Автоматический развоздушиватель системы отопления: Автоматический воздухоотводчик: конструкция, принцип работы, монтаж

Содержание

Воздухоотводчик автоматический - принцип работы, установка, для чего нужен |

Cложности в эксплуатации системы обогрева жилища часто возникают еще в самом начале отопительного сезона. Самой большой проблемой является сброс накопившегося воздуха из системы, при этом нет разницы, установлена ли у вас автономная схема теплоснабжения или же вы подключены к центральному паровому отоплению. Но эту проблему можно решить довольно просто, установив воздухоотводчик автоматический, который обеспечит полный сброс воздуха без вашего участия.

Оглавление

Откуда берется воздух в системе

Вопрос по поводу появления воздуха в системе центрального отопления даже не оговаривается: он там есть всегда. Так как на больших промежутках трасс аварии случаются каждый день, на летний сезон воду часто сливают, а на ее место поступает воздух.

Что касается автономного типа отопления, то тут все сложнее. Набранная система, конечно, если она правильно спроектирована, должна быть полностью заполнена теплоносителем, но в процессе ее заполнения неизбежно попадание воздуха, в том числе и растворенного в воде. При неправильно спроектированной схеме или при недостаточной надежности запорной аппаратуры возможен также подсос воздуха извне уже во время эксплуатации системы.

Еще один вид поступления воздуха в закрытую систему автономного отопления – это выделение из воды водорода с примесью других газов в результате химических реакций.

Сброс воздуха

Основной, если не единственной задачей, которую выполняют автоматические воздухоотводчики в системе отопления, является сброс всех газов из обогревательного контура, то есть из труб. Более простой конструкцией для ручного сброса является кран Маевского, где необходимо участие человека. Автоматические воздухоотводчики лишены этого недостатка. Следует учитывать, что сброс воздуха будет происходить только при избыточном давлении, что важно при эксплуатации системы автономного отопления.

Как устроен автоматический воздухоотводчик для радиаторов

Находящийся внутри корпуса (1) воздухоотводчика поплавок (2) из нержавеющей стали прикреплен посредством коромысла (3) к подпружиненному золотнику (4). В то время как в самом воздухоотводчике находится воздух, поплавок опущен в крайнее нижнее положение, а золотник открывает сбросное отверстие.

По мере убывания воздуха и поступления воды в камеру поплавок поднимается, а коромысло, перемещая золотник, закрывает сбросное отверстие.

На штуцере, который закрывает золотник, имеется колпачок, предотвращающий выход воздуха при проведении монтажных работ или в случае поломки воздухоотводчика. К тому же, колпачок не допускает попадание пыли и грязи в сбросное отверстие, защищая отводчик от поломки.

Правила установки

Разобравшись с принципом работы автоматического воздухоотводчика, следует разобраться в его правильной установке. Диаметр резьбы воздухоотводчика автоматического – 1 /2 дюйма, вкручивается прибор непосредственно в пробку радиатора, точнее, в ее верхнюю приподнятую часть. Радиатор должен быть установлен с небольшим уклоном, чтобы обеспечить легкий выход воздуха. Закручивать воздухоотводчик следует рожковым ключом, а использование газового ключа недопустимо, так как избыточное усилие на сжатие, создаваемое этим инструментом, может повредить прибор.

Неважно, какой марки автоматический воздухоотводчик – Данфосс или Valtec – при неверной установке или недостаточном наклоне радиаторов отопления сброс воздуха будет производиться не полностью или же не будет происходить вовсе.

Перед тем как устанавливать автоматический воздухоотводчик Wind или Danfoss, следует перед ними расположить запорный клапан для простоты демонтажа устройства в случае его поломки. Такая маленькая предосторожность позволит вам без остановки системы заменить вышедший из строя воздухоотводчик.

Как выбрать

Правильный выбор невозможен без знания, как работает автоматический воздухоотводчик.

В крупных строительных маркетах, как правило, есть гарантия от подделок, но даже на обычном рынке можно по внешним признакам отличить качественный товар от фальсификата.

Первое, что необходимо сделать – это посмотреть на сайте производителя, как выглядит аппарат и какой товарный код проставляется на упаковке. Когда вы придете на местный рынок или в маленький магазинчик и попросите у продавца посмотреть выбранный вами товар, обратите особое внимание на качество надписей. Они должны быть хорошо читаемыми, с ровными точными контурами.

Не забудьте про литье корпуса – на нем не должно быть неоднородных наплывов и заусенец. Со стороны крепежной части обратите внимание не только на толщину стенки, но и на равномерность этой толщины.

Теперь маркировка. Например, автоматический воздухоотводчик ду15 – это указание диаметра резьбы, который соответствует 1/2 дюйма, по другой шкале исчисления. Также стоит помнить одно простое правило, что хорошее оборудование не может стоить слишком дешево, и низкая цена – это первое, что должно вас насторожить.

Отдельного внимания заслуживают автоматические воздухоотводчики насоса котла Navien. Установленные прямо на котле, который находится, как правило, в самой верхней точке, они позволяют обойтись без сбросников на радиаторах, но их стоимость значительно выше, так как это оборудование специализировано и не выпускается широким тиражом.

 Загрузка ...

Рекомендуем прочесть!

Воздухоотводчик Valtec 1/2" автоматический прямой с боковым выпуском (арт. VT.502.NH.04)

Артикул: VT.502.NH.04
  • Изготовитель: VALTEC

Цена: 410 руб

Доставка по г. Москве в пределах МКАД: 450 руб

РосТест. Гарантия низкой цены.

Официальная гарантия производителя: 10 лет

Сопутствующие товары

Аналогичные товары

Описание

Автоматический прямой воздухоотводчик поплавкового типа боковым выпуском Valtec 1/2" VT.502.NH.04 снабжён с пружинным золотником и предназначен для автоматического удаления воздуха и прочих газов из систем водяного отопления, холодного и горячего водоснабжения.

Может использоваться на трубопроводах, транспортирующих воду, этилен- и пропиленгликолевый незамерзающий теплоноситель, другие жидкости, неагрессивные к материалам изделия. Ремонтопригодный. Детали корпуса воздухоотводчика выполнены из качественной сантехнической латуни, никелированы. Материал уплотняющей прокладки – эластомер EPDM, поплавка – полипропилен, пружины – нержавеющая сталь AISI 306, держателя золотника и жиклера – нейлон. Воздухоотводчик допущен к применению в системах с рабочей температурой до 110°С и давлением до 10 бар. Диаметр корпуса воздухоотводчика – 46 мм, присоединения – 1/2" с наружной резьбой. Нормативный срок службы изделия – 30 лет.

Данный воздухоотводчик рекомендуется устанавливать в закрытые системы отопления, где потребителем производится водоподготовка (предусмотрены системы фильтрации). Сфера применения: коллекторные группы и распределительные узлы, группы безопасности котла, коллекторы теплого пола и т.д., гидроразделители (гидрострелки). Воздухоотводчик снабжён самоуплотняющимися патрубками для присоединения к трубопроводу или коллектору, что позволяет не применять дополнительный уплотнительный материал при монтаже.

Указания по монтажу

  • Воздухоотводчик устанавливается в местах, где возможно скопление воздуха и газов (верхние точки трубопроводов, котлов, коллекторов, нагревательных приборов).
  • Для возможности демонтажа воздухоотводчика без опорожнения системы, перед воздухоотводчиком рекомендуется устанавливать отсекающий клапан VT.539. Допускается устанавливать воздухоотводчик без отсекающего клапана.
  • Воздухоотводчик следует монтировать строго в вертикальном положении.
  • Монтаж воздухоотводчика следует производить при помощи рожкового ключа за шестигранник корпуса, расположенный под колбой. Запрещается производить монтаж с помощью трубного рычажного ключа (КТР), а также захватом за колбу корпуса.
  • При хранении, транспортировке и монтаже колпачок воздушного штуцера должен быть закрыт.
  • После монтажа система должна быть подвергнута гидравлическому испытанию статическим давлением, в 1,5 раза превышающим расчетное давление в системе.

Указания по эксплуатации

  • Техническое обслуживание воздухоотводчика заключается в удалении шлама из колбы, воздушного канала и межвиткового пространства пружины. Техническое обслуживание должно проводиться через каждые 12 месяцев эксплуатации
  • Не допускается замораживание рабочей среды в колбе воздухоотводчика.
  • При заполнении системы отопления воздухоотводчик должен быть закрыт. Выпуск воздуха в этом случае осуществляется через воздухоспускной штуцер или кран.

Документация

  1. Технический паспорт изделия (открыть PDF-файл)
  2. Декларация о соответствии техническому регламенту Таможенного союза (открыть PDF-файл)
  3. Отказное письмо в области пожарной безопасности (открыть PDF-файл)
  4. Экспертное заключение по результатам санитарно-эпидемиологической экспертизы продукции (открыть PDF-файл)

Технические характеристики

Производитель Valtec
Серия VT.502.NH
Артикул VT.502.NH.04
Тип автоматический
Механизм пружинный
Тип подключения нижнее
Выпуск боковой
Назначение автоматическое удаления воздуха и других газов
Рабочая среда вода,
этиленгликолевый теплоноситель,
пропиленгликолевый теплоноситель
Рабочее давление от 0,2 до 10 бар
Пробное давление 15 бар
Оптимальное давлвение от 0,5 до 7 бар
Температура рабочей среды до +110°C
Температура окружающей среды до +60°C
Влажность окружающей среды до 80%
Резьба присоединительного патрубка 1/2", наружная
Ремонтопригодность да
Материал деталей корпуса никелированная латунь CW617N
Материал уплотнительной прокладки EPDM
Материал поплавка полипропилен
Материал пружины оцинкованная сталь
Материал держателя золотника и жиклера нейлон
Средний полный срок службы 30 лет
Официальная гарантия производителя 10 лет
Страна-родина бренда Италия

Автоматический воздухоотводчик AFRISO 7773510 - цена и описание.

Описание

Автоматический воздухоотводчик AFRISO арт. 7773510 с отсечным клапаном

  Воздухоотводчики AFRISO арт. 7773510 предназначены для автоматического вывода воздуха из отопительных систем. Стандартные воздухоотводчики отлично работают на вертикалях, коллекторах и в других местах отопительных систем, где может собираться воздух.

  Стандартные системы отопления построены на основе оборудования и разветвленных трубопроводов с циркуляцией воды или другого специального теплоносителя. Правильно работающая система не должна быть завоздушена, что бы экономно потреблять топливо и обеспечивать комфорт для потребителя. Поэтому крайне важно оборудовать систему автоматическим устройством, удаляющим накопившийся воздух. Самое простое и одновременно самое эффективное решение – вертикальные автоматические воздухоотводчики.

  Новый автоматический воздухоотводчик AFRISO имеет ряд инновационных решений, позволяющих добиваться наилучших параметров развоздушивания системы отопления. Самые важные изменения скрыты в конструкции механизма воздухоотводчика, расположенного внутри латунного корпуса.

