Биметаллический радиатор ROMMER Optima BM 500 10 секций RAL9016 89573 представляет собой мощный прибор, который предназначен для обогрева помещений площадью до 16 кв. м. Коллектор выполнен из высококачественной коррозионностойкой стали и залит алюминиевым сплавом, что обеспечивает высокий КПД теплопроводности. Благодаря привлекательному, сияющему белизной дизайну модель гармонично впишется в любой интерьер.
Этот товар из подборокКомплектация *
Параметры упакованного товара Единица товара: Штука Длина, мм: 580
Произведено
Указанная информация не является публичной офертой Отзывы о ROMMER Optima BM 500 10 секций RAL9016Оставить свой отзыв На данный момент для этого товара нет расходных материаловСпособы получения товара в МосквеДоставка Вес брутто товара: 12.82 кг В каком городе вы хотите получить товар? выберите городАбаканАксайАктауАлександровАлыкельАльметьевскАнадырьАнгарскАрзамасАрмавирАрсеньевАртемАрхангельскАстраханьАхтубинскАчинскБалаковоБалашовБалезиноБарнаулБатайскБелгородБелогорскБерезникиБийскБиробиджанБлаговещенскБодайбоБокситогорскБорБорисоглебскБратскБрянскБугульмаБугурусланБуденновскБузулукВеликие ЛукиВеликий НовгородВеликий УстюгВельскВитебскВладивостокВладикавказВладимирВолгоградВолгодонскВолжскВолжскийВологдаВолховВольскВоркутаВоронежВоскресенскВыборгВыксаВышний ВолочекВязьмаВятские ПоляныГеоргиевскГлазовГорно-АлтайскГрозныйГубкинскийГусь-ХрустальныйДальнегорскДедовскДербентДзержинскДимитровградДмитровДонецкДудинкаЕвпаторияЕгорьевскЕкатеринбургЕлецЕссентукиЗаводоуковскЗеленодольскЗлатоустЗубовоИвановоИгнатовоИжевскИзбербашИнтаИркутскИшимЙошкар-ОлаКазаньКалининградКалугаКаменск-УральскийКаменск-ШахтинскийКамень-на-ОбиКанашКанскКарагандаКарасукКаргопольКемеровоКерчьКинешмаКиришиКировКиселевскКисловодскКлинКлинцыКоломнаКолпашевоКомсомольск-на-АмуреКоролевКостромаКотласКраснодарКрасноярскКропоткинКудьмаКузнецкКуйбышевКумертауКунгурКурганКурскКызылЛабинскЛабытнангиЛаговскоеЛангепасЛенинск-КузнецкийЛесосибирскЛипецкЛискиЛуневоЛюдиновоМагаданМагнитогорскМайкопМалые КабаныМахачкалаМеждуреченскМиассМинскМихайловкаМичуринскМоскваМуравленкоМурманскМуромНабережные ЧелныНадеждаНадымНазраньНальчикНаро-ФоминскНарьян-МарНаходкаНевинномысскНерюнгриНефтекамскНефтеюганскНижневартовскНижнекамскНижний НовгородНижний ТагилНовая ЧараНовозыбковНовокузнецкНовороссийскНовосибирскНовочебоксарскНовочеркасскНовый УренгойНогинскНорильскНоябрьскНурлатНяганьОбнинскОдинцовоОзерскОктябрьскийОмскОнегаОрелОренбургОрехово-ЗуевоОрскПавлодарПангодыПензаПермьПетрозаводскПетропавловскПетропавловск-КамчатскийПикалевоПлесецкПолярныйПригородноеПрокопьевскПсковПятигорскРеутовРоссошьРостов-на-ДонуРубцовскРыбинскРязаньСалаватСалехардСамараСанкт-ПетербургСаранскСарапулСаратовСаянскСвободныйСевастопольСеверныйСеверобайкальскСеверодвинскСеверскСерпуховСимферопольСлавянск-на-КубаниСмоленскСоликамскСорочинскСочиСтавропольСтарый ОсколСтерлитамакСургутСызраньСыктывкарТаганрогТаксимоТамбовТаштаголТверьТихвинТихорецкТобольскТольяттиТомскТуапсеТулаТуркестанТюменьУдомляУлан-УдэУльяновскУрайУральскУрюпинскУсинскУсолье-СибирскоеУссурийскУсть-ИлимскУсть-КутУсть-ЛабинскУфаУхтаФеодосияХабаровскХанты-МансийскХасавюртЧайковскийЧебоксарыЧелябинскЧеремховоЧереповецЧеркесскЧитаЧусовойШарьяШахтыЭлектростальЭлистаЭнгельсЮгорскЮжно-СахалинскЯкутскЯлтаЯлуторовскЯрославль Самовывоз: бесплатно
