасный дом был качественным, долговечным, надежным и уютным.

     

      

     

  8. При этом использовать калькулятор расчета точки росы можно и нужно, чтобы узнать, действительно ли несущим деревянным конструкциям не угрожает разрушение в результате систематического появления конденсата внутри стен.

 Гарантия качественного строительства

 Наверняка, вы останетесь довольны проведенными расчетами. Ведь современная технология строительства каркасных домов от компании ООО «ПРОЕКТСТРОЙ-П» — это сочетание гарантии качества, быстроты и минимальной цены.

  

Стены вашего дома никогда не промерзнут, не промокнут и в них не образуется плесень, которая неизменно присутствует там, где уровень влажности повышен. Доверяйте строительство только надежным компаниям и наслаждайтесь уютом в собственном доме.

 Перейти к:

Позвоните нам
+7(495)665-15-42
Мы расскажем Вам все о точке росы в каркасном домостроении

 

Почему утеплитель мокнет и точка росы в стене каркасного дома. | Михаил Инженер

Доброго времени суток! Рассмотрим на примере моего дома утепление стены и образование (или его отсутствие) конденсата в утеплителе.

Что такое точка росы? Если говорить простыми словами — это температура, при которой влага, содержащаяся в воздухе, конденсируется на поверхности чего-либо и образуется вода. Например роса на траве рано утром — это наглядное проявление этого понятия.

Осенью 2018 года на северной стороне моего дома я наблюдал следующую картину. На фасаде образовывалась изморозь, через которую отчетливо просматривался каркас стены.

Фото сделано уже весной этого года

Дом уже отапливался. Меня заинтересовало это явление и я решил смоделировать этот процесс на компьютере. Сегодня поделюсь с Вами этой информацией (и даже с бонусом).

Пирог стены следующий:

Гипсокартон — 12 мм;

Полиэтиленовая пленка — 150 мкн;

Базальтовый утеплитель — 150 мм;

ОСБ плита — 9 мм.

На графике можем наблюдать зону конденсации — почти 1,5 см в толще утеплителя

Сама по себе зона конденсации еще не означает, что там будет образовываться конденсат и будет намокать утеплитель. Для этого процесса там должно быть определенное количество влаги. Далее посмотрим на график влагонакопления.

Из графика видим, что плоскость максимального влагонакопления находится сразу под ОСБ плитой.

Но как же так? В чем фокус то? А фокус как раз и заключается в полиэтиленовой пленке. Это может быть не обязательно она. Может быть любая качественная пароизоляция.

Чем больше увлажненного воздуха из помещения попадет в толщу стены, тем утеплитель будет влажнее.

Ограждающая конструкция удовлетворяет нормам!

Поэтому пароизоляция должна быть выполнена очень качественно, без щелей и порезов. В моем случае образование изморози я отнес к эффекту конденсации влаги из наружного воздуха, из-за недостаточной толщины утеплителя в стене, поэтому буду утеплять еще на 5 см снаружи. Вот что у меня должно получиться.

На графике видно, что кривые температуры и точки росы не пересекаются. Значит бояться о намокании утеплителя совсем не придется.

Если мы уберем пароизоляцию и поставим ее снаружи под ОСП, то получим вот это.

Почти весь утеплитель находится в зоне конденсации.Ограждающая конструкция не удовлетворяет нормам по защите от переувлажнения.

Теперь рассмотрим полное отсутствие пароизоляции в стене или ее некачественное исполнение.

Тоже ничего хорошего не обещает такой вариант

Видим на графике, что весь утеплитель находится в зоне конденсации. А раз нет никакого барьера для проникновения пара в тело утеплителя, то он намокнет через какое-то время и потребуется капитальный ремонт.

Надеюсь статья будет полезна для Вас.

Читайте также, что стало с утеплителем в полу через год,

Спасибо за внимание! Ставьте «Любо» и подписывайтесь на мой канал. Мир Вашему дому!

Точка росы в каркасном доме

Современное строительство каркасных домов подразумевает расчет точки росы. Под этим понятием скрывается температура, при которой теплый, насыщенный паром воздух отдает на холодные поверхности капли воды (конденсат или роса). Расчет точки росы именно в каркаснике обеспечивает:

  • правильный выбор пароизоляционных материалов,
  • использование оптимальной толщины утеплителя,
  • создание эффективной системы вентиляции.

Любой домокомплект каркасного дома в СПб подразумевает многослойную конструкцию стен. При этом точка росы может находится в любой точке внутри стенового пирога, в зависимости от разницы комнатных и уличных температур, показателей влажности.

Толщина утеплителя также имеет значение. Если она недостаточна, то холод будет промораживать стену, что приведет к влажности и развитию грибка. А вот излишняя толщина утеплителя приведет к повышенной влажности внутри дома со всеми вытекающими последствиями.

Зачем нужен расчет точки росы при каркасном домостроительстве

Сегодня построить каркасный дом по доступной цене – вполне реально. Но расчет точки росы обязателен. Он позволит создать оптимальную толщину и конструкцию стенового пирога, обеспечивающие сохранение температуры внутри стены выше, чем точка росы. Это позволит избежать критичного увлажнения элементов конструкции. Также это даст вам возможность спланировать пароизоляцию так, чтобы минимизировать проникновение влажного воздуха изнутри помещения в конструкцию стен.

Что будет, если неправильно рассчитать точку росы?

Какой бы ни была цена проекта одноэтажного каркасного дома, важно обеспечить грамотный расчет точки росы. В противном случае внутри стенового пирога каркасника будет скапливаться влага, что приведет:

  • к разрушению стоек каркаса,
  • деформации древесных плит,
  • выводу теплоизоляции из строя.

В холодное время года влага внутри стен может кристаллизовываться, нанося еще больший урон конструкциям.

Май 01, 2019,  СК «Доступный дом»

Контроль конденсации в холодную погоду с помощью теплоизоляции

Конденсация в холодную погоду в первую очередь является результатом утечки наружного воздуха. Диффузия обычно не перемещает достаточное количество водяного пара достаточно быстро, чтобы вызвать проблему. Чтобы предотвратить повреждение конденсации внутри стен и крыш ограждения, используются воздушные барьеры для остановки воздушного потока и пароизоляционные слои (замедлители диффузии пара или барьеры) для ограничения диффузионного потока.

Воздух, выходящий наружу через стену шкафа в холодную погоду, будет контактировать с тыльной стороной оболочки в каркасных стенах.Этот конденсат может накапливаться в виде инея в холодную погоду и впоследствии вызывать «протечки», когда иней тает и жидкая вода стекает вниз, или вызывать гниение, если влага не высыхает быстро после возвращения более теплой и солнечной погоды.

В стенах с достаточной внешней изоляцией температура точки росы внутреннего воздуха будет ниже температуры тыльной стороны обшивки: поэтому конденсация из-за утечки воздуха не может происходить в пространстве стойки. Если расчет показывает, что сборка защищена от конденсации в результате утечки воздуха (с использованием метода, описанного ниже), то диффузионная конденсация не может произойти, даже если внутри оболочки не обеспечивается полное паронепроницаемость (т.е.е., без пароизоляции или другого регулирующего слоя), и даже если оболочка является пароизоляцией (например, изоляция с фольгой).

Возникновение промежуточной конденсации само по себе обычно не является признаком дефекта конструкции: если утечка воздуха, конденсация происходит только в экстремальных условиях (например, 99% расчетных условий, перечисленных в Справочнике основ ASHRAE или других источниках), утечка воздуха в течение многих часов после этого редкого события стена фактически высохнет, когда температура оболочки поднимется выше внутренней точки росы.Следовательно, выбор условий для анализа очень важен. Хотя данные о температуре наружного воздуха легко доступны, даже стены, выходящие на север, будут подвергаться некоторому воздействию рассеянного солнечного излучения, которое будет нагревать облицовку (и, следовательно, стены) выше температуры наружного воздуха в течение многих часов холодных зимних месяцев.

Трудно выбрать расчетную температуру наружного воздуха, поскольку аналитик может выбрать любой уровень защиты от конденсации, от нулевого до полного.Для материалов с некоторой устойчивостью к влаге (например, внешняя гипсовая обшивка из стекломата достаточно устойчива к влаге) и / или с некоторой способностью безопасно хранить влагу (например, фанера и обшивка OSB), гораздо менее строгая конструкция. более оправдан, чем для материалов без хранения (например, изоляция с фольгой) или с высокой чувствительностью к влаге (гипс с бумажным покрытием). Поэтому требуется некоторое суждение. Средняя зимняя температура (средняя из трех самых холодных месяцев) считается достаточно безопасным значением (и легко доступна).Для систем с высокими эксплуатационными характеристиками (или стен, которые очень чувствительны к повреждению от влаги) можно выбрать более консервативное значение, например, самый холодный месяц, на 10 ° F / 6 ° C меньше среднемесячного значения или 9 ° C / 15 ° F выше проектной температуры 99%.

Внутренние условия в здании в холодную погоду являются критическими переменными для понимания риска конденсации и должны быть известны, если нужно делать прогнозы и расчеты. Температура в помещении часто находится в диапазоне 70 ° F / 21 ° C, но уровни относительной влажности и, следовательно, содержание влаги в воздухе могут значительно различаться.В большинстве офисов, школ и магазинов уровень вентиляции достаточно высок, чтобы относительная влажность в зимние месяцы составляла от 25 до 35%. В некоторых жилых помещениях образование внутренней влаги выше, а степень вентиляции наружным воздухом ниже, чем в коммерческих помещениях, и, следовательно, относительная влажность часто будет выше. В помещениях с особыми условиями, например в плавательных бассейнах, уровень внутренней температуры и относительной влажности будет выше (78 ° F / 25 ° C и 60% относительной влажности), что приведет к очень высокому уровню абсолютной влажности.