  Получение патента — является подтверждением уникальности конструкции нового воздухоотводчика и эффективности его работы

Принцип работы воздухоотводчиков AFRISO арт. 7773510

Автоматический воздухоотводчик AFRISO оснащен поплавком, расположенным в цилиндрическом корпусе. Освобожденный из системы воздух поступает в верхнюю часть воздухоотводчика, что приводит к снижению уровня воды. Вместе со снижением уровня, поплавок опускается и тянет за собой рычаг, открывающий овальное выпускное отверстие — это позволяет удалить воздух из корпуса. Отсутствие воздуха приводит к повышению уровня воды, в результате чего, поплавок перемещается вверх и закрывает отверстие для выпуска воздуха.

Конструктивные особенности воздухоотводчика AFRISO

  Сердцем нового поколения воздухоотводчика AFRISO является тефлоновый поплавок, который благодаря плавной и точной работе мгновенно реагирует и удаляет мельчайшие пузырьки воздуха. Новый воздухоотводчик AFRISO способен удалить вдвое больше воздуха, чем предыдущие конструкции и другие решения на рынке.

  Механизм выпускного отверстия
Новый рычаг выполнен полностью из нержавеющей стали. Монолитное соединение между рычагом и выпускным отверстием увеличило герметичность воздухоотводчика. Это гарантирует закрытие выпускного отверстия даже при загрязненном поплавке.
  Овальное выпускное отверстие
На крышке воздухоотводчика расположено овальное выпускное отверстие. Благодаря овальной форме, сокращена площадь прилегания отверстия и рычага поплавка, что создает более плотное прилегание.
   Механизм поплавка воздухоотводчика
Выпускное отверстие расположено вдоль центральной оси поплавка. Когда в верхней части корпуса формируется воздушная подушка, то поплавок устанавливается вдоль оси отверстия. Это предотвращает заклинивание при перемещении. видимые насечки на поверхности поплавка нейтрализуют эффект капиллярности жидкости.

 

Спускаем воздух из батарей отопления

Содержание статьи

В начале отопительного сезона, при заполнении труб, в систему отопления поступит воздух. Приходящий из теплотрассы, на которой в течение летнего периода происходили ремонтно-профилактические работы. Да и в доме остались завоздушенные участки во время опрессовки и промывки. Раньше, для удаления воздушных пробок, на чердаках, простым краном в наивысших точках системы отопления, сливали теплоноситель вместе с воздухом, подсоединяя шланг.

Теплоноситель дорог, и слив – непростительная роскошь, приводящая к уплате нешуточных штрафов. Для стравливания воздуха в системе необходима установка воздухоотводчиков. Кран Маевского и автоматический воздухоотводчик, будут лучшими вариантами.

Кран Маевского Автоматический воздухоотводчик

Кран Маевского

Это обыкновенный игольчатый клапан, с двухмиллиметровым отверстием для выхода воздуха. Устанавливается на батареях отопления, внутри квартир.

Кран маевского на батареи отопления

Если при запуске отопления квартирный стояк прогрет, а батарея полностью, или только верхняя часть остаётся холодной – виновата воздушная пробка. Для спуска необходимо плоской отвёрткой, или специальным ключом повернуть винт по часовой стрелке (отверстие воздухоотводчика должно смотреть в безопасную от вас сторону). Воздух начнет выходить. Дождитесь, пока не  пойдёт вода. Теперь винт нужно закрыть. Если спустя полчаса батарея не прогрелась, необходимо всё повторить.

Автоматический воздухоотводчик

Состоит из корпуса, с пластиковым поплавком. Воздух поднимает поплавок вверх, который, посредством коромысла открывает отверстие для его выхода. После поплавок опускается и закрывает отверстие.

Продается с защитным колпачком. Снимать его не обязательно – достаточно просто ослабить.

Наиболее эффективен в домах, где отопление смонтировано с нарушением, и воздух постоянно подсасывается.

Сложнее, когда  прогревается часть дома – часть стояков остаются холодными. Скопившийся воздух препятствует протоку теплоносителя. В этом случае в наивысшей точке дома — на чердаке резонно установить автоматический воздухоотводчик. В нашем примере он находится на крыловых трубах типовой пятиэтажной «хрущёвки» с так называемым «верхним розливом» теплоносителя. Так называется подача тепла вверх по одной центральной трубе, и опускание по обратным трубам – стоякам.

Автоматический воздухоотводчик на чердаке

Проблемы создают стояки, наладить подачу тепла, по которым, не удаётся в течение длительного времени. В этом случае, в такой стояк желательно врезать автоматический воздухоотводчик. Для этого не нужно перекрывать отопление всего дома. На показана врезка с воздухоотводчиком, при помощи хомута с резьбовым отводом, диаметром в полдюйма.

Врезка с воздухоотводчиком

Районные котельные не заинтересованы в завоздушивании домов и трасс, в процессе подачи тепла. В котельных применяются воздухоотводчики такой же конструкции, но большего размера. Устанавливают их, как в наивысших точках и компенсаторах, так и на трубах, по которым теплоноситель подаётся на сетевые насосы. Воздух, внутри насоса, приводит к поломке, крыльчатки насоса.

Воздухоотводчик на трубах к сетевым насосам

Автоматические воздухоотводчики работают в течение отопительного сезона, беспрестанно выгоняя воздух из теплосистемы, образовавшийся в результате аварийных или плановых работ на теплотрассе.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Понравилась статья?

Поделиться с друзьями:

Подпишитесь на новые

Volcano Автоматический воздухоотводчик 500.00

Автоматический воздухоотводчик для Volcano

НАЗНАЧЕНИЕ, УСТРОЙСТВО, УСТАНОВКА

Автоматический воздухоотводчик это вспомогательное оборудование системы водяного отопления.
Автоматический воздухоотводчик необходим для каждого тепловентилятора VOLCANO, устанавливается на выходном верхнем патрубке и предотвращает падение тепло-эффективности, особенно в первые 2-4 недели после запуска системы отопления. Без этого небольшого, дешевого элемента, Вы можете обойтись, но тогда или Ваша система будет греть на 70-80% от своих возможностей, либо Вам придется 1 раз в 2 недели выпускать воздух из каждого тепловентилятора в ручном режиме из встроенного крана "Маевского".

НАЗНАЧЕНИЕ АВТОМАТИЧЕСКОГО ВОЗДУХООТВОДЧИКА

Название говорит само за себя: это оборудование, которое нам помогает в автоматическом режиме избавиться от наличия воздуха в тепло-вентиляторе или тепловой завесе.

Выглядит он так: бронзовый -

- и из нержавейки:

Автоматический воздухоотводчик и отсекающий клапан.

Воздухоотводчик состоит из корпуса с присоединительным размером (обычно это полдюйма, 15 мм). Воздухоотводчик можно просто прикрутить в нужном месте системы отопления, а можно с отсекающим клапаном.

Для чего нужны отсекающие клапаны?

Отсекающий клапан вы вкрутили в систему отопления, сверху накручиваете сам воздухоотводчик – он нажимает на пластмассовый флажок и открывает доступ к системе отопления. Этот отсекающий клапан нужен для того, чтобы безпроблемно открутить, заменить воздухоотводчик, если вдруг с ним что-то случилось. То есть, мы начинаем откручивать, флажок поднимается вверх – там стоит пружинка – и отсекает утечку теплоносителя из системы отопления. Другой воздухоотводчик прикрутили  - клапан опять открылся.

УСТРОЙСТВО АВТОМАТИЧЕСКОГО ВОЗДУХООТВОДЧИКА

Давайте на схеме посмотрим, как автоматический воздухоотводчик работает.

Устройство автоматического воздухоотводчика

Теплоноситель заходит в полость, где располагается поплавок (обычно пластмассовый). Поплавок за счёт флажка начинает давить на подпружиненный шток, и открывается доступ к атмосфере. Таким образом воздух из системы выходит в атмосферу. При заполнении водой поплавок давит на шток, закрывает отверстие и перекрывает доступ воздуха.

По этому принципу работают все воздухоотводчики, не зависимо от конструкции.

Устройство автоматического воздухоотводчика другого типа

НЕИСПРАВНОСТИ АВТОМАТИЧЕСКОГО ВОЗДУХООТВОДЧИКА

Какие проблемы бывают с воздухоотводчиками?

Обычно из-за некачественного теплоносителя закоксовывается игла – на ней образуются соли жёсткости, и она не до конца закрывает, начинает течь. Тогда нужно открутить крышку, зачистить иглу, почистить кулисный механизм и снова всё собрать. На какое-то время проблема будет решена.

Вторая проблема, встречающаяся у воздухоотводчика, - разрушение уплотнительного кольца под крышкой корпуса.

Автоматический воздухоотводчик в разобранном виде.

В этом случае из-под крышки начинает подтекать теплоноситель. В этом случае нужно либо поменять кольцо, либо намотать фум-ленту на резьбу, которой крышка крепится к корпусу.

Воздухоотводчик — Построй свой дом

 

Инженерная система любого дома состоит из большого количества различных приборов и узлов. При этом каждый ее элемент, например, котел, расширительный бак, обратный клапан или кран двойной регулировки, выполняет свою важную функцию, влияющую на работу всей системы. Вот о том, для чего нужен в системе отопления воздухоотводчик, мы и поговорим в этой статье.

 

В теплоносителе системы отопления могут присутствовать воздух и другие газы. При чем попадать в трубопроводы они могут по разным причинам. Основная их масса попадает в систему отопления при первичном заполнении. Далее, в процессе работы системы может происходить подсос воздуха из-за неправильно спроектированной системы. Также завоздушивание системы часто происходит при подпитке системы, при ее частичном осушении.

 

Воздух в системе отопления

 

Активное выделение воздуха в работающей системе может происходить: в результате повышения температуры теплоносителя, при замедлении скорости движения жидкости или при снижении давления. Происходит это потому, что растворимость воздуха в теплоносителе снижается.

Выделившийся из теплоносителя воздух устремляется в верхние точки системы, поэтому воздушные пробки чаще всего образуются в коллекторах, отопительных приборах и П-образных участках.

 

Опасность наличия воздуха в системе отопления состоит в том, что он приводит к коррозии металлических элементов отопительных приборов, арматуры и оборудования, а также вызывает появление воздушных пробок, препятствующих правильному работе системы. Коррозия приводит к неправильной работе приборов системы отопления, а в некоторых случаях к их поломке. Вред наносит не только сама коррозия, но продукты, образовавшиеся в результате ее появления, которые распространяются по всей системе отопления.

 

Последствия завоздушивания системы отопления

 

Завоздушивание котлов, бойлеров и других элементов системы отопления может привести к разрыву их корпуса. Наличие воздуха в приборах отопления снижает их фактическую теплоотдачу. Несмотря на то, что температура теплоносителя в подающих трубопроводах соответствует расчетной, завоздушенные радиаторы и конвекторы будут находиться в холодном состоянии. С такой ситуацией сталкивался практически каждый владелец загородной недвижимости. Наряду с воздухом в теплоносителе могут присутствовать и другие газы. Так, например, водород, выделяется в системах отопления с алюминиевыми радиаторами при повышенной щелочности теплоносителя.

 

Для того чтобы избежать проблем с завоздушиванием системы отопления применяются воздухоотводчики.

 

Воздухоотводчик в системе отопления

 

Воздухоотводчики бывают двух типов: ручной и автоматический. Ручной воздухоотводчик, в наших системах отопления присутствует в виде «крана Маевского».

Он применяется для удаления газов из верхних точек приборов отопления или полотенцесушителей. Кроме крана Маевского, существуют специальные автоматические радиаторные воздухоотводчики.