г. Санкт-Петербург, Дунайский проспект, д. 27к1Б пн. – вс.: 9:00 – 20:00 В корзинуг. Санкт-Петербург, ул. Будапештская, д. 102 пн. – вс.: 10:00 – 20:00 В корзинуг. Санкт-Петербург, ул. Боровая, д. 8 пн. – вс.: 10:00 – 20:00 В корзинуг. Колпино, проспект Ленина, д. 79 пн. – вс.: 10:00 – 20:00 В корзинуСервис от ВсеИнструменты.руМы предлагаем уникальный сервис по обмену, возврату и ремонту товара! Вернем вам деньги, если:
Гарантия производителяГарантия производителя 5 лет | Может понадобиться |
Биметаллические радиаторы для отопления — ООО «АКВАКРЫМ» Севастополь, Симферополь
Биметаллические радиаторы являются одной из разновидностей элементов отопления помещений. Как можно судить из названия, такой радиатор собирается из деталей, изготовленных путем соединения двух видов металлов. Биметаллический радиатор визуально не отличается от алюминиевой батареи, но имеет более значительную массу.
Основная масса таких радиаторов имеет стальную внутреннюю часть. Обычно это нержавеющая сталь, обладающая высокой коррозионной стойкостью. В некоторых моделях внутреннюю часть изготавливают из меди. Стальные или медные трубы, по которым проходит теплоноситель, устанавливают в вертикальной и горизонтальной плоскостях. Наружный корпус радиатора, оснащенный ребрами, изготавливают из алюминия. Из-за своей значительной теплопроводности алюминий быстро прогревается при контакте со сталью и отдает полученное тепло в помещение.
Конструкция биметаллического радиатора делает возможным его применение в системах отопления с высоким давлением и температурой теплоносителя. Радиаторы такого типа в основном применяются в паровых системах центрального отопления, а также там, где требуется высокая надежность и долговечность системы.
Биметаллические батареи, как и радиаторы других типов, делятся на секционные и монолитные конструкции. Первые из них состоят из отдельных секций, которые соединены друг с другом стальными ниппелями с термостойкими прокладками, рассчитанными на воздействие высокой температуры. Преимуществом секционных радиаторов является возможность соединения между собой необходимого количества секций, что позволяет регулировать тепловую мощность радиатора. К недостаткам можно отнести возможность возникновения течи в местах соединения секций.
Монолитные батареи прочнее и надежнее секционных радиаторов. Стальные трубы в них имеют сварные соединения. Благодаря такой конструкции радиаторы могут выдерживать высокое давление. Тепловая мощность таких радиаторов зависит от их геометрических размеров. К основным достоинствами биметаллических радиаторов можно отнести следующее:
- продолжительный срок эксплуатации, достигающийся за счет стойкости металла, из которого производится внутренняя часть радиатора, к воздействию коррозии. Срок службы некоторых моделей батарей достигает пятидесяти лет;
- высокая прочность, обеспечивающаяся стальной сердцевиной, обладающей высокой стойкостью к высокому давлению;
- быстрый прогрев и хорошая теплоотдача алюминиевого корпуса;
- возможность применения в автономных и центральных системах отопления;
- привлекательный внешний вид, позволяющий использовать радиаторы в любом интерьере.