Влажность наружного воздуха всегда падает в очень холодных условиях, так как максимальное содержание влаги в воздухе падает. По мере того, как внешние условия становятся холоднее, внутренняя относительная влажность падает, поскольку внутренняя влажность разбавляется все более сухим наружным воздухом. Этот эффект обеспечивает некоторую защиту от конденсации, поскольку самая холодная неделя в году, вероятно, совпадает с одним из самых низких уровней внутренней влажности. 1

Внутренняя влажность обычно определяется комбинацией температуры и относительной влажности.Более прямые показатели — это абсолютная влажность или соотношение влажности, обычно выражаемое в граммах воды на кг сухого воздуха (или в зернах воды на фунт сухого воздуха). Однако с практической точки зрения наиболее полезной мерой является температура точки росы внутреннего воздуха.

Учитывая согласованный набор внутренних и внешних проектных условий, легко рассчитать уровень изоляции, необходимой за пределами пространства каркаса или обшивки для контроля конденсации утечки воздуха. Конденсации можно избежать, если температура на обратной стороне оболочки выше, чем температура точки росы внутреннего воздуха.Если предположить, что внутренняя отделка и внешняя облицовка имеют низкое термическое сопротивление (почти всегда разумное предположение), то температура обратной стороны оболочки может быть найдена по следующей формуле:

T задняя часть оболочки = T внутренняя — (T внутренняя -T внешний вид ) * R batt / R всего

Эта концепция графически показана на Рисунок 1 . Из этого анализа должно быть ясно, что любое количество изолированной оболочки на внешней стороне каркасных конструкций обеспечит лучшую защиту от конденсации утечки воздуха в холодную погоду, чем отсутствие внешней изоляции.При фиксированном R-значении внешней изоляции риск конденсации также снижается, так как R-значение внутренней изоляции падает. Таким образом, если в отсеке стоек вообще нет изоляции (уменьшение внутреннего значения R до значения внутренней отделки и только пустого пространства для стоек, примерно R-2), практически любой разумный уровень внешней изоляции R-значение обеспечивает полную защиту от конденсация и диффузия утечки воздуха в холодную погоду.


Рисунок 1:
Изоляционная оболочка, уменьшающая утечку воздуха и конденсацию

В таблице 1 указан уровень изоляции (оболочка плюс воздушное пространство и облицовка), который должен быть обеспечен за пределами пространства для стоек, заполненного воздухопроницаемой изоляцией (т.е.д., войлок или выдувная волокнистая изоляция) для предотвращения конденсации влаги в холодную погоду. Можно видеть, что при умеренных температурах и сухом внутреннем воздухе требуется небольшая внешняя изоляция для контроля конденсации, тогда как в музее, поддерживающем 50% -ную температуру в Фэрбенксе, Аляска или Йеллоунайфе, Северо-Западные территории, должна быть практически вся внешняя изоляция.

Более конкретно, рассмотрим дом в Торонто. Мы выберем среднюю зимнюю температуру в качестве критерия проектирования и относительную влажность в интерьере 35%.В декабре, январе и феврале температуры в Торонто составляют -1,9, -5,2 и -4,4 ° C соответственно, что приводит к средней температуре зимой в Торонто -3,8 ° C (25 ° F). Из таблицы можно считать, что внутренняя точка росы составляет приблизительно 40 ° F / 5 ° C, и поэтому несколько менее 37% общего значения теплоизоляции стены должно приходиться на внешнюю часть в виде изоляционной оболочки, воздушных зазоров. , и облицовка.

Ориентация на R-значение всего ограждения, равное 20, потребует 0,37 * 20 = от общего количества, или R-7.5 снаружи, чтобы избежать конденсации в случае утечки воздуха. Это оставляет R-12,5 внутри, который может состоять из обшивки R-12 и внутренней отделки. Внешняя облицовка и воздушное пространство добавляют некоторой R-ценности экстерьеру, но их можно консервативно игнорировать. Это решение, вставки R-12 между стойками 2×4 с внешней изоляционной оболочкой R-7,5, очень безопасно против конденсации утечки воздуха для этого примера в Торонто. Если бы целью был R-30, 0,37 * 30 = R-11 внешней оболочки и изоляция пространства стойки R-19 были бы одним из решений.Более подробные расчеты, включая сопротивление деревянной обшивки и воздушный зазор, а также правильная интерполяция результатов между температурой наружного воздуха от 0 до 5 ° C, показывают, что изоляционное значение R-5 обшивки поверх войлока R-12 также будет контролировать конденсацию.


Таблица 1:
Соотношение внешней и внутренней изоляции для контроля конденсации при утечке воздуха

Этот тип простого анализа можно проводить ежемесячно и строить графики для визуализации риска конденсации.Пример стены с деревянным каркасом для климата Чикаго показан на рис. , рис. 2 .


Рис. 2
: Ежемесячный анализ потенциала конденсации двух стен в климатических условиях Чикаго

Добавление большей воздухопроницаемой изоляции в отсек для стоек (например, если конструктивно требуется 6-дюймовая шпилька, исполнитель с благими намерениями может заполнить полость шипа тканью R-20), конечно, снизит защиту от конденсации — опасно в этом случае.Добавление значительно большей изоляции снаружи (например, переход от R-7,5 к R-15) значительно снизит риск. Независимо от конструкции стены, внешнего климата и влажности в помещении всегда будут сохраняться одни и те же тенденции: добавление теплоизоляции снаружи снижает риск конденсации, а добавление воздухопроницаемой изоляции к пространству стоек увеличивает риск конденсации.

Важно отметить, что значения R, используемые в анализе, являются средними значениями R для отсека стоек, так как конденсация будет происходить в самой холодной части оболочки, и это будет происходить между стойками.Следовательно, несмотря на то, что фактическое значение R для всей стены войлока R-13 между 3,5-дюймовыми стальными шпильками при 16-дюймовом остеклении. (Стойки 90 мм на расстоянии 400 мм) будет около R-5 из-за тепловых мостиков на стойках, ватины будут эффективны в середине каждого отсека для стойки. Следовательно, конденсация, вызванная утечкой или диффузией воздуха, сначала начнет возникать между шпильками, и в большинстве случаев конденсация никогда не произойдет на шпильках.

Учитывая результаты описанного метода анализа конденсации, а также знание того, что стальные стойки с изолированными отсеками для стоек обеспечивают общие значения R для стены только от R-5 до R-7, обычно рекомендуется, чтобы все желаемые значения изоляции размещаться на внешней стороне таких легких стальных ограждений.

Рассмотрим две конструкции стены с каркасом из стали, показанные на Рис. 3 в период холодной погоды. Применение изоляционной оболочки R-10 (RSI 1,76) (непрерывная изоляция любого типа) на внешней стороне каркаса приведет к тому, что температура оболочки будет выше 60 ° F (15 ° C) повсюду в пространстве стойки, в том числе на оболочке. , ночью, когда температура наружного воздуха опускается до -15 ° C (4 ° F). Следовательно, конденсация практически невозможна в пространстве стойки или на оболочке (обычно на одном из чувствительных к влаге компонентов в сборе).Это верно даже в случае утечки воздуха, поскольку температура всех поверхностей выше точки росы внутреннего воздуха. 2 Если изоляция R-19 (RSI3.5) размещается между каркасом, температура оболочки будет примерно 10 ° F (-12 ° C), что значительно ниже температуры, при которой может возникнуть конденсация. В последней конструкции используются идеальные воздушные барьеры (одно из решений — воздухонепроницаемая пена для распыления), позволяющая избежать конденсации в результате утечки воздуха. Если заполнение полости обладает высокой паропроницаемостью (например, стекловолокно, минеральная вата или открытая ячейка, пена плотностью полфунта), пароизоляционный слой (класс II) также необходим для надежного управления диффузией пара.


Рисунок 3:
Изоляционная оболочка в качестве меры контроля конденсации. Сплошная внешняя изоляция слева, изоляция каркаса справа. Красная линия отображает температуру в двух сборках в ночь на 4 ° F (-15 ° C). Синяя линия показывает температуру обратной стороны оболочки.

Конструкция со всем контролем теплового потока в виде непрерывного слоя изоляции на внешней стороне может очень хорошо работать даже в случае утечки воздуха и не требует особой осторожности при выборе внутренних слоев для контроля паров.Следует также напомнить, что стена с только внешней изоляцией будет иметь общее значение R около R-12 (RSI2.1), тогда как стена с изоляцией полости каркаса будет иметь общее значение R от R-6 до Р-8 (RSI 1.1 — 1.4) (в зависимости от деталей пересечения перекрытия и стенового каркаса и типа облицовки).

Во многих ситуациях может рассматриваться гибрид внешней изоляционной оболочки и изоляции полости стойки. На рис. 4 показан график температуры для двух гибридных растворов при тех же условиях, которые рассматривались ранее.Установка изоляции R-12 (RSI2.1) в пространстве стоек улучшит тепловые характеристики стены примерно на R-6 (увеличение сборки до общего значения R более 16 / RSI2,8), но уменьшит температура оболочки до 35 ° F (2 ° C) в эту холодную ночь. Во многих коммерческих помещениях температура внутренней точки росы в холодную погоду опускается ниже 35 ° F (2 ° C), поэтому конденсация маловероятна, но отнюдь не невозможна. Если бы R-12 был добавлен в виде воздухонепроницаемой аэрозольной изоляции (например,грамм. SPF) воздух практически не попадал в оболочку и не было риска конденсации при утечке воздуха.