 

 

В современных системах отопления воздухоотводчик устанавливается в самой верхней точке системы. Иногда его приходится располагать под самым потолком.

В стандартных конструкциях воздухоотводчиков выход золотника располагается сверху устройства, что часто затрудняет его монтаж и дальнейшее обслуживание в условиях стесненного пространства. Зная эту проблему многие производители воздухоотводчиков изменили конструкцию прибора, сделав его обслуживание более удобным. Поэтому золотник таких воздухоотводчиков располагается сбоку корпуса, что обеспечивает возможность монтажа и эксплуатации воздухоотводчика под самым потолком.

 

Стоит помнить, что при заполнении системы отопления выпуск воздуха должен производиться через шаровые или дренажные краны. Использовать для этих целей автоматический воздухоотводчик недопустимо, так как его пропускная способность не рассчитана на пропуск больших объемов воздуха. Открытие воздухоотводчика при заполнении системы может вывести его из строя.

 

 

Автоматический воздухоотводчик

 

Автоматический воздухоотводчик как правило используется в системах, транспортирующих жидкие среды, не агрессивные к материалам самого изделия. Для систем отопления чаще всего это вода или растворы пропиленгликоля и этиленгликоля. Обратите внимание, автоматический воздухоотводчик монтируется только в вертикальном положении. Исключение составляет горизонтально располагаемый радиаторный воздухоотводчик.

 

Стандартные автоматические воздухоотводчики имеют следующую конструкцию: латунный корпус 10, внутри которого свободно перемещается полый пластиковый поплавок 9. Поплавок шарнирно связан с коромыслом 15. На конце коромысла находится эластомерный золотник 3, фиксируемый обоймой 1, подпружиненной пружиной 2. При отсутствии воздуха в корпусе воздухоотводчика поплавок находится в крайнем верхнем положении, и золотник перекрывает отверстие воздушного штуцера 5.

 

Но прогресс не стоит на месте, и в продаже появились воздухоотводчики, имеющие более совершенную конструкцию, благодаря которой количество деталей в конструкции уменьшилось, к тому же в них отсутствуют шарнирные сопряжения деталей. Такое решение обеспечивает высокую надежность прибора и продлевает срок его службы.

Такой воздухоотводчик состоит из двух латунных (CW617N) никелированных полукорпусов 1 и 2, соединенных между собою на резьбе с уплотнительным кольцом из EPDM 10. Внутри корпуса свободно перемещается полипропиленовый поплавок 3, который своей скобой воздействует на держатель золотника 5, выполненный из нейлона. Золотник 6 с держателем 5 при помощи пружинной связи 7 (материал – нержавеющая сталь марки AISI306) связан с жиклером 4 (нейлон). При накоплении воздуха или газа в верхней части полукорпуса 2 поплавок 3 опускается, воздействуя на держатель 5. При этом золотник 6 открывает калиброванное (1,5 мм) отверстие жиклера 4. Благодаря избыточному давлению транспортируемой среды воздух или другие газы, скопившиеся в верхней части воздухоотводчика, удаляются наружу по каналу жиклера 4. Пробка 9 при поставке находится в закрытом положении. Благодаря этому пыль и грязь не могут проникнуть в корпус. Уплотнительное кольцо на присоединительном патрубке позволяет монтировать воздухоотводчик без дополнительной герметизации соединения.

 

Принцип действия автоматического воздухоотводчика напоминает хорошо известный колесный ниппель. Нажали на золотник – клапан открылся и пошел воздух, отпустили – клапан закрылся. Разница только в том, что в случае с ниппелем удаление излишнего воздуха происходит вручную, а в случае с воздухоотводчиком – автоматически, за счет механического воздействия скобы, закрепленной на поплавке. Получается, что здесь воздух сам выпускает себя наружу.

 

Обслуживание воздухоотводчика

 

Несмотря на то, что конструкция воздухоотводчика достаточно проста, данному устройству все равно требуется периодическое обслуживание. Пыль и грязь, находящиеся в системе до заполнения, в процессе работы отопления могут вызвать засорение запорного механизма жиклера и, как следствие, подтекание теплоносителя. Иногда даже правильное заполнение системы через дренажные краны не гарантирует отсутствие грязи в трубах.

Думаю, что хоть раз вы слышали от сантехника фразу: «воздухоотводчик сопливит», это говорит о том, что прибор подтекает, и его необходимо снимать для обслуживания или менять на новый. Это, в свою очередь, может потребовать слива теплоносителя из системы, что достаточно трудоемко. Для этих случаев производители инженерного оборудования нашли решение. В частности, в системе отопления устанавливается отсекающий клапан.

 

Отсекающий клапан дает возможность замены автоматического воздухоотводчика без осушения системы. Состоит такой клапан из никелированного латунного корпуса, пластикового золотника и уплотнительного кольца. В верхнем положении золотник удерживается пружиной из нержавеющей стали. При установке воздухоотводчика пружина сжимается, открывая тем самым клапан.

 

Воздухоотводчик, наряду с предохранительным клапаном или расширительным баком, является важным элементом безопасности системы отопления. От его правильного выбора, монтажа и последующей эксплуатации будет зависит общая надежность системы отопления вашего дома.

 

В следующей статье я расскажу о гидравлическом ударе в водопроводной сети дома.

РЕКОМЕНДУЮ ЕЩЁ ПОЧИТАТЬ:

Как удалить (спустить) воздух из системы отопления, устройства для удаления воздуха из системы отопления: кран Маевского, автоматический воздухоотводчик

  В цикле наших статей про систему отопления дома (квартиры), мы в каждой из них не раз упоминали о важности спуска воздушных пробок, которые негативно влияют на прохождение теплоносителя по трубопроводам системы. Несмотря на эти заверения, мы так нигде подробно и не рассказали о том, как все-таки спустить этот самый воздух. В какой последовательности проводить операции и с помощью, каких устройств это можно сделать. Настоящая статья как раз и будет посвящена тому, как избавиться от воздуха в системе отопления вашего дома (квартиры).

Еще раз о вреде завоздушивания системы отопления дома

 Прежде, чем дать несколько практических советов по борьбе с воздушными пробками, мы все же еще раз «перемоем косточки» этой злободневной теме - по поводу наличия воздуха в системе отопления. Чем же так вреден воздух в трубопроводах и элементах системы отопления!?
 Первый критерий это неэффективная работа всей системы, ведь воздушные пробки будут сдерживать прохождение теплоносителя, а значит его расход в трубопроводах будет занижен, или того пуще вообще приостановлен. В итоге, вся система отопления окажется просто бесполезной технологической конструкцией.
 Второй важный момент это то, что зачастую эксплуатировать систему отопления с воздушными пробками просто недопустимо, так как это грозит выходом из строя оборудования. Так, например, при завоздушивании полости в тепловом котле возможен его перегрев, что сродни перегреву двигателя в машине, при отсутствии тосола в нем. Не смотря на имеющиеся системы автоматики, которые реагируют на предотвращение аварийных ситуаций, все же есть вероятность испортить тепловой котел. В итоге, даже потенциальная опасность уже является нежелательным фактором, который стоит исключить.
 А теперь непосредственно о процессе спуска воздуха из системы отопления.

Как спустить воздух из системы отопления в радиаторах

 Прежде всего, расскажем о спуске воздуха из радиаторов отопления – батарей. Как говорится все уже придумано до нас, надо только этим воспользоваться. Вот и в этом случае не стоит выдумывать велосипед, ведь проще воспользоваться уже проверенным способом, спуском воздуха их батарей через кран Маевского. Такой кран представляет собой клапан, который поджимается с помощью болта на резьбе. В общем классическая схема. Кран устанавливается на радиаторы отопления, вместо одной из глухих заглушек, в наиболее высоком месте. Такое расположение предполагает скопление воздушных пробок именно под самим клапаном, то есть при его открытии первым будет выходить воздух, а потом пойдет и теплоноситель, что будет свидетельствовать о ликвидации воздушной пробки. Итак, нам лишь остается подставить емкость для слива незначительного объема теплоносителя, который будет выходить вместе с воздухом. Открутить кран и дождаться пока из него уже пойдет исключительно теплоноситель, без булькания с пузырьками воздуха.
 Вот и все, считайте, что от воздуха в радиаторах отопления вы избавились. Теперь о спуске воздуха из системы.

Как спустить воздух из системы отопления в ее «верхней точке»

 

 Как и в первом случае для спуска воздуха нам понадобятся специализированные узлы, заранее установленные в систему. Так в наивысшей точке системы отопления устанавливают обычный кран, через который подобно крану Маевского спускают воздух, такой способ можно охарактеризовать как  ручной спуск. Можно установить даже тот же кран маевского.
 Кроме того, спуск может быть автоматическим, по мере скопления воздуха в верхней точке. В этом случае устанавливают автоматический воздухоотводчик.
 Принцип его работы следующий. Когда воздух начинает скапливаться под запорным клапаном, то поплавок, который обеспечивает закрытия этого самого клапана, начинает тонуть, так как плавает в теплоносителе, уровень которого соответственно с появлением воздушной пробки начинает снижаться. В итоге, клапан открывается и воздушная пробка выходит из системы. Уровень теплоносителя вновь повышается, поплавок всплывает, и клапан перекрывает протечки теплоносителя во внешнюю среду.

Теперь вы в курсе того как избавиться от воздуха и в самой системе отопления.

Особенности спуска воздуха из системы отопления дома (квартиры)

 Если говорить об особенностях спуска воздуха, то необходимо рассказать о последовательности алгоритма действий. Так первым делом воздух спускается с наиболее низших и наиболее приближенных к котлу отопления элементов. Соответственно в последнюю очередь воздух спускается с наиболее удаленных от котла и наиболее высоких относительно уровня земли элементов. Такая последовательность действий позволить постепенно заполнить теплоносителем, от низа к верху, все полости системы.

 

 Ну и напоследок, пару слов об автоматике. Использование автоматических устройств, на подобии автоматического воздухоотводчика очень удобно, но и в тоже время рискованно. Ведь циклы открытия закрытия этого узла будут происходить без вашего участия, а значит, есть вероятность, что что-то пойдет не так, а именно клапан не обеспечит герметичность по запорному органу, что грозит подтоплением чердака,  где вероятнее всего и будет установлен автоматический воздухоотводчик. На самом деле, спускать воздух из системы отопления надо не так уж часто, если система у вас работоспособна. 1-2 раза в начале сезона вполне достаточно. Это мы к тому, что такой процесс вполне возможно выполнить и ручном режиме. Первый раз во время пуска системы, а второй раз в виде контрольной процедуры, через 2-3 дня после первого раза.

Автоматические вентиляционные отверстия | Простые советы по обслуживанию HVAC 101


Автоматический воздухоотводчик находится в системе трубопроводов водяных контуров. Если воздух попадает в систему водяного контура, он в конечном итоге попадает к автоматическому вентиляционному отверстию, где он выпускается. Автоматические вентиляционные отверстия расположены по всей системе. Автоматические вентиляционные отверстия также можно найти в любой системе гидравлического контура. Гидравлический контур - это водяной контур.