При условии выбора качественного биметаллического радиатора, а также соблюдения требований и правил его установки, можно надолго оградить себя от проблем, связанных с неисправностями системы отопления.
Оптовые склады ООО «АКВАКРЫМ» в Севастополе и Симферополе. Доставка биметаллических радиаторов отопления во все города Крыма: Ялта, Керчь, Феодосия, Евпатория, Алушта, Саки, Белогорск, Нижнегорск, Бахчисарай, Джанкой, Красноперекопск, Гурзуф, Форос, Судак и другие. Условия доставки оговариваются индивидуально!
Нужна дополнительная информация?
Обращайтесь по телефонам в Крыму:
г. Симферополь, ул. Крылова 164: +7 (978) 041-51-01
г. Севастополь, ул. Руднева 19а: +7 (978) 748-48-90
Биметаллические радиаторы отопления: размеры и виды
Современный рынок предлагает 4 вида радиаторов: чугунные, алюминиевые, стальные и биметаллические. Такие батареи долговечны, у них хорошая теплоотдача и привлекательный дизайн. Когда выбираете модель, учитывайте размеры биметаллических радиаторов, их энергоемкость и количество. Но, обо всем подробней.
Радиатор биметаллическийУстройство
Каждый из видов радиаторов обладает своими достоинствами. Чугунный радиатор долговечный, долго удерживает тепло, но имеет не очень привлекательный вид. Алюминиевый выглядит эстетично, имеет высокий уровень теплоотдачи, но недолговечен. Стальная батарея долговечна, но не хуже, чем предыдущие модели удерживает тепло и требует дополнительного декора, если используется в жилом помещении.
Среди разных видов батарей биметаллические радиаторы обладают несравненными преимуществами. Они созданы из стали и алюминия. От стали они получили прочность и надежность, от алюминия – привлекательный внешний вид. За счет гармоничного сочетания качеств обоих металлов, биметаллическая батарея может долгое время сохранять тепло.
Особенности конструкции
Вода содержит большое количество примесей. Контактируя с алюминием, они вызывают коррозию. За несколько лет использования эти процессы приведут к протеканию прибора.
Особенность конструкции этих радиаторов заключается в наличии внутреннего сердечника из нержавеющей стали, который снаружи окружен алюминиевым сплавом. Так вода не контактирует с алюминием, что значительно продлевает срок службы системы.
Есть два варианта изготовления:
- Псевдобиметалл. В этом случае стальная сердцевина расположена только внутри вертикальных каналов. Так алюминий защищен не полностью, а лишь в наиболее слабых местах. Эти модели дешевле, их стандартный срок службы составляет до 10 лет, если они используются в системах с высоким давлением воды (например, в городских квартирах).
- Биметалл. Обладает цельным внутренним корпусом из стали, который поверх заливается алюминиевым сплавом под давлением. Здесь алюминий защищен со всех сторон. Это более дорогие модели и срок их службы при аналогичных условиях эксплуатации составляет до 30 лет.
Есть разные способы соединения двух металлов. Предпочтительней, если алюминий залит поверх стали под давлением. Такая модель батареи прослужит дольше. Существует вариант, когда металлы соединяются между собой сваркой.
По техническому типу конструкции радиаторы могут быть:
- Разборными. Это значит, что с помощью радиаторного ключа можно открутить любое количество секций и прикрутить их к другому радиатору. Такой тип чаще устанавливается в частных домах с автономной системой отопления, где нет высокого давления воды.
- Неразборными. Радиатор монолитный, его нельзя раскрутить, обрезать, присоединить к другому. Отлично подойдет для использования в городской квартире, где всегда высокий уровень давления.
Размеры
Размер секций биметаллического радиатора определяется расстоянием от середины входного, до середины выходного отверстий. Сегодня изготавливают батареи с расстоянием между указанными отверстиями:
- 200 мм;
- 350 мм;
- 500 мм.