R-17 / RSI 3,0 Всего R-18 / RSI 3,2 Всего
Рисунок 4: Гибридный подход к изоляции — хотя и более рискованный, особенно в холодном климате и повышенной влажности в помещении, гибридные стены предлагают немного более высокое значение R и могут быть влагобезопасным во многих областях применения. Обратите внимание, что отношение значения внешней изоляции к R-значению полости каркаса определяет риск конденсации в холодную погоду.

Если бы воздухопроницаемая изоляция R-19 (RSI3,5) была добавлена ​​в пространство для стойки, значение R сборки увеличилось бы примерно на R-7 по сравнению со сценарием с пустым пространством для стойки: то есть почти 2 / 3 изоляционной стоимости войлока R-19 все равно будет потеряно. Однако температура оболочки упадет ниже 30 ° F (-1 ° C), и риск конденсации будет выше. Относительно небольшое увеличение контроля теплового потока, обеспечиваемое изоляцией из войлока, достигается за счет значительного увеличения риска конденсации.

Те же решения, которые предотвращают конденсацию из-за утечки воздуха, также полностью устраняют конденсацию в холодную погоду из-за диффузии пара, даже если внешняя оболочка является идеальным пароизоляционным материалом (например, изоляционные плиты с фольгированной или пластиковой облицовкой). Если выбранные слои оболочки (включая структурную оболочку, водоотталкивающие и изоляционные материалы) в некоторой степени паропроницаемы (например, пенополистирол поверх строительной бумаги и фанеры), можно использовать меньшее значение R, и диффузионная конденсация все равно будет контролироваться (поскольку большая часть пар, который диффундирует или просачивается вместе с воздухом в отсек для стоек, будет безвредно проходить наружу путем диффузии).Если слои обшивки очень паропроницаемы (например, минеральная вата поверх ДВП или гипсовая обшивка, а также обшивка для дома), то за пределами отсека для стоек требуется очень небольшая изоляция. Однако, хотя эти проницаемые слои могут существенно исключить риски конденсации диффузионного пара с более низкими значениями R внешней оболочки, риск конденсации утечки воздуха не так сильно снижается: утечка воздуха может по-прежнему доставлять больше водяного пара к задней части оболочки, чем может быть. удаляется диффузией через оболочку, и, следовательно, конденсация все еще может происходить и накапливаться.

Для важных проектов или ситуаций, в которых команда разработчиков имеет небольшой исторический опыт, исследование с использованием широко доступных компьютерных моделей, таких как WUFI-ORNL, будет разумным при наличии необходимого времени и навыков.


Сноски

  1. Корреляция уровней влажности в помещении и температуры наружного воздуха была бы гораздо более прямой, если бы не способность удерживать влагу тканью здания и изменяющиеся скорости производства влаги внутри здания.Резкие резкие перепады температуры наружного воздуха с большей вероятностью могут привести к конденсации, поскольку в здании сохраняется более высокий уровень внутренней влажности. Если температура наружного воздуха медленно падает в течение нескольких дней, внутреннее пространство здания постепенно становится суше по мере поступления холодного наружного воздуха.

  2. Это заключение справедливо даже для помещений с высокой влажностью, таких как музеи, так как у воздуха при 70 ° F / 50% относительной влажности точка росы составляет около 50 ° F / 10 ° C. Только сквозные крепежные детали, такие как винты, кирпичные стяжки и кровельные винты, будут подвергаться риску в условиях такой высокой относительной влажности.Плавательные бассейны могут иметь точку росы, превышающую 60 ° F / 15 ° C, и, следовательно, для предотвращения образования промежуточной конденсации в холодном климате потребуется более высокое значение R снаружи.

Два правила предотвращения повреждений, вызванных влажностью

Поскольку я так много писал о влажности в зданиях, я получаю много вопросов по этой теме. Некоторые о стенах. Некоторые о чердаке. Некоторые про окна. Некоторые из них касаются пространства для сканирования (которое вызывает больше всего вопросов по этой теме). Ключ к ответу на многие из этих вопросов сводится к пониманию того, как водяной пар взаимодействует с материалами.Зная это, легко понять два правила предотвращения повреждений от влажности.

Как водяной пар взаимодействует с материалами

Первое, что нужно понять, это то, что водяной пар, плавающий в воздухе, втягивается материалами, контактирующими с воздухом. Давайте проигнорируем здесь вопрос о гигроскопичности материалов и сосредоточимся на влиянии температуры. Разделительная линия — это температура точки росы. Когда температура материала выше точки росы, конденсации не происходит.Когда она ниже точки росы, происходит конденсация. И чем ниже температура материала, тем больше водяного пара он вытягивает из воздуха. (Да, я знаю. Конденсация — это не то же самое, что адсорбция или абсорбция. Чтобы разобраться в этом вопросе, прочтите мою статью Можно ли получить конденсат на губке? И не пропускайте комментарии.)

Мы используем точку росы в наших осушителях, которые пропускают влажный воздух через холодный змеевик, конденсируя большое количество водяного пара. Однако, когда мы говорим о частях здания, мы не хотели бы, чтобы водяной пар конденсировался (или поглощался / адсорбировался) на материалах, будь то окна ванных комнат, балки перекрытий или стены с виниловым покрытием.Случайное осушение, как правило, нехорошо. Итак, вот два правила.

Правило 1. Не допускайте попадания влажного воздуха на прохладные поверхности

Когда вы изучаете планы здания или пытаетесь понять, что пошло не так в реальном здании, лучше всего начать с определения того, где находится влажный воздух и с какими частями здания он контактирует. Если у вас есть вентилируемое пространство для ползания во влажном климате, влажный воздух находится в этом пространстве. Точка росы этого воздуха может быть 75 ° F или выше.Когда жилое пространство наверху кондиционируется, пол может опуститься ниже точки росы, в зависимости от того, насколько прохладно в доме обитатели. Но даже когда термостат выставлен на 75 ° F, пол может быть прохладнее. Если в этом пространстве для ползания обнаружится какая-либо древесина или другие материалы, охлаждаемые при контакте с пространством выше, эти материалы могут всасывать воду из влажного воздуха.

Зимой тоже могут быть проблемы. На фото ниже показаны балки перекрытия, стропильные фермы и черновой пол в подвесном помещении в холодный день.Строитель продолжал герметизировать пространство для обхода, чтобы предотвратить эту проблему, но они не установили пароизоляцию вовремя, чтобы предотвратить этот беспорядок. Влажный воздух в подвале повсюду находил холодные поверхности, пока дом еще строился.

Используя пространство для подполья, вы можете разделить влажный воздух и холодные поверхности несколькими способами. Вы можете изолировать пространство для обхода и удалить влажный воздух. Или вы можете убедиться, что влажный воздух из космоса не приближается к поверхностям, температура которых может быть ниже точки росы.Ватины из стекловолокна в полу не доберутся до вас. Вам нужно будет использовать аэрозольную пену с закрытыми порами или положить какой-нибудь воздушный барьер (обычно жесткий пенопласт) на нижнюю часть балок пола.

То же самое относится ко всем остальным частям дома. Там, где у вас влажный воздух, нужно следить за тем, чтобы не было прохладных поверхностей. Иногда эти поверхности охлаждаются путем кондиционирования жилого помещения. Иногда они охлаждаются погодой на открытом воздухе.

Правило 2. Держите поверхности в тепле при контакте с влажным воздухом

Хорошо, второе правило действительно такое же, как первое, только наоборот.(Технически это противопоставление вам, логикам.) Первое правило гласит, что там, где у вас прохладные поверхности (, то есть ниже точки росы), вам нужно не допускать попадания влажного воздуха. Второе правило гласит, что там, где у вас влажный воздух, нужно держать соседние поверхности выше точки росы.

Представьте себе сборку стены. Двигаясь изнутри дома наружу, основная сборка состоит из гипсокартона, изоляции каркаса / полости, обшивки и облицовки. Где влажный воздух? Летом, скорее всего, на открытом воздухе.Если вы не хотите, чтобы водяной пар конденсировался на вашем сайдинге или обшивке, вам нужно убедиться, что температура этих материалов не ниже точки росы. Если у вас есть теплоизоляция в стенах, скорее всего, у вас не будет проблем. Даже без теплоизоляции эти стены вряд ли будут ниже точки росы, если в доме не будет по-настоящему холодно.

Поверхность, которая, скорее всего, будет иметь температуру ниже точки росы, — это гипсокартон. Если у вас возникла проблема, вы нарушили правило 1.Это означает, что ваша стеновая обшивка не действует как хороший воздушный барьер. (На ведущей фотографии в этой статье показан случай, когда это произошло.)

Наиболее частым примером нарушения правила 2 является конденсация на внутренней стороне внешней обшивки в холодную погоду. Если вы поддерживаете в доме температуру 70 ° F и относительную влажность 40%, точка росы составляет 45 ° F. Обычно мы не будем считать это влажным воздухом, но зимой определенно можно найти поверхности с температурой ниже 45 ° F. . Это делает его потенциальным источником проблем с влажностью.

Поскольку водяной пар находится внутри дома, а холодные поверхности снаружи, нам просто нужно убедиться, что влажный воздух контактирует только с теплыми поверхностями. Это означает, что нам нужна хорошая изоляция, чтобы гипсокартон оставался теплым. И нам нужна хорошая воздухонепроницаемость, чтобы влажный воздух не попадал в стены и не находил холодную обшивку.

Но и этого недостаточно для домов в холодном климате. Водяной пар может проходить через стенную конструкцию за счет диффузии, а также утечки воздуха.Использование непрерывной изоляции снаружи обшивки решает эту проблему, сохраняя теплоту оболочки. Мартин Холладей затронул эту тему в своей статье Расчет минимальной толщины жесткого пенопласта . Новые правила также включают требования к непрерывной изоляции в большинстве климатических условий.