Эти водяные контуры могут быть как для горячей, так и для холодной воды.Любой гидравлический контур нуждается в системе управления воздухом или автоматической системе выпуска воздуха, чтобы воздух не попадал в систему, в противном случае воздух будет подниматься в системе, и воздух будет блокировать или препятствовать потоку воды по контуру. В воде естественно есть воздух. Вентиляционные отверстия помогают водяному контуру:

Автоматические вентиляционные отверстия

  • Автоматические вентиляционные отверстия предотвращают попадание воздуха в контур (горячая или охлажденная вода) за счет автоматической продувки воздуха через вентиляционное отверстие поплавкового типа.
  • Предотвращает гидравлическую воздушную пробку.

Автоматические вентиляционные отверстия | HVAC Hydronics

Крошечные микроскопические пузырьки в воде со временем выходят из воды, когда она нагревается и охлаждается. Кроме того, воздух движется по гидравлическому контуру. Воздух попадает в стояки и верхние точки петли. Этот воздух необходимо выпустить из системы, иначе он остановит поток воды через гидравлический блок воздуха. Когда воздух попадает в вентиляционное отверстие, он скапливается в его верхней части.Воздух вызывает снижение уровня воды внутри вентиляционного отверстия и опускание поплавка внутри вентиляционного отверстия. Когда поплавок падает, воздух выходит из системы через верхнюю часть вентиляционного отверстия.

По мере выхода воздуха поплавок снова поднимается и закрывает верхнюю часть автоматического воздуховыпускного устройства, предотвращая утечку воды. Со временем коррозия и минералы загрязняют уплотнение в верхней части поплавка в автоматическом вентиляционном отверстии. Изображенный воздухоотводчик имеет загрязненное уплотнение и позволяет выходить как воде, так и воздуху.Кроме того, воздуховыпускные устройства не обслуживаются, и их необходимо заменить, когда из них начнет течь вода. В некоторых системах есть ручные воздуховыпускные устройства, которые необходимо время от времени выпускать вручную, чтобы выпустить воздух, который может скапливаться.

Совет по техническому обслуживанию автоматических вентиляционных отверстий:
  • Со временем внутри автоматического воздуховыпускного устройства скапливается мусор, и его трудно удалить. Таким образом, автоматическая вентиляция начнет протекать через вентиляционную трубу. Это означает, что в резиновом уплотнении внутри вентиляционного отверстия либо мусор.Он также может быть забит кальцинированными минералами из воды. У моего друга, который работает менеджером по обслуживанию большого кампуса, есть запасные автоматические вентиляционные отверстия. Когда один начинает протекать, он заменяет один запасным. Затем протекающий автоматический воздухоотводчик опускается в ведро с раствором. Он говорит, что решение совершенно секретно, но я знаю лучше. Это белый уксус и пищевая сода. Он позволит протекшему автоматическому вентиляционному отверстию впитаться в раствор на несколько дней. Затем он вытаскивает ее и проверяет на собственном макете трубы для этой цели.В 90 процентах случаев это работает как шарм, и он кладет автоматический воздухоотводчик в запасной автоматический воздухоотводчик, чтобы дождаться следующей утечки воздуха из вентиляционного отверстия. Он сказал, что эта маленькая уловка сэкономила ему несколько сотен долларов в год при замене вентиляционных отверстий.
  • Большинство автоматических вентиляционных отверстий закрыты и не могут быть открыты для замены уплотнений или ремонта. Кроме того, если вы удалите его и продуете воздух через вентиляционное отверстие, он удалит мусор. Это если проблема заключается в мусоре в вентиляционном отверстии.
Воспользуйтесь нашим удобным калькулятором, чтобы узнать, сколько БТЕ производят ваши газовые приборы:
Заключение

Наконец, вентиляционные отверстия не требуют значительного обслуживания. Их по-прежнему необходимо периодически проверять на работоспособность. Кроме того, если у вас есть проблемы с воздухом, их необходимо проверить, чтобы убедиться, что они правильно работают. Кроме того, их использование в сочетании с другими устройствами для удаления воздуха может спасти вас от холодных ночей и разочарований.

Автоматические вентиляционные отверстия

Ресурс: Книга домашнего комфорта: полное руководство по созданию комфортного, здорового, долговечного и эффективного дома

Сопутствующие

HAV 1 / 8 - Ватт

Этот автоматический выпускной клапан используется в коммерческих, жилых и промышленных системах водяного отопления для обеспечения автоматического или ручного удаления воздуха из плинтусов, конвекторов, радиаторов и высоких точек в системах трубопроводов.Он состоит из хромированной латуни, состоящей из двух частей, обратного клапана из нержавеющей стали, крышки подшипника из латуни, медного термостата, уплотнительного кольца из неопрена, диска из целлюлозного волокна, сменного картриджа и термостойкого маховика из АБС. Картридж можно легко обслуживать или заменять без отключения системы. Этот клапан идеально подходит для использования с системами горячего водоснабжения и пара низкого давления. Максимальное давление составляет 125 фунтов на кв. Дюйм (8,6 бар).

Технические характеристики
Вентиляционное отверстие Автоматический и ручной
Материал корпуса Латунь
Рисунок корпуса Вертикальный
Нарезание снизу Есть
Размер нижнего нарезания резьбы 1/8 ДЮЙМА
Марка Вт
Купить Соответствует американскому закону НЕТ
Рейтинг контактов Не относится к продукту
EAN 098268106527
Функция Fastfill Нет
Размер заливки Не относится к продукту
Размер соединения поплавковой камеры Не относится к продукту
Расход Не относится к продукту
Hydronic Тип изделия Вентиляционное отверстие
Размер входного соединения 1/8 ДЮЙМА
Размер входного соединения - метрическая система 3 мм
Тип входного соединения Наружная резьба
Тип входной резьбы NPT
Бессвинцовый Не входит
Максимальная рабочая температура по Фаренгейту 240
Максимальное давление, фунт / кв. Дюйм 125
Максимальное давление пара, фунт / кв. Дюйм 10
Максимальная температура по Фаренгейту 240
Максимальное давление воды, фунт / кв. Дюйм 125
Максимальное рабочее давление, фунт / кв. Дюйм 125
Минимальное рабочее давление, фунт / кв. Дюйм 1.45
Размер выходного соединения Не относится к продукту
Тип выходного соединения Не относится к продукту
Тип выходной резьбы Не относится к продукту
Номер детали 05

Заглушка Нет
Диапазон регулировки давления Не относится к продукту
Мощность нагнетания пара под давлением Не относится к продукту
Диаметр продувки и слива Не относится к продукту
Размер выпускного отверстия для продувки и слива Не относится к продукту
Серия HAV
Боковое нарезание резьбы Нет
Размер боковой резьбы Не относится к продукту
Фильтр Нет
Материал фильтра Не относится к продукту
Тип переключателя Не относится к продукту
Диапазон регулировки температуры Не относится к продукту
Диапазон температур от 140 до 240 градусов F
Размер резьбы верхней части 1 Не относится к продукту
Размер резьбы верхней части 2 Не относится к продукту
Верхняя нарезка Нет
Вакуумный выключатель Нет
Объем вентиляции 1.06 SCFM при 71 фунт / кв. Дюйм

Автоматический воздухоотводчик | Детали системы теплого пола

Полы с подогревом

Система подогрева полов Speedfit была разработана для быстрой и простой установки с компонентами, разработанными и изготовленными в соответствии с ISO9001 и DIN4726.

В системе Speedfit горячая вода перекачивается из бойлера в насосный агрегат, где она смешивается примерно до 50 ° C, а затем распределяется через коллектор в отопительные контуры, выполненные с использованием барьерной трубы Speedfit.

В бетонных полах труба укладывается на изоляцию, а затем покрывается стяжкой, на которую можно уложить почти любое напольное покрытие.

Для деревянных полов раскладные плиты укладываются между балками и настилом пола или на нижней стороне пола. Труба Speedfit вставляется в пазы на пластинах.

Площадь пола обычно нагревается до температуры от 25 ° C до 28 ° C, что обеспечивает равномерное распределение тепла при температуре лишь немного выше комнатной.

Широкий спектр электрических компонентов означает, что система UFH может иметь столько или меньше контроля, сколько требуется.

Как работает теплый пол?

«Полы с подогревом» не новость, его принципы восходят к римским временам. В Европе это предпочтительная система, и в некоторых странах на нее приходится 70% новых отопительных систем.

Радиаторная система передает энергию в комнату в основном за счет конвекции. Эта конвекция приводит к тому, что пол остается самой прохладной частью комнаты и оставляет массу теплого воздуха на уровне потолка.

Он также собирает мелкую пыль с пола и распределяет ее по воздуху и по мебели.

Это может означать, что большая часть энергии, вложенной в комнату, тратится впустую, а не в том месте, где вы хотите.

Система UFH нагревается в основном за счет излучения. Это наиболее естественный и комфортный вид обогрева, как и солнце.

Лучистая энергия, излучаемая полом, частично отражается каждой поверхностью и частично поглощается.Когда он поглощается, эта поверхность становится вторичным излучателем.

Через некоторое время все поверхности становятся вторичными излучателями. Сама мебель излучает энергию, и комната становится равномерно и равномерно прогревается. Энергия проникает в каждый уголок комнаты - ни холодных пятен, ни горячих потолков, ни холодных ног.

По сравнению с другими формами отопления, общая эффективность системы нагрева UFH показана ниже.

Тепло концентрируется там, где оно больше всего необходимо для комфорта человека и энергоэффективности.

Особенности и преимущества теплого пола

Система теплого пола Speedfit предлагает потребителю множество преимуществ. К ним относятся:

Установка

Он прост в установке, требует минимальных усилий при установке и незначительного обслуживания.

Комфорт

В системе используется лучистое тепло, наиболее удобный вид обогрева, обеспечивающий равномерное распределение тепла по всей комнате.

Космос

Система ненавязчива и экономит пространство, что означает, что каждый квадратный метр площади пола и стены может быть полностью использован, что дает свободу при оформлении интерьера.

Шум

По сравнению с радиаторными системами, система UFH работает практически бесшумно.

Здоровье

Уменьшает количество пыли и уменьшает количество клещей домашней пыли. Уменьшение количества горячих поверхностей и острых краев снижает риск ожогов или травм.

Экономика

Системы напольного отопления предназначены для работы при более низких температурах, чем радиаторные системы, что делает их особенно подходящими для конденсационных котлов, что приводит к снижению потребления энергии и меньшим потерям тепла из конструкции здания.

Контроль

Системой легко управлять, а небольшая разница температур между полом и воздухом означает, что система практически саморегулируется.

Окружающая среда

«Полы с подогревом» подходят для использования с наиболее энергоэффективными и экологически чистыми системами отопления, включая конденсационные котлы, солнечную энергию и тепловые насосы.

Проектирование теплого пола

Принципы укладки сплошного пола

Система теплого пола Speedfit предназначена для установки в твердый пол с стяжкой.

Поскольку стяжка находится в непосредственном контакте с трубами отопления, обеспечивается отличная теплопередача, равномерное распределение тепла и меньшие колебания температуры.

Типовая установка будет состоять из:

  • Напольное покрытие (ковролин, керамическая плитка и т. Д.)
  • Стяжка
  • Трубка Speedfit, прикрепленная скобами к изоляции
  • Изоляция кромок
  • Высококачественная изоляция пола 50 мм
  • Бетонный пол

Изоляция пола является неотъемлемой частью любой установки UFH в сплошном полу.