Чтобы подсчитать полные габариты биметаллических радиаторов отопления нужно к этому показателю добавить 8 сантиметров. Получаются размеры 28, 43 и 58 сантиметров.
Размеры биметаллических отопительных батарейПеред выбором нужных габаритов батарей отопления следует помнить, что от пола до низа радиатора должно быть не меньше 12 см, а от его верха до выступающей части подоконника – не меньше 10 см. Иначе не будет достаточной циркуляции воздуха, что снизит эффективность теплоотдачи прибора.
Ширина секции находится в диапазоне от 80 до 90 мм. Толщина – от 80 до 120 мм. Высота, ширина и толщина влияют на энергетическую мощность батареи.
Емкость секции
Специфическая конструкция радиаторов обуславливает их довольно низкую вместимость. Это одновременно хорошо и плохо.
Маленькая емкость не требует большого количества теплоносителя (горячей воды), а значит, экономит воду и топливо, чтобы ее подогреть. Но чем меньше теплоносителя, тем быстрее остывает радиатор. Здесь быстрого остывания не происходит, так как между водой и алюминиевой поверхностью есть еще стальная оболочка, которая долго не остывает.
Соединение двух металловМаленькая емкость способствует быстрому загрязнению, закупориванию каналов при использовании некачественной воды. Чтобы решить эту проблему в частном доме устанавливается система очистки. Минимальное требование – установка двух фильтров: тонкой и грубой очистки.
Объем одной секции зависит от ее размера:
- при расстоянии между входным и выходным отверстиями 500 мм, вместимость секции будет составлять 0,2–0,3 литра;
- при расстоянии в 350 мм вместимость составит 0,15–0,2 литра;
- расстояние в 200 мм гарантирует объем в 0,1–0,16 литра.
Расчет количества секций
Объем и количество секций определяет тепловую мощность одного радиатора. Перед совершением покупки важно произвести расчет этой мощности, чтобы найти необходимое для помещения количество секций. Для этого используется любая из двух формул:
- Общая. Когда расчет секций производится исходя из площади помещения. В среднем, на 10 м2 требуется не менее 1 кВт энергии. Для подсчета используется формула N = S × 100/Q. Где N – это количество секций для помещения, S – площадь помещения в метрах квадратных, Q – энергетическая мощность секции. Энергетическая мощность указывается производителем на упаковке или на сопутствующих документах.
Попробуем рассчитать количество секций на помещение 25 м2, при энергетической мощности секции 180 Вт. Получится: 25 × 100/180 = 13.88. После округления получаем 14 секций (округление необходимо производить в большую сторону). При ширине 8 сантиметров общая ширина радиатора будет составлять 112 сантиметров. В этом случае можно установить 2 радиатора каждый по 7 секций.
- Подробная. Эта формула берет в расчет объем помещения в кубических метарах (м3). В среднем, на 1 кубометр пространства необходим 41 Вт энергии. Далее используют формулу N = S × 41/Q, где N – это количество секций для помещения, V – объем помещения в метрах кубических, Q – энергетическая мощность секции.
Рассчитаем количество секций для обогрева помещения со следующими параметрами: длина 5 метров, ширина 3 метра, высота потолков 2,5 метра. Сначала необходимо найти площадь комнаты. Длину умножаем на ширину и получаем 15 м2. Получившийся показатель умножаем на высоту потолков – получаем 37,5 м3. За мощность одной секции возьмем 180 Вт, тогда 37,5 × 41/180 = 8,54. Округляем в большую сторону и получаем 9 секций.
При расположении квартиры на первом или последнем этажах, в угловой квартире, в комнате с большими окнами или в доме с толщиной стен не более 25 сантиметров, необходимо к получившемуся параметру добавлять 10%.
Рекомендации по выбору
Подведем итоги. Для осуществления правильного выбора необходимо обращать внимание на все указанные характеристики:
- Конструкция. Для городской квартиры подойдет монолитная, полностью биметаллическая батарея, которая способна выдержать давление до 15 атмосфер и более (обычно в квартирах используется давление в районе 12 атмосфер, тогда как в частном доме рекомендуется устанавливать давление всего в одну атмосферу). Автономным отопительным системам подойдут более дешевые модели, так как в них нет высокого давления.