Если вы выберете стены с двойными каркасами, убедитесь, что у вас есть пароизоляция, замедляющая движение водяного пара к холодной обшивке. См. Мою статью о стенах с двойным каркасом, чтобы узнать больше об этом.Еще один полезный ресурс — статья Мартина Холладея Насколько опасна холодная обшивка стен OSB?

Хранить вещи в сухом состоянии

Водному пару, вероятно, уделяется больше внимания, чем он заслуживает, в наших обсуждениях проблем влажности в зданиях. Налив воды из-за плохого оклада, глупой конструкции крыши и неисправных желобов вызывает гораздо больше проблем, чем водяной пар. Тем не менее, водяной пар имеет значение. Если вы читаете это холодным зимним днем, можете не сомневаться, что где-то на окно в ванной капает конденсат, а в доме с плохо изолированными стенами и невентилируемыми обогревателями растет плесень.Если вы можете определить проблему, вызванную влажным воздухом, у вас есть два способа справиться с ней: не допускайте попадания влажного воздуха на прохладные поверхности или согревайте поверхности, когда они контактируют с влажным воздухом.

Статьи по теме

Случайное осушение — грязь, которую можно предотвратить

Как лучше всего справиться с Crawl Space Air?

4 способа попадания влаги в вентилируемое пространство для ползания

ПРИМЕЧАНИЕ: Комментарии модерируются.Ваш комментарий не появится ниже, пока не будет одобрен.

Q&A: Что такое точка росы? | JLC Онлайн

Q. Когда люди говорят о точке росы в сборке стены, они говорят о местоположении или температуре? Как рассчитывается точка росы?

A. Консультант по энергетике и устойчивому дизайну Энди Шапиро отвечает : Точка росы — это не место; это температура, при которой вода конденсируется из воздуха.Поскольку точка росы изменяется в зависимости от влажности в воздухе, а также температуры воздуха, точку росы для конкретной температуры и относительной влажности лучше всего искать в таблице или психрометрической диаграмме (см. Ниже).

Вода из воздуха будет конденсироваться на компонентах здания, когда они будут ниже точки росы воздуха, который с ними контактирует. В трубах холодной воды жарким влажным летом вода конденсируется и капает. Неизолированные подвальные полы в жаркое влажное лето часто имеют температуру ниже точки росы горячего влажного наружного воздуха, поэтому вода конденсируется на них, если пространство открыто наружу.В здании с кондиционером в теплом влажном климате, например на юго-востоке США, гипсокартон может месяцами находиться ниже точки росы наружного воздуха.

То, что компонент здания находится ниже точки росы, не означает, что возникнет проблема. Виниловые оконные рамы и медные трубки не боятся влаги. С другой стороны, деревянные оконные элементы и гипсокартон не выдерживают большого количества влаги, особенно если смачивание продолжается и компоненты не могут высохнуть.

Определение того, будет ли компонент в стеновой сборке когда-либо достаточно холодным, чтобы допустить конденсацию, то есть быть ниже точки росы, может быть сложно. Если бы каждый элемент стены действовал как твердое тело (чего не делает стекловолокно), то расчет температуры в любой точке конструкции стены был бы довольно простым. На половине значения теплоизоляции стены температура будет на полпути между внутренней и внешней.

На самом деле такие статические расчеты могут вводить в заблуждение, поскольку материалы стен могут впитывать некоторую влагу, не будучи поврежденными.Более точные расчеты, называемые динамическими расчетами, учитывают множество дополнительных факторов, но они настолько сложны, что их лучше всего выполнять с помощью компьютерного программного обеспечения. Хорошая новость заключается в том, что этот тип динамических расчетов обычно не требуется, если строители применяют передовые методы строительства. которые удерживают внутренний воздух из стен в холодном климате и наружный воздух из стен в прохладном климате и позволяют компонентам здания, которые иногда становятся влажными, высыхать. Одним из очень хороших источников сведений о строительстве, которые позволяют избежать повреждения от влаги, является серия «Руководства строителя» от Building Science Corp.(978 / 589-5100; www.buildingscience.com).

Как удалить конденсат | Домостроение

Что такое конденсация?

Воздух содержит влагу. Температура воздуха определяет, сколько влаги он может удерживать, а теплый воздух содержит больше влаги, чем холодный.

Когда теплый влажный воздух соприкасается либо с поверхностью, либо с воздухом, который холоднее, чем он есть, теплый воздух не может удерживать такое же количество влаги, как это было, и вода выходит либо в холодный воздух, либо на более холодная поверхность вызывает образование конденсата, за которым быстро образуется плесень.

Каковы причины?

При повседневной деятельности, такой как приготовление пищи, стирка и сушка одежды, отопление и даже дыхание, образуется водяной пар. Воздух может удерживать определенное количество влаги в виде невидимого пара, независимо от его температуры.

Когда воздух содержит больше влаги, чем может удерживать, он достигает «точки насыщения», и когда это достигается, влага снова превращается в воду и происходит конденсация. Температура, достигнутая в точке насыщения, называется «точкой росы».

В этом случае относительная влажность воздуха составляет 100%. Воздух в большинстве домов имеет относительную влажность 50-70%. Проблемы возникают, когда структурные дефекты в здании означают, что содержание влаги стало слишком высоким; при отсутствии в старых домах гидроизоляционного слоя (ДПК) ; и когда в доме неадекватная вентиляция .

В старинных домах часто нет ЦОД, что означает, что влага из почвы под домом поднимается в комнаты первого этажа, в то время как в других домах возникают мостовые ЦОД или поврежденные водосточные желоба.

Существует несколько типов конденсации:

Это происходит, когда теплый, насыщенный влагой воздух соприкасается с поверхностями с точкой росы или ниже. Это происходит у основания внешних стен — где это часто ошибочно принимают за поднимающуюся влажность — на окнах, где это может вызвать гниение подоконников, и на нижней стороне крыши.

Это происходит, когда теплый влажный воздух попадает в холодный дом. Это происходит зимой, когда наступает «теплый фронт» с Атлантического океана, и это обычное явление для незанятых домов.

Это происходит, когда теплый влажный воздух проникает в паропроницаемый материал, например волокнистую изоляцию. Если этот материал теплый с одной стороны и холодный с другой, влага будет откладываться в жидкой форме внутри материала. Это особая проблема в домах с сильной изоляцией или кондиционированием воздуха.

Как избавиться от конденсата

Есть три основных способа решить проблему конденсации, глядя на относительную влажность, вентиляцию и изоляцию:

Управляйте относительной влажностью в вашем доме с помощью вытяжных вентиляторов на кухнях и ванных комнатах.Также помогает закрытие дверей в эти комнаты во время работы вытяжных вентиляторов.

Обеспечьте соответствующую вентиляцию. Вентиляционные отверстия в окнах работают хорошо, но более сложным вариантом является вентиляционная установка с рекуперацией тепла . Они заменяют воздух в вашем доме, выводя застоявшийся влажный воздух наружу, а затем возвращая свежий воздух через отдельную решетку, пропуская его обратно через теплообменник для обогрева. Также можно купить центральные вытяжные системы, которые соединяют все влажные помещения в вашем доме с центральным вентилятором перед выпуском застоявшегося влажного воздуха на улицу.

Другой вариант вентиляции — это система приточной вентиляции (PIV), которая работает путем мягкой подачи свежего отфильтрованного воздуха в помещение от блока, установленного на чердаке, и распределительного диффузора, установленного на потолке. Непрерывная подача и небольшое положительное давление приводят к тому, что воздух постоянно разбавляется, вытесняется и заменяется, чтобы создать более здоровый воздух в помещении.

Добавьте изоляцию , чтобы внутренние стены поддерживали температуру выше точки росы воздуха внутри.Внутренняя изоляция стен лучше всего подходит, когда нет возможности добавить теплоизоляцию снаружи вашей собственности.

Управление влажностью | WBDG — Руководство по проектированию всего здания

Введение

Спустя всего несколько месяцев после того, как они заняли свое новое многомиллионное муниципальное здание, сотрудники одного из округов Флориды начали жаловаться на хронические проблемы с носовыми пазухами, приступы аллергии, головные боли и астму — классические признаки синдрома больного здания и заболеваний, связанных со зданиями. Архитекторы, инженеры и микробиологи, которым было поручено найти причину этих симптомов, определили проблему, которая становится широко распространенной по всей стране — серьезное грибковое заражение здания.

Плесень возникла в результате чрезмерной влажности в здании, вызванной сочетанием утечек дождевой воды и системой отопления, вентиляции и кондиционирования воздуха (HVAC), которая втягивала влажный наружный воздух в здание в часы, когда система охлаждения отключилась. Как только система HVAC была заражена плесенью, споры разошлись по всему зданию. Итак, всего через несколько лет после открытия дверей в здании был произведен капитальный ремонт.

Рисунок 1.Это новое муниципальное здание было эвакуировано вскоре после открытия, поскольку жильцы жаловались на здоровье. Виной тому были плесень и влага, и, в конце концов, для устранения проблемы потребуется более 20 миллионов долларов.

Внешний вид здания был удален, чтобы помочь решить проблемы, которые позволили дождевой воде проникнуть в ограждающую конструкцию здания (рис. 1). Крыша и система отопления, вентиляции и кондиционирования также претерпели значительные изменения. В конечном итоге ремонт и другие сопутствующие расходы превысили 20 миллионов долларов.

К сожалению, проблема, стоящая перед этим округом Флориды, не является изолированной. Утечки дождевой воды случаются в любом климате, и в данном конкретном случае только утечки, вероятно, привели бы к значительному микробному заражению и эвакуации зданий. Но и архитекторы, и инженеры должны понимать взаимодействие между оболочкой здания и системой отопления, вентиляции и кондиционирования воздуха, чтобы управлять проникновением влаги в здания.