Speedfit рекомендует получить рекомендации экспертов, чтобы убедиться, что используемые продукты подходят для полов с подогревом и соответствуют действующим нормам.

Для получения помощи, пожалуйста, обратитесь к разделу этого сайта со ссылкой на техническую консультационную службу Speedfit.

Рекомендации по проектированию

Проектирование и расчеты UFH-системы в твердом полу должны проводиться в соответствии с BS EN 1264, а детали, представленные на этом сайте, основаны на этом стандарте.

Существует ряд важных вопросов, касающихся системы теплого пола Speedfit, которые следует рассмотреть перед началом проекта:

  • Источники тепла
  • Расположение коллектора
  • Тепловая мощность и температура пола
  • Стяжки
  • Отделка полов и покрытия
  • Периметр
  • Органы управления

Они описаны ниже.

Источники тепла

Из-за более низких температур потока, используемых в UFH, обычно 47–62 ° C, можно рассмотреть множество источников тепла, отличных от стандартного настенного котла.К ним относятся солнечная энергия, тепловые насосы или геотермальные системы, и компания Speedfit рекомендует обращаться за конкретными советами к соответствующим производителям. Дополнительные насосы могут повлиять на некоторые котлы - перед установкой проверьте совместимость у производителя котла.

Расположение коллектора

Монтаж и балансировка системы теплых полов проще, если коллектор расположен ближе к центру здания. Это будет означать, что шлейфы как можно более равны.

Тепловая мощность и температура пола

Из-за множества различных методов конструкции пола трудно обеспечить точную тепловую мощность.

Согласно действующим стандартам максимальная мощность для любой системы УВГ, уложенной в твердый пол, составляет приблизительно 11 Вт / м² / K, где K - разница между температурой поверхности пола и желаемой температурой в помещении. При этом учитываются медицинские ограничения человека и чувствительность жителей здания к теплу.

Практически, с системой подогрева пола Speedfit мощность около 100 Вт / м² может быть достигнута при температуре поверхности пола 29 ° C и температуре воздуха 20 ° C.В некоторых случаях можно допустить более высокую температуру поверхности пола, например, в ванных комнатах (33 ° C), редко используемых комнатах или периметральных зонах (35 ° C).

Стяжка

Стяжка является важной и неотъемлемой частью системы UFH и используется для передачи энергии от труб к обогреваемой зоне. Эта тепловая масса, как ее еще называют, будет реагировать на потребность в тепле в зависимости от ее глубины и состава.

Обычно толщина большинства традиционных песчано-цементных стяжек, наносимых вручную, составляет 65–75 мм.Однако при консультировании по конкретному проекту потребуется информация о типе и глубине стяжки, если она известна.

Доступны более современные стяжки с насосом, которые обладают преимуществами с точки зрения скорости нанесения и времени отверждения. Также возможно, что глубина стяжки может быть уменьшена, и это улучшит работу системы теплого пола.

Speedfit рекомендует получить рекомендации от поставщика стяжки, чтобы убедиться, что правильные продукты указаны и используются для вашей системы центрального отопления пола.

Для получения помощи, пожалуйста, обратитесь к разделу этого сайта со ссылкой на техническую консультационную службу Speedfit.

Отделка полов и покрытия

Система подогрева полов Speedfit подходит практически для любой отделки пола, включая керамическую плитку, ковролин, винил и ламинат.

Поскольку напольное покрытие по существу является частью системы отопления, тепловое сопротивление или изоляционная способность отделки пола будут влиять на мощность пола.Чем выше сопротивление, тем ниже эффект нагрева и тем больше время разогрева.

Наиболее подходящими покрытиями являются покрытия с низким термическим сопротивлением, обычно обозначаемым как R-значение или TOG.

Рекомендуемое максимальное значение R составляет 0,15 м²K / Вт (1,5 TOG), а в таблице ниже приведены некоторые типичные значения.

Покрытие типа

Ковровое покрытие

Винил

Паркет

Керамическая плитка

Камень

R Стоимость м² К / Вт

0.15

0,022

0,05

0,017

0,011

TOG Стоимость

1,5

0,2 ​​

0,5

0,17

0,11

Керамическая плитка для пола
Керамическая плитка

хорошо сочетается с UFH, поскольку она обеспечивает минимальное сопротивление теплопередаче.Чтобы избежать растрескивания плитки, следует использовать гибкий клей и краевые швы, чтобы принять расширение. Убедитесь, что клей подходит для использования с UFH.

Ковры

Ковролин и подложка имеют более высокий уровень сопротивления теплопередаче.

Избегайте использования войлока, пробок и толстой резиновой прокладки, поскольку их изоляционные свойства снижают тепловую мощность системы.

Если предполагается использовать клей для ковров, убедитесь, что он подходит для температур до 40 ° C.

Пластиковые / виниловые плитки

Полы на пластиковой основе также хорошо работают с UFH, так как обычно имеют минимальное сопротивление теплопередаче. Важно, чтобы используемое покрытие и клей были пригодны для использования при температуре до 40 ° C. Это снижает риск размягчения и потери адгезии.

Деревянные полы / деревянные полы

Деревянные напольные покрытия хорошо сочетаются с UFH. Однако, поскольку это натуральный материал, важно следовать рекомендациям производителя пола относительно установки и первоначального ввода в эксплуатацию.

Деревянные полы обычно должны иметь влажность более 10%, и при укладке на ровный пол стяжка должна быть полностью затвердела перед укладкой покрытия. После отверждения систему следует проработать примерно 2 недели с материалами в зоне перед установкой. Это снижает влажность в помещении и позволяет материалу акклиматизироваться.

Мы рекомендуем получить конкретную информацию от предлагаемого поставщика или производителя покрытия, чтобы оценить пригодность покрытия для полов с подогревом.

Периметр

При определенных обстоятельствах можно достичь более высоких температур пола и, следовательно, более высокой производительности, чем обычно допустимые.

Это может быть неиспользуемое жилое пространство или место, постоянно обставленное мебелью. Это достигается за счет уменьшения расстояния между трубами примерно до 100 мм по периметру комнаты (примерно до ширины 1 метр).

Например, расстояние между трубами по периметру может использоваться там, где на внешней стене комнаты много окон, что может привести к более высоким локальным потерям тепла.

Органы управления

Как и для всех систем отопления, для достижения комфортных условий, поддержания экономичной работы и соответствия строительным нормам и британским стандартам требуются соответствующие средства управления.

Системы теплого пола могут использоваться как единственная система отопления или быть связаны с другими приборами, такими как радиаторы.

Существует множество способов управления системой теплого пола, и можно использовать практически любой котел, включая комбинированный и конденсационный.Для конкретных котлов следует обращаться за советом к производителю по установке.

Хотя UFH имеет много преимуществ по сравнению с традиционными системами, они не так отзывчивы. Поскольку они наиболее эффективны при постоянной работе, рекомендуется использовать элементы управления, которые могут «снизить» температуру в помещении на 4–5 ° C в периоды низкой нагрузки, например в ночное время, вместо того, чтобы полностью отключать систему. .

Обычно комнатные термостаты используются для управления исполнительными клапанами на коллекторе Speedfit, которые, в свою очередь, регулируют поток воды в каждом контуре.

Элементы управления можно разделить на 3 основные категории:

1. Регуляторы температуры потока

Если не используется конденсационный котел с низкотемпературным регулированием, для большинства систем теплого пола температура воды из котла, обычно 82 ° C, снижается до требуемой температуры с помощью смесительного клапана.

Более совершенные контроллеры, называемые погодозависимыми компенсаторами, используют внешний датчик и программатор для регулировки расхода и температуры для компенсации внешних условий.

Важно иметь устройство для управления котлом и насосом, чтобы температура подачи не превышала безопасные пределы. Насосный блок Speedfit оснащен встроенным ограничительным термостатом.

2. Комфортное управление

Комнатные термостаты используются для управления температурой воздуха в помещении или зоне и подключаются к центру управления, чтобы можно было открывать или закрывать отдельные контуры труб и включать или выключать насос / котел по мере необходимости. Комнатами можно управлять индивидуально или зонами из 2-х и более комнат.

Существует множество комнатных термостатов, подходящих для систем теплого пола. К ним относятся электромеханические, цифровые и программируемые. Модели могут иметь проводное соединение или управляться по радиочастоте.

Все типы элементов управления подходят для подключения к Центру управления Speedfit.

Программируемые комнатные термостаты

обеспечивают полный контроль над системой UFH. Каждую зону или комнату можно настроить в соответствии с собственными требованиями, и можно учитывать индивидуальные модели занятости.Эти типы статистики также предлагают возможность использовать режим «возврата» для максимальной эффективности.

Поскольку большинство систем управления работают с питанием 240 В, для управления во влажных помещениях, таких как душ или ванная, мы рекомендуем использовать дистанционный датчик или ведомый датчик из другой комнаты.

3. Блок управления котлом и насосом

Строительные нормы Великобритании требуют наличия связи между системами управления и котлом, чтобы котел не работал, когда система не потребляет тепло.Контроллер Speedfit имеет возможность для этого подключения.

Чтобы обсудить варианты для отдельных проектов, обратитесь в службу технической поддержки Speedfit по телефону 01895 425333.

Руководство по проектированию


Проектирование системы теплого пола Speedfit представляет собой простой процесс, состоящий из 6 основных этапов:

  • Расчет теплопотерь и потребности в тепле
  • Проверить потребность в дополнительном тепле
  • Определить температуру потока воды и расстояние между трубками
  • Определить расположение коллектора
  • Рассчитать необходимое количество контуров
  • План расположения труб
Расчет теплопотерь

Для определения количества тепла, необходимого для каждой комнаты или зоны, необходимо выполнить расчет теплопотерь.

Если заказчик не знаком с расчетом, у Института инженеров по обслуживанию зданий (CIBSE) и Ассоциации подрядчиков по отоплению и вентиляции (HVCA) есть документы по этому вопросу.

В некоторых проектах может быть возможно, что инженер Speedfit будет помогать в этом процессе. Пожалуйста, свяжитесь со Службой технической поддержки по телефону 01895 425333 для получения дополнительной информации.

В системе теплых полов теплопотери через первый этаж обычно не учитываются, так как пол будет теплее, чем комнатная температура.

Практически, будут некоторые потери тепла через пол, и поэтому при расчете нагрузки котла к общей сумме добавляется запас в 10%.

Фактическая тепловая мощность, необходимая для помещения, рассчитывается путем деления потребности в тепле, полученной в результате расчетов теплопотерь, на общую площадь пола.

В таких местах, как кухня или стационарная арматура, трубопроводы обычно не требуются и должны быть исключены из расчета.

Это генерирует показатель потребности в тепле в ваттах на м², который затем можно использовать в таблицах производительности системы Speedfit при выборе расстояния между трубами и температуры подачи.

Пример:

Согласно чертежам, тепловые потери для комнаты были рассчитаны на уровне 1200 Вт, а площадь пола измерена на уровне 20 м². Следовательно, требуемая производительность системы УВГ составляет:

Потери тепла (Вт) / площадь пола (м²) = требуемая мощность (Вт / м²)

1200 Вт / 20 м² = 60 Вт / м²

Следует отметить, что если расчетная тепловая потеря превышает 100 Вт / м², может потребоваться дополнительное отопление для достижения уровня комфорта.