- Размер. Если расстояние между полом и подоконником не менее 80 сантиметров, следует выбирать самую высокую модель. Иначе придется брать радиатор поменьше, так, чтобы до пола было не менее 12 см, а до подоконника не менее 10 см.
- Емкость. Одно из основных свойств – довольно узкие проходы. По возможности обеспечьте хорошее качество воды, подаваемой в систему отопления.
- Расчет секций. Перед покупкой читайте описание модели для уточнения энергетической мощности. Расчет количества секций лучше производить, используя вторую (подробную) формулу, где необходимое количество тепла определяется исходя из объема помещения. Не забывайте добавлять 10% в случае значительных теплопотерь за счет внешних факторов.
Сегодня хорошо зарекомендовали себя биметаллические батареи от итальянских производителей Fondital и Global.
Видео по теме:
Виды и размеры биметаллических радиаторов отопления, рекомендации по их выбору
Определить тип радиатора, подходящего конкретно для той или иной системы отопления, не зная его основных характеристик, достаточно сложно. Существуют приборы, устанавливаемые в частных домах, имеющих автономную систему отопления, а также радиаторы, установка которых возможна только в городской квартире.Биметаллические радиаторы отопления — виды, технические характеристики
Если сравнить алюминиевые радиаторы с биметаллическими, то вторые выгодно отличаются от первых по своим техническим характеристикам. Несмотря на все свои положительные качества, алюминиевые приборы имеют ряд серьёзных недостатков, не позволяющих их использование в многоэтажных жилых домах. Биметаллические аналоги вполне способны справиться со всеми техническими ограничениями, связанными с установкой в городских квартирах, подключённых к центральной сети отопления.Устройство биметаллических приборов
По внешнему виду биметаллический радиатор никак не отличается от алюминиевого, ведь оба сделаны из одного и того же металла. Весь «секрет» во внутреннем устройстве батареи.Биметаллический радиатор имеет внутренние вставки из нержавеющей стали, которые обеспечивают надёжную защиту алюминия от вредного воздействия всяческих примесей, содержащихся в воде. Именно благодаря встроенным стальным секциям, внешний корпус биметаллического прибора напрямую не контактирует с теплоносителем. Помимо этого, сталь более устойчива к разрушительному воздействию кислот и щелочей, которые в огромных количествах присутствуют в центральных системах отопления, и не вступает в химическое взаимодействие с медными элементами городских коммуникаций (трубы, теплообменники и пр.).
Использование стальных вставок для прохождения воды обеспечивает также и другие полезные свойства биметаллических приборов отопления:
- Долговечность. Благодаря тому, что внутренние стальные полости устойчивы к разрушению и коррозии, производитель может устанавливать достаточно продолжительный срок службы прибора — до 20 лет.
- Прочность. Корпус изделия может выдержать давление до 30–40 атмосфер. Такой радиатор отопления не боится даже самых сильных гидроударов.
- Экономичность. Суженые каналы подачи воды обеспечивают оптимальное сочетание тепловой инертности устройства и расхода энергоресурсов на обогрев.
Добавив сюда все положительные качества, перешедшие от алюминиевых аналогов, таких как компактность, высокая теплоотдача и презентабельный внешний вид, можно с определённостью утверждать, что на сегодняшний день биметаллические устройства являются наилучшим вариантом отопления многоэтажных домов.
Радиатор отопления: размеры
При выборе биметаллического прибора отопления, большое значение имеют размеры изделия.
В целях создания тепловой завесы холодному воздуху, проникающему через стекло, отопительные устройства обычно устанавливаются под окном. Следовательно, прибор должен легко поместиться в нишу под подоконником и обеспечить необходимый уровень теплоотдачи.
По высоте все биметаллические радиаторы имеют стандартные показатели. Расстояние между вертикальными каналами различается в зависимости от модификации устройства и составляет 200 мм, 350 мм и 500 мм.