Описание

Чтобы избежать проблем, характерных для муниципального здания Флориды, инженеры и архитекторы должны работать вместе, чтобы управлять влажностью.Во-первых, проектировщик здания должен понимать основные причины проникновения влаги в здания:

  • Вторжение дождевой воды. Влага, присутствующая в строительных материалах и на строительной площадке во время строительства, может быть источником проблем. Значительное количество влаги может также возникнуть в результате утечки воды в системах здания или через ограждающую конструкцию здания. Как в жарком, влажном, так и в умеренном климате утечки дождевой воды являются основным источником влаги в зданиях и проблемами роста грибков.

  • Проникновение наружного влажного воздуха. Влажный воздух, проникающий через ветер или через систему отопления, вентиляции и кондиционирования воздуха, может вызвать конденсацию на внутренних поверхностях, в том числе в полостях здания. Конденсация и высокий уровень относительной влажности являются важными факторами в создании среды, способствующей росту плесени, и являются основными проблемами в жарком влажном климате. Проблема инфильтрации, вызванная отрицательным давлением в здании, создаваемым системами HVAC, подробно описана в разделе «Проектирование и строительство HVAC во влажном климате».

  • Влага, генерируемая внутри. После строительства в результате действий жильцов и рутинных операций по уборке может возникнуть дополнительная влажность, что усугубит проблему плесени. Обычно, если нет других значительных источников, хорошо спроектированные и правильно работающие системы HVAC могут адекватно удалить эту влагу.

  • Распространение пара через ограждающую конструкцию здания. Дифференциальное давление пара, которое может вызвать диффузию водяного пара через ограждающую конструкцию здания, является менее существенной причиной проблем с влажностью в зданиях с очень влажным климатом.Однако он может быть значительным механизмом движения влаги, особенно в холодном климате, и особенно в отношении конструкции пароизолятора стеновых систем.

В жарком влажном климате взаимосвязь между оболочкой здания и системой отопления, вентиляции и кондиционирования воздуха особенно важна. Многие проблемы, связанные с влажностью и плесенью, во влажном климате часто неправильно диагностируются как исключительно связанные с конвертом или ОВК, потому что сложная взаимосвязь, существующая между обеими системами, не всегда четко понимается.

Проблем, связанных с влажностью, можно избежать, если оболочка здания выполняет следующие действия:

  • Достаточно ограничивает проникновение влаги или воздуха в здание
  • Позволяет любой накопленной влаге стекать наружу или испаряться

В жарком влажном климате воздушный барьер и антипар в ограждающей конструкции здания должны быть достаточными для контроля потока воздуха и влаги через стеновую систему. Это означает, что любой воздушный барьер или замедлитель парообразования, размещенный в стеновой системе, должен обладать надлежащим сопротивлением воздуху или влагопроницаемостью и должен быть установлен в правильном месте внутри стен.Наличие нескольких замедлителей парообразования в стеновой системе является распространенной проблемой, потому что многие дизайнеры не признают многие строительные материалы эффективными барьерами. Например, фанера — это материал с относительно низкой проницаемостью, который может действовать как замедлитель парообразования.

Место, где прохладные поверхности встречаются с теплым влажным воздухом, — это место, где может образоваться конденсат и избыток влаги. Если влажный наружный воздух задерживается до того, как он встретится с первой прохладной поверхностью внутри ограждающей конструкции (часто называемой «первой плоскостью конденсации»), то возникнет несколько проблем.Если этой влаге позволить проникнуть в стенную систему, она будет конденсироваться. Тогда проблемы с влажностью и ростом плесени могут стать реальной угрозой. Если прохладные поверхности и влажный воздух встречаются в помещении, то проблемы с влажностью могут возникнуть по всему зданию, что приведет к распространению запаха плесени и жалобам жителей. Таким образом, ограждающая конструкция здания играет жизненно важную роль в минимизации неконтролируемого движения влаги и воздуха в здание и в предотвращении захвата влаги внутри стеновой системы.

В сообществе разработчиков все еще существует путаница по поводу нескольких критических вопросов, связанных с производительностью конвертов. Эти вопросы включают требования к целостности воздушных барьеров, погодных барьеров и замедлителей образования пара; способ объединения всех трех барьеров / замедлителей в одну мембрану; расположение этих элементов внутри оболочки здания; эффекты использования нескольких замедлителей образования пара; и даже потребность в воздушных барьерах и пароизоляторах на каждом предприятии.

Эта путаница в проектировании, строительстве и эксплуатации влажного и не влажного климата является причиной многих проблем, связанных с влажностью и ростом плесени.ASHRAE Fundamentals (2009) предупреждает, что разные климатические условия создают разные проблемы, и здания должны проектироваться и эксплуатироваться соответствующим образом.

Приложение

На этапе проектирования, особенно на ранних этапах проектирования, можно принять множество недорогих или бесплатных решений относительно систем отопления, вентиляции и кондиционирования воздуха и ограждающих систем, которые окажут значительное влияние на управление влажностью. На рисунке 2 обобщены соображения по контролю влажности, обычно связанные с этапом схематического проектирования.Хотя ответственность за рассмотрение соображений можно разделить в соответствии с архитектурными и механическими функциями, персонал в обеих дисциплинах должен тесно сотрудничать, чтобы предотвратить проблемы в будущем. Эффективное взаимодействие между членами команды дизайнеров имеет решающее значение для создания беспроблемного дизайна.

На рисунке 2 показаны некоторые типичные проблемы проектирования, которые должны быть рассмотрены командой разработчиков на этапе схематического проектирования, и показана взаимосвязь между архитектурными и механическими аспектами проектирования.

Рис. 2. Эти вопросы необходимо учитывать на этапе схематического проектирования.

Хотя известно, что некоторые проектные решения неизбежно создают больший риск проникновения влаги, степень проблемы с влажностью или плесенью определяется другими менее обширными решениями, принимаемыми после основных конструктивных решений.

Архитектурные особенности

Хотя подробные проекты не завершаются на этапе схематического проектирования, принимаются решения, которые формируют основу проектов, разрабатываемых на следующем этапе (Разработка проекта, Раздел 3).Доступные справочники по проектированию для влажного, дождливого или холодного климата могут не предоставить всю информацию, необходимую для выполнения комплексных строительных проектов. Поэтому группа архитектурных проектировщиков должна руководствоваться здравым смыслом при выборе системы ограждающих конструкций здания во время схематического проектирования, включая погодные и воздушные барьеры и замедлитель образования пара (рис. 3).

Рис. 3. В жарком и влажном климате конструкция, расположение и установка воздушных и погодных барьеров более важны, чем для замедлителя образования пара.Примечание. Указанное выше расположение замедлителя парообразования предназначено специально для жаркого и влажного климата. В холодном климате замедлитель схватывания следует размещать с внутренней стороны теплоизоляции.

Поскольку все возможные проблемы, связанные с влажностью в новом строительстве, не всегда сразу очевидны для архитектора, вопросы проектирования, связанные с архитектурными аспектами строительства, должны решаться всей командой проектировщиков. Например, внутреннюю отделку часто выбирают просто из-за эстетической привлекательности, начальной стоимости или простоты обслуживания.Однако проницаемость внутренней отделки (указываемая рейтингом проницаемости) может сильно влиять на влажность и потенциал плесени в конструкции, в зависимости от типа рассматриваемой системы отопления, вентиляции и кондиционирования воздуха. Таким образом, инженер-механик и члены группы архитектурных проектировщиков должны принимать участие в выборе стеновой системы.

Диффузия пара

Потенциал диффузии пара является функцией перепада давления пара в ограждающей конструкции здания (рис. 4). Горячий влажный воздух имеет более высокое давление, чем холодный сухой воздух.Большое давление пара возникает из-за высокого содержания влаги. Давление пара при любом содержании влаги равно сумме всех давлений отдельных молекул пара. Большое количество водяного пара создает значительную силу; Фактически, в некоторых случаях перепад давления может быть достаточно большим, чтобы краска на внешней обшивке покрылась пузырями и отслаивалась, когда влага из дерева или кирпичной кладки выводится. Пар диффундирует через стенки со скоростью, пропорциональной разнице давления пара. Если одна сторона стены намного суше, чем другая, пар будет диффундировать быстрее ( The Dehumidification Handbook , 1990).

Рис. 4. Пар диффундирует через стену со скоростью, пропорциональной разнице давления пара на стене.

Проблемы с диффузией пара, как правило, наиболее остры в холодном климате, где даже небольшое количество внутренней влаги будет конденсироваться внутри полостей холодных стен в зимние месяцы. В таком климате требуется установка пароизоляции внутри (теплая сторона стены). В жарком влажном климате механизм диффузии пара обычно не вызывает значительного увлажнения здания, особенно в коммерческих зданиях с традиционным кондиционированием воздуха и умеренными температурными условиями.Однако в зданиях с более низкими температурами, чем обычно, например, в больничных операционных, диффузия и конденсация пара все еще могут происходить.

Утечка воздуха

Рис. 5. На утечку воздуха в здание могут влиять типичные проникновения в ограждающие конструкции здания.

Ни одно здание не герметично закрыто. То есть все здания имеют некоторые отверстия для утечки воздуха, присущие конструкции оболочки, и эта утечка переносит определенное количество влаги с собой в здание или из него (Рисунок 5).Хотя эту утечку обычно можно преодолеть с помощью хорошего положительного давления, плотно закрытая ограждающая конструкция здания минимизирует утечку воздуха. и уменьшат количество воздуха, необходимое системе HVAC для достижения хорошего давления. Влага, вносимая утечкой воздуха, является значительным источником и должна стать серьезной проблемой при проектировании системы стен. Фактически, конструкция ограждающей конструкции здания для минимизации утечки воздуха более важна, чем конструкция пароизоляции.