Это может быть, например, в помещении с высоким уровнем остекления, таком как зимний сад.

Температура потока воды и расстояние между трубками

Насосный агрегат JG, подключенный к коллектору, имеет встроенный пропорциональный смесительный клапан для регулирования температуры воды из первичного источника.

Обычно устанавливается в диапазоне 47–62 ° C в зависимости от требований системы, и температура подачи остается одинаковой для каждого контура.

Рассчитав выше необходимые тепловые потери, выберите соответствующую таблицу мощности Speedfit в зависимости от используемого напольного покрытия.

Выберите температуру подачи и расстояние между трубами, исходя из желаемой температуры в помещении и максимальной температуры пола 26 ° - 29 ° C.

Пример: - Сверху минимальное требование к производительности 60 Вт / м² требуется от системы UFH.

Используя Таблицу 1 - Текстильные напольные покрытия, можно определить следующее.

При расходе 55 ° C, комнатной температуре 20 ° C и расстоянии между трубами 200 мм выходная мощность системы составляет 80 Вт / м² при температуре пола 27 ° C, что находится в допустимых пределах производительности.(При использовании в жилых помещениях расстояние между центрами труб не превышает 200 мм, и температура пола не должна превышать 29 ° C.)

Если указаны покрытия, не упомянутые в таблицах, возможно, потребуется провести специальные расчеты. Детали сопротивления для конкретных напольных покрытий следует получить у производителя до установки системы UFH.

В некоторых проектах может быть возможно, что инженер Speedfit будет помогать в этом процессе.Пожалуйста, свяжитесь со Службой технической поддержки по телефону 01895 425333 для получения дополнительной информации.

Положение коллектора и длина контура

Уникальный коллектор Speedfit доступен в конфигурации с 4, 8 или 12 портами, а труба Speedfit UFH поставляется в бухтах длиной 120 и 150 метров для обеспечения соединений потока и возврата к коллектору.

Выбор конфигурации коллектора будет зависеть от количества необходимых вам контуров и температурных зон.Например, вы можете захотеть установить другую температуру на кухне и в гостиной.

Количество контуров в каждой зоне будет зависеть от размера зоны и центров труб, выбранных из таблиц выходных данных Speedfit.

Чтобы избежать чрезмерных падений давления в трубопроводе, максимальная длина петли ограничена 100 метрами, а необходимое количество труб можно рассчитать по таблице ниже:

Требования к трубам UFH Speedfit

Расстояние (мм)

Макс.площадь м / м²

Макс.контур м

100

8.5

100

200

5

100

Пример: Если помещение площадью 18 кв.м необходимо отапливать на расстоянии 200 мм от центра трубы, длина, если требуется, будет примерно 90 м. Однако, если расстояние до коллектора составляет 11 м, что требует дополнительных 22 м, тогда потребуется 2 петли (например, 90 м + 22 м = 112 м).

Определив количество петель и, следовательно, конфигурацию коллектора, можно спланировать расположение труб.Длина контура контура должна включать хвосты для подключения к коллектору.

Схема расположения труб
Компоновка трубопроводов UFH

основана на двух основных соображениях, которые необходимо эффективно сбалансировать.

Труба должна быть проложена таким образом, чтобы обеспечить равномерное распределение тепла и относительно равномерную температуру поверхности по всей площади.

Трубы следует прокладывать непрерывно, соединения не должны выполняться в зоне разравнивания.

Компоновка должна учитывать повышенную теплоотдачу от более холодных внешних поверхностей.

Петли труб могут быть выложены в различных схемах в зависимости от характера конкретного проекта, с учетом внешних стен и окон, где будут возникать наибольшие теплопотери.

Оптимальная схема расположения труб обычно достигается путем смешивания подающей и обратной труб так, чтобы труба с самой высокой температурой подачи находилась рядом с трубой с самой низкой температурой обратной линии. Это обычно называют компоновкой с обратным возвратом или встречной спиралью.

Какая бы схема ни использовалась, трубы не должны пересекаться в полу и должны идти к соответствующему отверстию на коллекторе.Поэтому перед установкой рекомендуется подготовить схему расположения труб.

Некоторые шаблоны компоновки упоминаются по имени:

  • Одиночный змеевик
  • Двойной змеевик
  • Тройной змеевик
  • Противоточная спираль

На практике схемы расположения труб можно комбинировать или смешивать, чтобы удовлетворить потребности в тепле.

Примеры этих шаблонов можно увидеть ниже:

Змеиные узоры

Змеевик позволяет самой горячей воде ограничивать внешний периметр (области с наибольшими потерями тепла).Температура воды выше всего у самых холодных стен и будет снижаться по мере того, как она течет по трубе к центру комнаты.

Противоточный

Противоточные схемы отличаются от змеевиков тем, что подающая и обратная трубы расположены рядом друг с другом, создавая между ними среднюю температуру.

Зоны подключения

В областях, близких к коллектору, таких как холл, несколько труб могут находиться в непосредственной близости друг от друга, поскольку потоки и обратные потоки контура встречаются.

Это будет способствовать увеличению потребности помещения в тепле. Обычно эти трубы либо изолируют, либо используют трубы для обогрева соответствующей области.

Поэтому продумайте и спроектируйте эти области после того, как станут известны все другие помещения, контуры и коллекторы.

Потеря давления и работа насоса

При соблюдении ограничений по длине и площади контура общая потеря давления в системе находится в пределах возможностей насоса, поставляемого с коллектором Speedfit.

Speedfit Технические характеристики
  • Барьерная труба Speedfit B-PEX, изготовленная в соответствии с BS7291, с диффузионным слоем кислорода, отвечающим требованиям DIN 4725 по проницаемости для кислорода.
  • Размеры трубы 15 мм x 120 м Барьерная труба Speedfit B-PEX.
  • Труба рассчитана на давление 3 бар при 92 ° C.
  • Регулируемый диапазон смесительного клапана 47 ° - 62 ° C.
Выходные таблицы

Следующие 4 таблицы предназначены для помощи в спецификации системы UFH и показывают различные наборы данных в зависимости от отделки пола в соответствии с определением BSEN 1264.

Данные приведены только для ознакомления и основаны на конкретных данных.

Если вам нужна дополнительная информация или необходимо обсудить конкретный проект, обратитесь в службу технической поддержки Speedfit по телефону 01895 425333.

Стол 1 Текстильное напольное покрытие

Максимальная тепловая мощность, достижимая при настройках температуры потока (Вт Вт / м²)

Комната
Температура
(° C)

Труба
Центры
(мм)

Расход
Температура
47 ° C

Пол
Температура
(° C)

Расход
Температура
50 ° C

Пол
Температура
(° C)

Расход
Температура
55 ° C

Пол
Температура
(° C)

18

100

77

25

86

26

102

27

200

64

24

72

24

85

26

20

100

70

26

80

27

95

29

200

59

25

67

26

80

27

22

100

64

28

74

29

89

30

200

54

27

61

28

74

29

Банкноты

При перепаде температур между подающей и обратной магистралью на 8 ° C
Толщина стяжки 45 мм над концом трубы
Типичное тепловое сопротивление = 0.15
Таблица 2 Плитка / твердая древесина

Максимальная тепловая мощность, достижимая при настройках температуры потока (Вт Вт / м²)

Комната
Температура
(° C)

Труба
Центры
(мм)

Расход
Температура
47 ° C

Пол
Температура
(° C)

Расход
Температура
50 ° C

Пол
Температура
(° C)

Расход
Температура
55 ° C

Пол
Температура
(° C)

18

100

92

26

104

27

123

29

200

75

25

84

26

100

27

20

100

85

28

86

28

115

30

200

69

26

76

27

93

28

22

100

77

29

89

30

108

32

200

63

28

72

28

87

30

Банкноты

При перепаде температур между подающей и обратной магистралью на 8 ° C
Толщина стяжки 45 мм над концом трубы
Типичное тепловое сопротивление = 0.10
Стол 3 Деревянная планка / Толстый линолеум

Максимальная тепловая мощность, достижимая при настройках температуры потока (Вт Вт / м²)

Комната
Температура
(° C)

Труба
Центры
(мм)

Расход
Температура
47 ° C

Пол
Температура
(° C)

Расход
Температура
50 ° C

Пол
Температура
(° C)

Расход
Температура
55 ° C

Пол
Температура
(° C)

18

100

117

28

131

30

154

32

200

91

28

102

27

121

29

20

100

107

30

121

31

145

33

200

84

28

95

29

113

30

22

100

98

31

112

32

135

34

200

78

29

88

30

106

32

Банкноты

При перепаде температур между подающей и обратной магистралью на 8 ° C
Толщина стяжки 45 мм над концом трубы
Типичное тепловое сопротивление = 0.05
Таблица 4 Бетон без покрытия

Максимальная тепловая мощность, достижимая при настройках температуры потока (Вт Вт / м²)

Комната
Температура
(° C)

Труба
Центры
(мм)

Расход
Температура
47 ° C

Пол
Температура
(° C)

Расход
Температура
50 ° C

Пол
Температура
(° C)

Расход
Температура
55 ° C

Пол
Температура
(° C)

18

100

159

32

178

34

211

37

200

118

29

133

30

157

32

20

100

146

33

165

35

198

38

200

109

30

123

31

147

33

22

100

133

34

152

36

184

39

200

99

31

113

32

137

34

Банкноты

При перепаде температур между подающей и обратной магистралью на 8 ° C
Толщина стяжки 45 мм над концом трубы
Типичное тепловое сопротивление = 0.00

Температуры, указанные красным цветом, превышают максимально допустимые температуры пола. В нежилых районах или на участках по периметру могут быть разрешены температуры выше 29 ° C.

Система теплых полов

Рекомендации по установке

Перед установкой необходимо учесть несколько требований:

  • Все монтажные работы должны соответствовать всем действующим строительным нормам, британским стандартам и требованиям местных властей.
  • Все электромонтажные работы должны выполняться квалифицированным специалистом в соответствии с правилами IEE.
  • В соответствии с применимыми практическими правилами должна быть установлена ​​влагонепроницаемая мембрана.
  • Место для установки должно быть сухим и защищенным от атмосферных воздействий.
  • Потребуются средства на вывоз мусора, воду, электроэнергию и освещение.
  • Плита должна быть уложена горизонтально с соблюдением допусков Британских стандартов.
Коллектор Speedfit

Коллектор и насосный агрегат Speedfit поставляются предварительно собранными и индивидуально упакованными.Они поставляются вместе с инструкциями по установке, электромонтажу и вводу в эксплуатацию.

Балансировка

Чтобы обеспечить примерно равный поток воды в каждый контур, клапаны на коллекторе должны быть отрегулированы и сбалансированы в соответствии с инструкциями, прилагаемыми к блоку коллектора.

Детали крепления

Убедитесь, что пол на стройплощадке чистый, без мусора и неровностей.

При необходимости покрыть весь пол полиэтиленом в качестве пароизоляции и уложить краевую изоляцию на все внешние и внутренние стены.

Изоляция может быть рулонной или жесткой.

Укладывайте изоляционные панели пола, начиная вплотную к стене и продолжая укладывать кирпичную кладку. Если на изоляции нанесены линии сетки, которые должны быть сверху, это облегчит прокладку контуров труб.