Однако следует отметить, что расстояние между вертикальными каналами — это ещё не полная высота прибора, а всего лишь размер отрезка между центрами выходного и входного коллекторов. Реальная высота устройства определяется так: межосевое расстояние + 80 мм. Так, к примеру, радиатор с маркировкой 500 займёт около 580 мм, а 350-я модель — примерно 420 мм. Ширина устройства определяется количеством секций.
Количество секций для всех типов отопительных приборов рассчитывается одинаково.
Согласно техническим требованиям, предъявляемым к отоплению жилых домов в средней полосе страны, мощность равная 1 кВт предназначена для обогрева 10 кв. метра площади.
Производителем обычно указывается значение мощности одной секции для каждой батареи. Зная значение тепловой отдачи секции, можно рассчитать количество требуемых элементов по формуле:
N = S*100/Q, где Q — мощность одной секции, S — площадь помещения и N — искомое количество.
Большинство моделей биметаллических радиаторов имеют стандартную ширину секции — 80 мм, таким образом, мощность обычной секции 500 мм составляет около 180 Вт. В соответствии с этим и определяется общее количество секций. Так, например, для отопления комнаты площадью 20 м2, понадобится 12 секций, ширина такой батареи будет около 1 м.
Особенности конструкции
Как уже было сказано ранее, биметаллический радиатор отличается от алюминиевого тем, что внутри него расположены стальные вкладки, которые защищают корпус от коррозии.
Такие вкладки могут устанавливаться в различных частях прибора:
- Простые модели (псевдо- или полубиметаллические) имеют стальную сердцевину только в вертикальных каналах, поэтому прочность и степень защиты такого прибора всё же недостаточна.
- Модели подороже располагают цельным стальным каркасом, который заливается алюминием под давлением. Именно такие отопительные приборы рекомендуется устанавливать в многоквартирных домах.
Типы конструкции
- Монолитный. Радиатор состоит из неразборных стальных патрубков. Имеет постоянное количество секций, изменить которое нельзя. Основной характеристикой литого радиатора является повышенная надёжность. Прибор рекомендован к применению в системах, где наблюдаются частые скачки давления.
- Разборный. Количество секций определяется самостоятельно, в зависимости от площади помещения. Секции соединяются между собой металлическими патрубками, имеющими резьбу.
Выбор той или иной конструкции зависит от типа отопительной системы. Так, для автономного отопления лучше приобрести разборную модель, для городской квартиры — литую.
Ёмкость
Наличие стальных вставок внутри прибора способствует уменьшению ёмкости секции. С одной стороны, это неплохо: снижается количество тепловой инертности и самого теплоносителя, что позволяет значительно экономить электроэнергию и обеспечивает комфортное управление. Но с другой стороны — слишком зауженные каналы подачи воды быстро засоряются всяческим мусором, неизбежно присутствующим в современных сетях центрального отопления.Ёмкость секции определяется расстоянием между вертикальными каналами.
Для устройства с расстоянием 500 м — ёмкость 0,2-0,3 л;
для батареи 350 мм — 0,15-0,2 л;
для 200 мм — 0,1-0,16 л.
Как вы уже заметили, вместимость биметаллических радиаторов действительно небольшая. К примеру, популярный прибор фирмы RIFAR, шириной 80мм и высотой — 350 мм вмещает в себя всего 1,6л. Несмотря на это, радиатор способен обогреть помещение площадью до 14 кв. м. Правда, вес устройства достигает 14 кг, так как биметаллический радиатор в 1,5-2 раза тяжелее алюминиевых.
Рекомендации по выбору радиатора
Биметаллическая батарея отопления лучше подойдёт для городской квартиры. Если вы обладатель частного дома, в котором имеется собственный котёл отопления, лучше приобрести алюминиевый радиатор.