Чтобы проиллюстрировать этот момент, представьте, что количество влаги, вносимой в здание воздухом, который проходит через трещину толщиной 1/16 дюйма и длиной 1 фут, при легком ветре составляет чуть более 5 пинт в день.Напротив, количество влаги, вносимой диффузией пара через окрашенную блочную стену размером 10 на 50 футов за тот же период, составляет чуть менее 1/3 пинты (около 5 унций). Наиболее опасными зонами утечки воздуха через оболочку являются зазоры вокруг окон и дверей; совместные проемы на линиях крыши, потолка или пола; и, возможно, наибольший вклад внесла преднамеренная установка потолочных или стеновых вентиляционных систем. Эти области представляют собой наиболее вероятные отверстия в оболочке здания и являются удобными путями для утечки воздуха и проникновения влаги в здание.

Утечка дождевой воды

В дополнение к влаге, попадающей в здание через диффузию пара или утечку воздуха, влага, такая как дождевая вода, может попадать в здание под действием силы тяжести, капиллярного действия, поверхностного натяжения, перепада давления воздуха или ветровых нагрузок. Оболочка здания (внешние стены и кровля) действует как , интерфейс между интерьером и экстерьером зданий. Чтобы избежать проблем с влажностью в экстремальных погодных условиях, конструкция ограждающей конструкции здания должна контролировать воду за счет всех этих факторов.

Влажность, связанная с погодой, включает проникновение дождевой и грунтовой воды. Проникновение дождевой воды и грунтовых вод наиболее сильно влияет на ограждающую конструкцию здания. Дождевая вода редко влияет на системы отопления, вентиляции и кондиционирования воздуха или внутренние помещения зданий в такой степени, которая вызывает широко распространенные проблемы с влажностью в зданиях. Вода концентрируется вокруг оконных и дверных проемов, линии крыши и строительных швов, а также основания наружных стен.

К ограждающей конструкции здания чаще всего прикладываются следующие силы:

  • Гравитация. Сила воды, проникающей под действием силы тяжести, является наибольшей на горизонтальных поверхностях с неправильным уклоном и вертикальных поверхностях с проникновениями. Эти области должны удалять воду с поверхностей ограждающих конструкций за счет соответствующего наклона, правильного дренажа и надлежащего гидроизоляции.

  • Капиллярное действие. Это естественная сила, направленная вверх, которая может втягивать воду из одного источника вверх в полость оболочки. Это происходит в основном у основания наружных стен. Компоненты здания, которые не могут выдерживать большое количество воды, например фанера или гипсокартон, могут создавать среду, способствующую росту микробов и / или выходу компонентов из строя.

  • Поверхностное натяжение. Это позволяет воде прилипать и перемещаться по нижней стороне строительных компонентов, таких как стыки и оконные головки. Эта вода может втягиваться в здание под действием силы тяжести или неравномерного давления воздуха.

  • Дифференциалы давления воздуха. В жарком и влажном климате, если давление воздуха внутри конструкции ниже, чем снаружи конструкции, вода может «вытесняться» снаружи внутрь здания через микроскопические отверстия в строительных материалах.

  • Ветровая нагрузка. Ветровая нагрузка во время сильных ливней может вызвать попадание воды внутрь здания, если оболочка не выдерживает этих сил. Например, оконные герметики и прокладки, которые не предназначены для изгиба с окном, могут создавать воздушные зазоры, через которые вода может проникать в здание.

Компоненты настенной системы

Большинство стеновых систем, используемых в новом строительстве, представляют собой каркасные стеновые системы, заливной бетон или каменные стены (бетонные блоки или кирпич).

Системы каркасных стен состоят из системы отделки внутренней стены и системы отделки внешней стены, разделенных воздушным пространством (или полостью). Полость, которая обычно включает изоляционный материал для дополнительного термического сопротивления, обеспечивает потенциальный путь для движения влаги по участкам стен. Системы фасадных стен и системы внешней изоляции и отделки (EIFS) представляют собой каркасную конструкцию.

Стеновая система из бетона или кирпича изготавливается из конструкционного стенового материала.Если внутренняя и внешняя отделка наносится непосредственно на поверхность несущей стены, движение воздуха внутри стены ограничивается. Однако, если внутренняя отделка применяется к гипсокартону с мехом, прикрепленному к несущей стене, создается потенциальный путь для движения воздуха.

Компоненты системы основных стен, требующие особого внимания для контроля влажности (Рисунок 6), перечислены ниже:

  • Отделка наружных стен
  • Замедлители парообразования
  • Воздухопроницаемые и дождевые барьеры и уплотнения
  • Изоляция
  • Отделка внутренних стен

Рисунок 6.«Простая» (хорошо спроектированная) стеновая система для жаркого и влажного климата обладает высокой устойчивостью к движению наружного воздуха и пара. Компонент, наиболее ответственный за ограничение движения воздуха и водяного пара, должен располагаться снаружи стеновой системы. Для более холодного климата паронепроницаемая отделка должна находиться на внутренней стороне изоляции, чтобы избежать конденсации.

Отделка наружных стен

Материалы, обычно используемые в качестве внешней отделки в строительстве, включают лепнину, деревянный сайдинг, бетон или кладку, кирпичную облицовку и запатентованные системы внешней отделки, сочетающие изоляцию и финишные покрытия (например, EIFS).При выборе материала внешней отделки команда дизайнеров должна учитывать эффекты проникновения влаги, миграции пара и воздуха, а также эстетику, чтобы обеспечить соответствие замыслу проекта. При рассмотрении пористых материалов, таких как бетон или каменная кладка, следует учитывать способность этих материалов ограничивать миграцию влаги и пара в стеновую систему и из нее, а также их способность действовать как воздушные барьеры. Часто эстетическая внешняя отделка бетонной или каменной стеновой системы представляет собой нанесение краски или штукатурки.Эта внешняя отделка, а также структурный бетон или каменная кладка могут быть эффективными барьерами от атмосферных воздействий, но являются неэффективными замедлителями парообразования и лишь частично эффективными воздушными барьерами.

Материалы, используемые при строительстве наружных стен, классифицируются по их сопротивлению движению влаги через материал, когда существует разница в давлении пара между внутренней и внешней сторонами материала. Обычно выделяют три категории замедлителей образования пара:

  • Паронепроницаемость: меньше или равно 0.1 пермь
  • Полупроницаемый для пара: менее или равный 1/1 и более 0,1 / 1
  • Полупроницаемый для пара: более 1 доп.

Стены из бетонных блоков могут иметь проницаемость от 2 до 3 единиц проницаемости, тогда как у окрашенных штукатурных покрытий проницаемость может достигать 25 единиц. Системы наружной окраски с толщиной сухой пленки от 1 до 3 мил, такие как коммерческие латексные краски, могут иметь от 5 до 10 пермь (рис. 7). Системы окраски являются хорошим примером того, как различаются требования для умеренного, холодного и жаркого / влажного климата.В большинстве частей страны системы окраски фасадов имеют высокие рейтинги проницаемости, а системы окраски внутренних помещений — более низкие показатели проницаемости. В жарком и влажном климате требования к отделке стен прямо противоположны: внешние системы должны иметь более низкие рейтинги проницаемости, чем внутренние системы окраски.

Рис. 7. Многие наружные краски и покрытия могут действовать как адекватные замедлители образования пара.

Замедлители парообразования

Замедлитель парообразования требуется не во всех ситуациях. Оболочка здания (без специального антипара) может выступать в качестве адекватного барьера для диффузии пара.Во многих условиях использование воздушного барьера более важно, чем использование замедлителя образования пара. Хотя использование замедлителя парообразования не всегда необходимо, если используется один , то такие факторы, как проницаемость, расположение и использование нескольких замедлителей схватывания, становятся чрезвычайно важными.

Тип и расположение замедлителя парообразования могут значительно повлиять на накопление влаги и образование плесени. Например, пароизоляция стеновой системы, расположенная между теплоизоляцией и внутренним пространством здания, может достигать температуры ниже точки росы (точка конденсации в жарком и влажном климате, а внешний пароизоляция может быть ниже точки росы в северном климате). наружный воздух, позволяющий конденсату образовываться на внутренних поверхностях или во внутренних полостях.Чтобы избежать таких проблем, решения относительно пароизоляционных материалов лучше всего принимать на этапе схематического проектирования.

Существует несколько типов замедлителей образования пара (рис. 8). К жестким замедлителям схватывания относятся армированные пластмассы, алюминий и аналогичные материалы, которые относительно непроницаемы для потока влаги. Они механически закрепляются на месте и могут иметь герметичные стыки. К гибким замедлителям парообразования относятся фольга, ламинированная фольга, обработанная бумага, войлок и бумага с покрытием, а также пластиковые пленки. Стыки в этих материалах необходимо заделывать другим материалом.(Герметичное уплотнение стыков не является обязательным, если только замедлитель парообразования также действует как воздушный барьер и / или барьер для дождевой воды.) Некоторые материалы покрытия (например, эпоксидные смолы) также могут быть классифицированы как замедлители образования пара.

Рис. 8. Скорость передачи пара среди обычных строительных материалов сильно различается.