Плотно соедините панели встык и склейте все стыки. При необходимости аккуратно разрежьте изоляционные панели, чтобы они подходили к колоннам, водостокам и т.д.

Прикрепите коллектор Speedfit к стене в выбранном месте.Убедитесь, что коллектор установлен ровно и достаточно высоко, чтобы принять трубу.

Отрежьте небольшой отрезок трубы (мин. 500 мм) и наденьте на конец трубы. Это защитит трубу там, где она входит в стяжку. Повторите это для возвратной трубы. Трубе также может потребоваться наложение рукавов через строительные швы в полу и там, где она проходит через дверные проемы и т.д.

Убедитесь, что на трубе нет задиров. Отрежьте трубу под прямым углом с помощью труборезов Speedfit Pipe Cutter и удалите заусенцы и острые кромки.
Используйте трубную вставку Superseal. Шток вставки обеспечивает большую жесткость длины трубы в фитинге, уменьшая вероятность утечки при приложении боковой нагрузки.

Полностью вставьте трубу в корпус - мимо цанги и главного уплотнительного кольца до упора трубы.

Уплотнительное кольцо на трубной вставке Superseal обеспечивает вторичное уплотнение в отверстии соединения.

Проверьте соединение, потянув за трубу.

Соединения не должны выполняться в зоне разравнивания.

Из коллектора начните укладку трубы в заранее разработанной конфигурации. Труба крепится к изоляции путем прикрепления трубы скобами к изоляции с помощью скобозабивного пистолета. Поместите пистолет на трубу и сильно надавите, чтобы скоба вошла в него. Прежде чем переходить к следующей скобе, дайте ручке отойти назад.

Скобы следует устанавливать с интервалом 400 мм и фиксировать так, чтобы минимальный радиус изгиба не превышал 175 мм.

Детали крепления

Важно отметить, что при установке трубы в дверных коробках, сквозных отверстиях в конструкции или в местах, где требуются компенсаторы в стяжке, труба всегда должна иметь втулку с участком кабелепровода для обеспечения возможности движения.

После того, как первая петля будет проложена, проложите трубу обратно к коллектору и подключите, как и раньше, к соответствующему обратному патрубку.

После установки всех контуров завершите установку блока управления и следуйте инструкциям по заполнению и испытанию под давлением.

Если требуется дополнительная безопасность, цанговый зажим можно установить на каждое трубное соединение коллектора.

Наполнение и испытание под давлением

Для заполнения системы можно выполнить следующую процедуру:

  • Убедитесь, что все клапаны на коллекторе и насосном агрегате закрыты.
  • Подсоедините шланг от сети к нижнему заливному отверстию. Присоедините шланг к верхнему заливному отверстию и поместите другой конец в ведро, наполовину заполненное водой.
  • Откройте клапаны верхнего и нижнего порта заполнения.
  • Включите электропитание и заполните контур за контуром системы, открыв клапаны отдельных контуров. Следите за тем, чтобы из шланга ведра больше не выходили пузырьки воздуха.
  • Закройте клапан контура и повторите для всех остальных контуров, закрыв отверстия для заполнения, когда закончите.
  • Теперь система может быть испытана под давлением водой перед укладкой стяжки, чтобы убедиться, что все стыки водонепроницаемы и не было повреждений трубы во время установки.Для этого вам понадобится оборудование для гидравлического испытания под давлением.

Давление в системе должно быть 2 БАР в течение 10 минут, а затем 10 БАР в течение 10 минут.

По истечении этого времени необходимо визуально проверить трубопроводы и фитинги на предмет утечки.

После завершения система должна оставаться под давлением на протяжении всего процесса стяжки и отверждения. BS EN 1264 Часть 4 рекомендует минимум 6 бар.

Стяжка

Стяжку следует укладывать как можно скорее после прокладки трубопроводов и завершения испытания давлением.

В процессе стяжки и отверждения система должна находиться под давлением.

Стяжку необходимо укладывать таким образом, чтобы она плотно прилегала к трубам без воздушных карманов.

Если используется стандартная цементно-песчаная стяжка, которая обычно имеет толщину 65–75 мм, ее следует установить и дать высохнуть естественным путем в соответствии с стяжкой, инструкциями производителя и требованиями Британского стандарта.

Доступны специальные стяжки малой толщины, и следует связаться с производителем стяжки для получения информации об их использовании с UFH.

Время высыхания, указанное производителями, может отличаться. Однако ни при каких обстоятельствах нельзя использовать систему УФГ для ускорения этого процесса.

Первый запуск

В соответствии с BS EN 1264 процедура запуска после установки должна быть следующей:

  • Стяжке необходимо дать высохнуть в соответствии с инструкциями производителя и британскими стандартами.
  • Установите температуру комнатного термостата на требуемый уровень.
  • Первоначальный нагрев должен начинаться с температуры проточной воды не выше 25 ° C.Это должно сохраняться не менее 3 дней. Это может быть достигнуто за счет использования смесительного клапана и термостата перегрева в сочетании. Полные инструкции поставляются с каждым насосным агрегатом.
  • Через 3 дня термостат можно увеличивать на 5–10 ° C в день до тех пор, пока не будет достигнута температура 47 ° C, при которой смесительный клапан возьмет на себя управление и автоматически регулирует температуру воды в подающей линии при расчетной температуре.
  • На этом этапе термостат перегрева должен быть установлен на 10–15 ° C выше расчетной температуры воды в подающей линии, и тогда он будет использоваться в качестве предохранительного устройства.Рабочая температура должна поддерживаться как минимум еще 4 дня.
  • При использовании натуральных материалов, таких как деревянный пол, эту температуру следует поддерживать до тех пор, пока влажность стяжки не снизится до уровня, указанного поставщиком напольного покрытия.
  • Система должна проработать минимум 2 недели перед укладкой любых покрытий.

Ни при каких обстоятельствах нельзя использовать теплый пол для ускорения времени высыхания стяжки сверх указанного графика.

Ввод в эксплуатацию

После начального периода запуска систему следует ввести в эксплуатацию со всеми уложенными напольными покрытиями, чтобы обеспечить правильную балансировку системы.

Убедитесь, что вся система центрального отопления, включая радиаторы, если они есть, работает до требуемой рабочей температуры.

Затем каждый контур можно медленно регулировать с помощью клапанов на коллекторе, чтобы обеспечить равномерный поток и нагрев.

Проверьте детали установки, поставляемые с коллектором.

Общие указания по электрическому оборудованию

Электрический блок управления Speedfit UFH, который включает в себя контроллер коллектора (с или без периодов задержки возврата), комнатные термостаты и приводы, представляет собой постоянно действующую систему, работающую независимо и постоянно 24 часа (автономная система).

Он не будет управлять главным котлом и насосом системы, поэтому, если главный котел и насос системы не включены, тепло не будет поступать в систему UFH.

Для индивидуального управления нагретой водой в системе UFH, двухходовой зонный клапан, установленный на подающем трубопроводе системы UFH, должен быть подключен к резервному каналу на существующем программаторе часов.Если на часах нет устройства, то двухходовой зонный клапан необходимо подключить к дополнительным часам / программе. Оба эти требования соответствуют Части L Строительных норм.

Если в существующей системе уже есть трехходовой зонный клапан (среднее положение, план Y), то его необходимо заменить на 2 двухходовых зональных клапана (план S). При этом для существующей системы может потребоваться байпас трубопровода.

Если система UFH установлена ​​с собственным выделенным источником тепла, она все равно требует двухходового зонального клапана и таймера / программы, которая может быть частью котла или удаленной.Эти часы будут управлять зонным клапаном, который, в свою очередь, включит источник тепла (котел) и системный насос, если он установлен. Электрическая система UFH по-прежнему будет работать независимо и постоянно 24 часа.

Для получения дополнительной информации обратитесь к электрику, сертифицированному IEE.

Контрольный список для установки

1. Устройство перекрытий

Система подогрева полов Speedfit предназначена только для стяжных полов.

2. Потребность в тепле

Система производит максимум 100 Вт / м² при температуре воздуха 20 ° C и температуре пола 29 ° C.Система обычно подходит для новых приложений сборки. При тепловых потерях более 100 Вт / м² может потребоваться дополнительное отопление.

3. Положение коллектора

Насосный блок и коллектор Speedfit следует располагать по центру, чтобы минимизировать отходы труб и максимально увеличить площадь пола с подогревом.

4. Требования к трубам

Нарисуйте схему расположения труб и рассчитайте общее необходимое количество труб. Включите хвосты труб. Запомните те участки, где трубы можно расположить ближе друг к другу.

5. Не соединяйте трубы в выглаженном полу.

6. Расчет котла

Потребность в тепле определяет типоразмер котла обычным образом. Важно убедиться, что котел имеет достаточную мощность для всей отапливаемой площади.

7. Определение размеров подающей и обратной труб

Размеры первичного и обратного потока должны быть нормальными. При подключении водопровода к существующей системе важно убедиться, что существующих трубопроводов подачи и возврата, а также насоса достаточно.

8. Отделка полов

Уточните у производителя, подходит ли выбранное напольное покрытие для полов с подогревом.

Техническая консультативная служба

Полный спектр технических консультационных услуг можно получить в компании JG Speedfit. Для получения дополнительной информации позвоните в службу технической поддержки по телефону 01895 425333 .

Все продукты JG Speedfit можно приобрести в сети магазинов, и вам могут быть предложены консультации как по проектированию, так и по установке системы.JG Speedfit также ведет список предпочтительных подрядчиков и установщиков.

Для получения конкретных рекомендаций по изоляционным материалам обращайтесь в Celotex Limited по телефону 01473 820888 или по электронной почте [email protected]

Для получения конкретных рекомендаций по стяжкам обращайтесь в Optiroc Limited по телефону 01928 515656 .

Honeywell, Inc. EA122A1028 EA122A Автоматический воздухозаборник для системы без обогрева A на центральном пульте управления

EA122A1028 Автоматический воздухоотводчик для систем без обогрева / Автоматический воздухоотводчик
• Включает съемный узел поплавка / клапана для облегчения обслуживания.
• Не для использования в паровых системах.
• Корпус, крышка и поплавок в сборе из термопласта.
• Внутренние части из коррозионно-стойких и химически стойких материалов для использования в водных системах, содержащих небольшие концентрации пропиленгликоля, минеральных масел или масел на нефтяной основе.
• Маслостойкое уплотнение.
• Седельный диск и уплотнительное кольцо из EPDM.

Применение Установки для питьевой воды
Устойчивость к коррозии Внутренние части изготовлены из коррозионно-стойких и химически стойких материалов для использования с гидравлическими системами, которые могут содержать концентрации пропилена или этиленгликоля.
Обзор Автоматический воздухоотводчик Honeywell EA122A удаляет воздух из трубопроводов высокого давления и оборудования в системах горячего и холодного водоснабжения.
Размер соединения (дюймы) 1/8 дюйма
Максимальное безопасное рабочее давление (psi) 90 psi
Максимальное безопасное рабочее давление (кПа) 620 кПа
Максимальная рабочая температура (F) 212 F
Максимальная рабочая температура (C) 100 C
Размеры (дюймы.) 5 1/4 дюйма в длину x 1 7/8 дюйма в диаметре
Размеры (мм) 133 мм в длину x 48 мм в диаметре

Семейство продуктов

Все заказы отправляются в тот же день, если заказ получен до 13:00 по центральному времени. Мы отправляем по всему миру.

График доставки UPS Hoilday

Для получения дополнительной информации о возврате посетите страницу Возврат

Для получения дополнительной информации о гарантии посетите страницу «Гарантия».

Вы также можете найти ответы на некоторые общие вопросы на нашей странице часто задаваемых вопросов

Отзывы

Еще не рассмотрено, напишите первым!

Добавить отзыв

Что такое автоматический воздухоотводчик в системе центрального отопления?

Автоматические вентиляционные отверстия (AAV) - это удобные устройства, которые можно установить для автоматического удаления воздуха из систем горячего водоснабжения .Большинство котлов включают в себя некоторую форму AAV, часто скрытую под внешним кожухом, и поэтому вне досягаемости для любого самодельного или незарегистрированного установщика.

Нажмите, чтобы увидеть полный ответ


Люди также спрашивают, что делает автоматический воздухоотводчик?

В установке воздух собирается в самых высоких точках, которые могут нарушить поток или даже полностью его остановить. Это может привести к сбоям в установке . Автоматический воздухоотводчик обеспечивает быстрое и эффективное удаление воздуха .Подробнее об автоматическом вентиляционном отверстии Spirotech .

Далее возникает вопрос, как мне удалить воздух из моей системы отопления? Откройте спускной клапан. Затем удерживайте емкость под спускным клапаном. Убедитесь, что клапан направлен в чашу, а не на вас, так как немного горячей воды может вытечь, если система отопления работала. Медленно поворачивайте отвертку или ключ радиатора до тех пор, пока не услышите air шипение из клапана.

Аналогично, что делает автоматический воздухоотводчик в котел?

Автоматические вентиляционные отверстия Ингибитор предотвращает реакцию воды с внутренней частью радиаторов и внутренней частью компонентов системы отопления.Без какого-либо ингибитора вода вступает в прямой контакт с внутренней частью радиатора, вызывая образование ржавчины и шлама в вашей системе отопления.

Что вызывает задержку воздуха в радиаторах?

Если только один (или несколько) из ваших радиаторов не нагревается, наиболее частой причиной этого является захваченный воздух . Если вы только что снова включили отопление после лета, воздух может оказаться в ловушке в ваших радиаторах , из-за чего станет теплым внизу, но холодным вверху.Ваш радиатор скоро должен стать красивым и теплым.

Maid-O \ '- Mist - Автоматические воздушные клапаны - Паровые вентиляционные отверстия Jacobus - Поплавковые регулирующие клапаны - Седельные клапаны

Устраните проблемы и избегайте проблем, установив эти автоматические вентиляционные отверстия с поплавковым приводом. Они удаляют воздух из сети, солнечных панелей, трубопроводов, котлов, тепловентиляторов, чиллеров, конвекторов, излучающих панелей, змеевиков, плинтуса и автономного излучения.

Пожалуйста, выберите Auto-Vent®: 7-я серия • 66, 67, 68 и аксессуары • 27 и 37 • 72 • 95

No.7 Series Auto-Vents®

Auto-Vents® серии № 7 - это надежные автоматические воздухоотводящие клапаны для скрытых радиаторов, трубопроводов, резервуаров и других устройств, в которых вода или жидкости используются для нагрева и охлаждения. Они оказались решением проблем, с которыми сталкивались инженеры и подрядчики, когда воздушные карманы или ловушки препятствуют свободной циркуляции жидкостей и снижают эффективность системы или устройства. Воздухоотделители Auto-Vents® серии № 7 изготовлены из латуни и оснащены самозакрывающимся поплавковым клапаном.Клапан оснащен металлической пружиной Monel® и седлом клапана Neoprene®, которое не подвержено воздействию высоких температур, масла и антифриза. Воздушная камера не требуется. Вентиляционное отверстие регулярно оснащается запатентованной крышкой, которую можно использовать в качестве проверки в случае утечки, вызванной песком или отложениями.

Auto-Vents® № 66, 67, 68 и аксессуары

Auto-Vents № 66, 67, 68 - это поплавковые вентиляционные отверстия для использования на конвекторных радиаторах, плинтусах и излучающих панелях. Они предназначены для использования в ограниченном пространстве и могут быть установлены в проблемных местах, которые ранее не использовались или вентилировались неправильно.Воздушная камера не требуется. Auto-Vents® № 66, 67, 68 разработаны для систем с давлением до 50 фунтов.

Прерыватель № 9AS - это устройство с автоматическим отключением, которое экономит часы при замене вентиляционных отверстий Maid-O’-Mist® с штуцерами 1/8 дюйма. Этот аксессуар представляет собой подпружиненный запорный элемент, который автоматически останавливает поток воды, когда вентиляционное отверстие снимается, и снова открывается, когда устанавливается новое вентиляционное отверстие Maid-O’-Mist®. С установленным перемычкой больше не нужно сливать воду из системы, чтобы отключить вентиляционные отверстия.

В ситуациях, когда по закону требуются безопасные отходы или в районах, особенно подверженных воздействию воды, соединитель № 7A используется для подсоединения 1/4-дюймовой медной или пластиковой трубки к вентиляционному отверстию вентиляционных отверстий Maid-O’-Mist®. Таким образом, любые брызги, вызванные запуском системы или утечки из-за накипи в системе, можно безопасно направить в канализацию.

Auto-Vents® № 27 и 37

Auto-Vents № 27 и 37 являются надежными поплавковыми клапанами. Их конструкция и внутренние рабочие части такие же, как у No.Auto-Vents® серии 7, за исключением меньшего размера. Изготовлен из цветных металлов.
№ 72 Auto-Vent®
  • Вертикальный или горизонтальный монтаж
  • 1/8 дюйма внутреннее соединение с внутренней резьбой
  • До 75 фунтов. давление
  • 1 1/4 "x 1/2"


Ручная кнопка № 95 Vent®

  • Вертикальный или горизонтальный монтаж
  • 1/8 дюйма внутреннее соединение с внутренней резьбой
  • До 50 фунтов. давление
  • 1 5/8 "x 9/16"

№72 Auto-Vents®

Auto-Vents® № 72 - это клапан быстрого удаления воздуха расширительного типа. Все расширения и сжатия единого непористого композиционного диска ограничиваются четырьмя вентиляционными отверстиями. Ручное удаление воздуха и плотное перекрытие контролируются специальной крышкой с регулировкой паза под отвертку. Эти клапаны используются для вертикального или горизонтального монтажа на конвекторах, плинтусах и отдельно стоящих радиаторах.

Ручное удаление воздуха с помощью кнопки № 95

Ручное удаление воздуха с помощью кнопки № 95 обеспечивает самый простой способ вентиляции радиатора вручную.Вам не понадобится ключ, монета или отвертка. Все, что вам нужно сделать, это нажать на изолирующую крышку ручного вентиляционного отверстия № 95 Pushbutton Manual Vent®, чтобы выпустить захваченный воздух. Отпустите, и вентиляционное отверстие автоматически закроется. Отлично подходит для ограниченных пространств, где для вентиляции требуется ключ или монета, что непрактично.

Приложения для № 72 Auto-Vent® и № 95 с ручным управлением Vent®


№ 72 или № 95, установленные на конвекторных радиаторах

No.72 или № 95, устанавливаемые на отдельно стоящие радиаторы

№ 72 или № 95, установленный на радиаторах основной платы

№ 72 или № 95, установленный на радиаторах основной платы

Используйте автоматические вентиляционные отверстия на радиаторах.

Повышение энергоэффективности систем отопления за счет использования автоматических вентиляционных отверстий.

Чтобы повысить эффективность и работу радиаторов и обогревателей, необходимо иметь в наличии вентиляционные клапаны.В основном они могут быть двух типов:
- Ручные вентиляционные клапаны: присутствуют на большинстве старых радиаторов, они требуют вмешательства человека для откручивания клапана.
- Автоматические воздушные клапаны: компонент полностью автоматизирован и не требует вмешательства внешнего оператора.
Настоящая проблема ручных - это неэффективность из-за задержек с открытием клапана. Фактически, эта операция выполняется только тогда, когда система становится шумной или не гарантирует правильный тепловой поток.Однако это представляет собой лишь кульминацию более или менее длительного периода неисправности и неоптимального выхода энергии.
С автоматическими клапанами выпуска воздуха эта проблема устраняется, потому что, как только устройство обнаруживает неисправность, оно работает в противоположном направлении, стремясь устранить ее почти мгновенно. Этот механизм обеспечивает оптимальную работу как с точки зрения шума, так и с точки зрения энергии.

Как работает автоматический воздушный клапан?

Основных компонентов для работы автоматического клапана выпуска воздуха по существу два:
- Поплавок: необходим для автоматического считывания уровня воды и, когда он опускается ниже заданного уровня, перемещает заслонку, обеспечивая выход лишнего воздуха;
- Заслонка: необходимо открывать и закрывать форточку.Впоследствии закрытие происходит автоматически.
Следует обратить внимание на тот факт, что, несмотря на то, что клапан работает в автоматическом режиме, системы по-прежнему требуют вмешательства человека для обслуживания, контроля и заполнения любой жидкости через соответствующий кран.

Автоматические воздуховыпускные клапаны от Gnali Bocia

В дополнение к двум основным компонентам, упомянутым выше, есть ряд других функциональных частей, обеспечивающих эффективный и длительный выпуск воздуха с течением времени.
- Стакан: изготовлен из латуни CW617N, обладает отличной коррозионной стойкостью и хорошими механическими свойствами;
- Крышка: изготовлена ​​из Hostaform, разновидности полиоксиметилена (ПОМ), материала, который хорошо сопротивляется как при различных температурах, так и трении и износу;
- Поплавок и движущиеся части: изготовлены из полипропилена, очень распространенного термопластичного полукристаллического полимера, обладающего замечательной химической стойкостью;
- Уплотнительная прокладка: из «антипригарного» эластомерного материала;
- Пружины: из нержавеющей стали.
Кроме того, для улучшения отделки может потребоваться никелированная обработка поверхности, которая гарантирует превосходные свойства сопротивления агрессивным средам и жидкостям, таким как вода, транспортируемая в системе. Максимальные гарантированные температуры составляют около 100 ° C, а максимальное давление - 10 бар.


27.07.2020 Смотрите также
27/11/2019 Вентиляционные клапаны даже для котлов Автоматические воздуховыпускные клапаны для удаления газов, которые накапливаются в системах и могут их заблокировать

27.07.2017 Радиаторы и воздуховыпускные клапаны, идеальная пара Автоматические воздуховыпускные клапаны для радиаторов устраняют воздух без ручного вмешательства

27.01.2018 Воздуховыпускной клапан, управляемый поплавком С поплавковой системой выпускной воздушный клапан устраняет скопления газа в системах

27.06.2017 Вам не нужен оператор, все вам нужны вентиляционные клапаны. Использование вентиляционных клапанов для предотвращения накопления воздуха и газа в вашей системе важно для оптимальной производительности системы.

Автоматический развоздушиватель системы отопления: Автоматический воздухоотводчик: конструкция, принцип работы, монтаж

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Scroll to top