Проницаемость материала определяется его пористостью. Различные материалы, замедляющие образование пара, имеют разные показатели проницаемости в зависимости от того, сколько пара будет диффундировать через них в течение определенного периода и для данной области.Например, листовая алюминиевая фольга толщиной 0,002 дюйма имеет проницаемость 0,025, что означает, что она пропускает 0,025 зерна (1/7000 фунта) в час на квадратный фут площади на каждый дюйм перепада давления паров ртутного столба. . Напротив, 8-дюймовый бетонный блок (известняковый заполнитель) пропускает 2,4 зерна в час, что в 90 раз больше, чем у алюминиевой фольги, даже несмотря на то, что стенка блока в 48000 раз толще ( The Dehumidification Handbook , 1990).

Каждый из этих замедлителей образования пара может использоваться с системами стен, описанными ранее.Обычно стенки полостей каркасного типа включают в себя гибкие замедлители парообразования. Спроектировать расположение пароизолятора для бетонных или каменных стеновых систем может быть сложнее, чем для каркасных стеновых систем. Нанесенные покрытия особенно подходят для бетонных или кирпичных стен; Нанести систему внешней отделки непосредственно на залитую на место стеновую основу проще, чем создать промежуточное пространство (или нарост) на внешней стороне стеновой основы для установки пароизолятора. Более того, последний процесс может поставить под угрозу целостность стены.При выборе пароизолятора для системы отделки наружных стен можно рассмотреть пароизоляционную краску.

Выбранный замедлитель образования пара должен иметь рейтинг проницаемости менее 1,0 перм. (Однако в регионах с умеренным климатом замедлитель образования пара с очень низким рейтингом проницаемости может создать проблемы, поскольку механизм диффузии пара меняет направление между зимними и летними месяцами.) Хотя критерии проектирования могут определять конкретный замедлитель образования пара или его толщину, Метод установки часто требует замены.Например, замедлитель образования паров из полиэтиленового листа может соответствовать критериям проектирования, но может не обеспечивать адекватного сопротивления разрыву во время установки в полевых условиях. Эффективность пароизоляции снижается при проникновении, хотя избегать всех проникновений не обязательно.

Также следует избегать использования двух видов отделки с низкой проницаемостью в стеновой системе, таких как полиэтиленовый замедлитель парообразования на внешней стороне и виниловое покрытие для стен внутри. Такое расположение может позволить влаге задерживаться в стеновой системе без возможности высыхания в любом направлении, что способствует накоплению влаги и образованию плесени.Использование нескольких замедлителей образования пара в стеновой системе может быть успешным только в том случае, если практически исключено проникновение дождевой воды и проникновение наружного воздуха. Таким образом, достижение и постоянное поддержание положительного давления в здании имеет решающее значение в этой ситуации.

Барьеры и уплотнения для проникновения воздуха

Решение о включении специального воздушного барьера в конструкцию обычно принимается на этапе схематического проектирования. Воздушный барьер может играть важную роль в предотвращении проникновения от ветровой нагрузки или погодных условий, а также может способствовать повышению давления в здании.(Воздушные барьеры, называемые строительными оболочками , обычно используются в северном климате для экономии энергии.) Правильное расположение воздушного барьера может быть таким же, как и у атмосферного барьера и пароизоляции. Следовательно, иногда может быть экономически выгодна хорошо продуманная комбинация барьера воздух / погода / пар.

Воздушный барьер в стеновой системе, однако, никогда не следует рассматривать как адекватное уплотнение оболочки, компенсирующее внутреннее пространство здания без давления и предотвращающее внутреннюю инфильтрацию.Оболочка здания должна работать с системой отопления, вентиляции и кондиционирования воздуха, чтобы создать герметичное здание. Поскольку полости, которые могут существовать в стеновой системе, обеспечивают потенциальные пути для наружного воздуха, поддержание надлежащего давления имеет решающее значение для предотвращения проникновения наружного воздуха в эти пространства.

Часто компоненты ограждающей конструкции здания, действующие вместе, могут действовать как эффективный воздушный барьер. ASHRAE признает, что отдельный кусок фанеры или гипсокартона с надлежащей опорой может быть адекватным воздушным барьером.Однако соединенные части обшивки часто не будут столь же эффективными, если стыки не будут достаточно хорошо загерметизированы. В то время как эффективность пароизоляции линейно уменьшается с увеличением количества проникновений, эффективность воздушного барьера уменьшается экспоненциально по мере увеличения количества стыков, трещин и щелей. Таким образом, эффективность воздушного барьера зависит от того, насколько возможно непроницаемый для проникновения.

Изделия из дерева, включая листовые изделия и готовые плиты, менее эффективны в качестве воздушных преград при использовании обычных методов установки.Поскольку эти системы внешней отделки имеют тенденцию допускать проникновение воздуха из-за ветра и теплового воздействия, требуются дополнительные средства ограничения воздуха (и миграции влаги) через стеновую систему. Комбинированный воздушный / атмосферный барьер должен быть установлен на внешней обшивочной основе, особенно в каркасной стеновой системе, в которой используются изделия из дерева.

Эффективность комбинации изоляционной плиты и внешней отделки (например, EIFS) в качестве воздушных барьеров зависит от общей целостности композитной внешней системы.Если стыки достаточно ровные и плотные, система защитит ограждающую конструкцию здания от проникновения ветра и наружного воздуха. Изоляционные плиты с закрытыми порами и негигроскопичные (неабсорбирующие) изоляционные плиты более устойчивы к диффузии паров влаги, чем изоляционные плиты с открытыми порами.

Изоляция

Рис. 9. Некоторые типы изоляции могут также служить в качестве эффективных замедлителей парообразования. Особое внимание необходимо уделить толщине изоляции для достижения желаемой проницаемости.

Использование негигроскопической изоляции с закрытыми порами может помочь свести к минимуму высокий уровень влажности, который может образовываться в стеновых системах.По возможности изоляция должна быть установлена ​​рядом с замедлителем парообразования и должна располагаться внутри так, чтобы замедлитель пара не достигал точки росы во время работы системы кондиционирования здания (это условие применяется только в жарком и влажном климате, а в холодном — наоборот. климат). Некоторые типы изоляции могут также использоваться в качестве эффективных замедлителей парообразования (Рисунок 9).

Чтобы избежать проблем с влажностью, команда разработчиков должна учитывать, как прямой контакт с влажным воздухом влияет на конструкции стен.Тепловые мостики, которые позволяют конструкциям остывать ниже точки росы окружающего воздуха, могут вызвать локальную конденсацию на конструкционных материалах. Например, каркасная система с металлическими стойками в системе каркасных стен может действовать как тепловое короткое замыкание или перемычка, позволяя образоваться конденсату на внутренней или внешней части металлической стойки, даже если стена может быть хорошо изолирована.

Отделка внутренних стен

Выбор внутренней отделки является критическим фактором, особенно при проектировании с влажным климатом.Хорошо задокументировано влияние внутренней отделки на серьезные проблемы с влажностью и плесенью в существующих и новых зданиях. Использование непроницаемой внутренней отделки без полного учета инфильтрации, температуры точки росы на открытом воздухе и возможности конденсации в месте расположения первичного пароизолятора часто приводит к улавливанию влаги и проблемам с плесенью.

Виниловое покрытие для стен — это обычно используемая внутренняя отделка, обычно имеющая низкую проницаемость (или очень высокую устойчивость) к миграции водяного пара через стеновую систему.Однако проблема может возникнуть в жарком влажном климате, когда наружный воздух проникает в полость стены, контактирует с более холодной поверхностью, конденсируется и не может высохнуть. (Высокие характеристики пароизоляции винилового настенного покрытия предотвращают высыхание конденсата.) Конденсация ухудшает качество отделочного основания, обычно гипсокартона, обеспечивая отличную среду для роста плесени. Следовательно, виниловое покрытие стен должно быть ограничено зонами, в которые маловероятно проникновение влажного воздуха (то есть внутренними стенами), или в зданиях, где может быть обеспечено положительное давление в здании.В холодном климате использование винилового покрытия для стен не является проблемой и фактически замедлит нежелательную диффузию теплого влажного воздуха в полость стены, где на внешней стороне теплоизоляции может образоваться конденсат.

В целом, в жарком и влажном климате проницаемость материала внутренней отделки должна быть значительно выше, чем проницаемость других компонентов системы стен. Эта разница позволит парам влаги, попадающим в систему стен, мигрировать в кондиционируемое пространство, где пар в конечном итоге будет удален системой кондиционирования воздуха.Для обеспечения успеха все части стеновой системы, расположенные внутри от теплоизоляции, должны быть более проницаемыми, чем компоненты, внешние по отношению к теплоизоляции. Опять же, обратное этому условию рекомендуется в холодном климате, где влага не должна задерживаться внутри полости на внешней стороне теплоизоляции.

Анализ точки росы на стенках

Каждая основная система наружных стен, используемая в строительстве, должна быть проанализирована для определения всего следующего:

  • Где будет точка росы
  • Какой будет температурный профиль
  • Где будет располагаться первичный пароизоляционный агент
  • Как далеко влага может проникнуть
    (профиль давления пара)

Эти концепции обсуждаются в Справочнике ASHRAE: Основы (Глава 27; ASHRAE, 2009).Завершение версии рисунка 12 (стр. 27.9) Справочника ASHRAE для каждого основного типа стены упростит анализ точки росы стен.

Процедура расчета диффузии водяного пара включает анализ каждого компонента системы стенок, включая толщину, проницаемость для паропроницаемости и тепловое сопротивление (значение R). Первый шаг — определить, какие температуры в помещении / на улице следует использовать для определения точки росы на поверхности стены. Минимально возможная температура поверхности стены в помещении часто может быть намного ниже проектных условий в помещении.Например, температура поверхности стены, на которую поступает разряд из регистра питания комнатного блока переменного тока, может составлять всего 60 ° F дБ. Аналогичным образом, температура внешней поверхности может превышать расчетные внешние условия, особенно на неотражающих темных внешних поверхностях.

Затем можно разработать температурный профиль для каждой системы стен (рис. 10а). В правильно спроектированной системе температура точки росы внешнего воздуха будет определяться изоляцией до тех пор, пока нет тепловых мостов (например, металлических шпилек).Важно сравнить расположение точки росы с предполагаемым расположением замедлителя пара, чтобы определить, останется ли барьер выше точки росы в условиях внешнего воздуха.

Следующая цель анализа точки росы состоит в том, чтобы проверить, какой компонент стенки функционирует как первичный замедлитель образования пара, а затем сравнить его местоположение с местом поверхностной конденсации (поверхность точки росы). Для определения местоположения первичного замедлителя образования пара в стеновой системе необходимо определить давление насыщенного пара на границе каждой поверхности компонента стенки и сравнить его с сопротивлением давлению пара компонента.

Место внутри стеновой системы, где будет конденсироваться диффузный пар влаги, будет точкой, где давление пара равно давлению насыщения. Чтобы создать профиль давления пара через стеновую систему, необходимо определить перепад давления пара на каждом компоненте стенки (рис. 10b). Процедура разработки профиля давления пара аналогична процедуре разработки профиля температуры через стеновую систему; программное обеспечение доступно для помощи в проведении этого анализа.

Рисунок 10a (слева) . Определение температурного профиля системы наружных стен позволяет определить поверхности, на которых будет происходить конденсация. Рисунок 10b (справа) . Определение профилей насыщения и давления пара системы наружных стен также необходимо для максимального контроля влажности, поскольку это помогает идентифицировать компоненты стен, которые могут задерживать влагу.

Новые проблемы

Текущие и будущие исследования и разработки

Building Science Corporation обсуждает многие из текущих вопросов, связанных с конструкцией ограждающих конструкций зданий для контроля влажности.

Американская ассоциация воздушных барьеров предоставляет информацию, касающуюся науки и строительства воздушных барьеров.

В настоящее время следующие штаты включили требования к воздушным барьерам в свои коммерческие нормы энергосбережения.

Дополнительные ресурсы

Организации

Публикации

  • Предотвращение проблем с влажностью и плесенью: Руководство по проектированию и строительству, Ch3M HILL, 2003 Справочник по основам , ASHRAE, Атланта, Джорджия, 2009
  • Руководство ASHRAE для зданий в жарком и влажном климате , Американское общество инженеров по отоплению, охлаждению и кондиционированию воздуха, Атланта, 2008 г.

Управление конденсацией — Обновить

Конденсация представляет серьезную угрозу для долговечности, энергоэффективности, здоровья и безопасности домов.К сожалению, это остается значительным риском в австралийских домах из-за эволюции наших строительных технологий, совершенно разных климатических условий в Австралии и путаницы в отношении его причин и способов управления.

Целостное мышление: дома — это сложные системы

Герметичность, вентиляция, изоляция и контроль влажности идут рука об руку и должны учитываться вместе при строительстве или ремонте домов. Сосредоточиться на одном, не задумываясь о влиянии на другие, порождает проблемы и просто неразумно, если желаемый результат — это энергоэффективный и здоровый дом.

Конверт двойной

Размышляя о движении влаги через здания, важно понимать, что современный дом, как правило, имеет двухоболочечную структуру: внутреннюю и внешнюю. Обе эти оболочки играют роль в контроле влажности; изменение одного, не думая о другом, может быстро привести к проблемам.

Внешняя оболочка защищает здание от погодных условий и огня и включает крышу, внешние стены, каркас или мембраны с внешней стороны деревянного каркаса и любые барьеры вокруг фундамента или плиты.

Внутренняя оболочка — это внутренний слой: внутренние стены, потолки и полы. Окна и входные двери являются частью обоих конвертов.

Пространства между этими двумя оболочками (внутри стен, под крышей и под полом) подвержены риску невидимой конденсации.

Люди живут внутри внутренней оболочки и производят много водяного пара при стирке, приготовлении пищи и простом дыхании. Семья из четырех человек может производить 20 килограммов водяного пара в день внутри дома!

Развитие методов строительства

Во второй половине 20 века изоляция стала более распространенной.Это означало, что потолок и внутренняя сторона внешних стен домов стали теплее и с меньшей вероятностью достигли точки росы (см. Вставку), поэтому видимая конденсация внутри домов была уменьшена. Между тем, крыша, черновой пол и внешняя сторона стен стали холоднее, потому что тепло изнутри дома больше не просачивалось, чтобы согреть их, поэтому вероятность достижения точки росы была выше.

Однако, поскольку австралийские дома все еще были очень далеки от воздухонепроницаемости, а навесы не были обычным явлением, вездесущий и невидимый водяной пар продолжал рассеиваться наружу.Эта утечка воздуха (несущая водяной пар) происходила как через внутреннюю, так и через внешнюю оболочки. Проблемы с конденсацией возникали редко, потому что австралийские здания были настолько «дырявыми» внутри, а снаружи — настолько хорошо «вентилируемыми», что не задерживали и не накапливали пар.

Пароустойчивое наружное покрытие зданий или ограждение кардинально изменили профиль риска. Во внутренней оболочке по-прежнему было много отверстий (отверстия для сантехники и электропроводки, зазоры вокруг окон и осветительной арматуры, за столярными изделиями, вокруг каналов отопления и охлаждения), поэтому влажный воздух мог быстро проникать в стены и пространство крыши … но не мог пройти через фольгированная обшивка.Влага осталась незамеченной на холодной стороне изоляции.

зданий | Бесплатный полнотекстовый | Влияние инновационного метода жилищного строительства на внутренние условия

Макинтош [1] описывает климат Новой Зеландии следующим образом:

«Теплый субтропический на крайнем севере до прохладного умеренного климата на крайнем юге с суровыми альпийскими условиями в горных районах. Среднегодовые температуры колеблются от 10 ° C на юге до 16 ° C на севере Новой Зеландии. На большей части Новой Зеландии будет не менее 2000 солнечных часов в год.

Окленд, крупнейший населенный пункт Новой Зеландии, расположенный на северном острове, имеет в среднем 632 градусо-дня (базовая 15,5 ° C). В альпийском регионе Южного острова Квинстаун испытывает в среднем 2137 градусо-дней на той же базе [2]. Эти данные не описывают суровые внешние условия для большей части населения, но примеры, когда сочетание низких температур и высокого уровня влажности приводит к плохая внутренняя среда во многих частях или стране широко задокументирована рядом авторов [3,4,5,6].Всемирная организация здравоохранения [7] связывает плохие внутренние условия с рядом проблем со здоровьем, о которых также сообщается в исследованиях Новой Зеландии. Отражая в основном умеренный характер климата, руководство Ассоциации строительных исследований Новой Зеландии (BRANZ) [8] гласит, что пароизоляция необходима только в альпийских регионах или регионах со значительным внутренним образованием влаги, связанным с бассейнами спа или другими подобными источниками. . Влага в открытых кровельных пространствах также не считается серьезной проблемой, и Строительные нормы Новой Зеландии в настоящее время не содержат требований к вентиляции кровельных пространств.После публикации руководства, устраняющего необходимость в пароизоляции, другие изменения в Строительном кодексе привели к повышению минимальных уровней изоляции. Нет требований к удельной герметичности зданий. В ответ на описанные проблемы были проведены исследования решений, которые прямо или косвенно решают проблемы плохих условий и здоровья за счет повышения устойчивости домов [9,10,11,12]. Эта работа, как правило, была сосредоточена на тепловых решениях и аспектах энергопотребления.Су [13,14] расширил это и исследовал предотвращение роста зимней плесени в жилых домах Новой Зеландии, используя в первую очередь пассивную и активную вентиляцию и меры предотвращения теплоизоляции. Сравнивая методы статического и динамического моделирования, де Гроот [3] расширил дальнейшее исследование, чтобы подробно изучить влияние переноса влаги через оболочку. Он предупредил, что повышение теплоизоляции без учета межклеточной влаги может переместить видимую проблему плесени в невидимую.Моделируя альтернативные решения по модернизации в течение трехлетнего периода в Окленде, он продемонстрировал, что пароизоляция эффективна в предотвращении образования межклеточной конденсации до уровней, которые могут способствовать росту плесени. Леердини и ван Рамсдонк [15] добавили озабоченности по поводу здоровья пассажиров, включив в них структурную деградацию. Они также выражают опасения, что повышение уровня теплоизоляции увеличивает вероятность образования межклеточной конденсации. Их программное обеспечение Wärmer und Feuchte instationär (WUFI) [16], имитирующее деревянно-каркасный дом в Окленде, оснащенное теплоизоляцией, показало явный риск возникновения межклеточных условий при обследовании в течение трех лет.Этот анализ также показал тенденцию влажных летних условий вытеснять влагу внутрь. Традиционный подход к пароизоляции рискует улавливать этот влажный пар в конструкции, как показано на рисунке 1B. Они предлагают, чтобы решение состояло в том, чтобы обеспечить паровой контроль, который предотвращает перенос пара из влажных внутренних условий в конструкцию стены (рис. 1A, C), но также позволяет пару, направляемому извне, проходить через конструкцию внутрь (рис. 1D). Эта проверка паров дополнительно обеспечивает все преимущества воздухонепроницаемого барьера, поэтому, снижая вероятность образования межклеточной конденсации, может усугубить проблему повышенного уровня внутренней влажности и связанные с этим риски.Де Гроот и Лирдини [17] выявили недостаток информации об успехе решений по модернизации и общую потребность в улучшении понимания последствий сочетания герметичности изоляции и контроля влажности.
Точка росы в стене каркасного дома: Точка росы в каркасном доме

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Scroll to top