Выбирая биметаллический пробор, необходимо обращать внимание на следующие параметры:
- Размер. Высота радиатора определяется межосевым расстоянием, а ширина — количеством секций. Так, для стандартного подоконника, высота которого 80 см используется модель 500, а если всё же прибор не помещается в нишу, подойдёт 350-я. В помещениях нестандартного вида используются радиаторы отопления дизайнерской работы, имеющие необычный внешний вид и оригинальные размеры.
- Мощность. Оптимальная мощность прибора рассчитывается очень просто: для обогрева 10 кв. м. помещения затрачивается 1 кВт энергии. Исходя из этих показателей определяется количество секций.
- Толщина стенок. Толщина алюминиевого покрытия должна быть не более 1,5 мм, а стальной трубки — менее 1,8 мм. Радиаторы, соответствующие этим показателям имеет минимальную теплопотерю.
- Рабочее давление. Прибор должен выдерживать нагрузку не менее 15 атмосфер. В городских отопительных системах давление обычно не превышает 12 атм.
- Метод изготовления. Лучше выбирать радиаторы, изготовленные по технологии литья под давлением. Приборы, состоящие из 2 частей, соединённых между собой сварным швом, менее надёжны в использовании.
- Цена. Стоимость биметаллического прибора отопления во многом зависит от его марки, формы и габаритов. На сегодняшний день большой популярностью у потребителя пользуются радиаторы компаний Rifar (Россия), Oasis (Германия), Radiatori и Global (Италия).
Итак, рассчитав количество радиаторов, необходимое число входящих в них секций и установив нужную мощность прибора, можно приступать к монтажу системы отопления.
Следует помнить, что тепловой баланс в помещении напрямую зависит от габаритов прибора. Так, если ширина радиатора небольшая, следует увеличить его высоту или количество секций.
Необходимо учитывать, что даже самый дорогой, качественный и подходящий именно для вашей системы отопления биметаллический радиатор должен быть установлен с соблюдением всех правил монтажа. Только так он сможет сохранить свои положительные качества и обеспечить максимальную теплоотдачу при минимальных затратах на электроэнергию.
Оцените статью: Поделитесь с друзьями!батареи биметалл, какие лучше для квартиры, как выбрать секционные, как рассчитать и установить, варианты подключения
Содержание:
Биметаллическими называются радиаторы, изготовленных из двух разных металлов. Широко распространенные на Западе изделия данного типа постепенно завоевывают популярность в нашей стране.
Особенности конструкции
Основной частью биметаллических радиаторов отопления являются полые трубы из стали или меди, соединенные горизонтальным или вертикальным образом в один каркас. Внутри конструкции циркулирует теплоноситель, а снаружи она обшита алюминиевыми пластинами. Для фиксации отдельных элементов применяется точечная сварка или метод литья. Чтобы соединить секции между собой, используются ниппеля, оснащенные термостойкими прокладками из каучука.
Биметаллические батареи могут эксплуатироваться в обычных квартирах с централизованным отоплением. Они способны выдерживать давление до 25 атмосфер (при опрессовке — до 37 атмосфер). Высокая теплоотдача позволяет им обогревать помещения намного эффективнее, чем традиционные чугунные системы. Внешне биметаллические и алюминиевые изделия практически идентичны. Различить их можно разве что по весу: батареи биметалл из-за металлического сердечника существенно тяжелее.
Преимущества биметаллических батарей для отопления
Преимущества отопительных систем, оснащенных биметаллическими секционными радиаторами:
- Панельный тип оформления позволяет изделиям органично вписаться в любой интерьер жилого дома или офиса, без особой потери полезного пространства. В продаже представлены изделия с одной или двумя фасадными поверхностями, имеющие значительное разнообразие размеров и цветов. Кроме того, нагревательные панели можно окрашивать самостоятельно в любой нужный цвет. Особенно удобно то, что батареи из стали и алюминия имеют округлые углы, что позволяет без опасения применять их в детских комнатах и спальнях. Кроме вертикального монтажа, предусмотрены и такие конструкционные решения, где в качестве крепежных элементов вместо кронштейнов используются дополнительные ребра жесткости.
- Длительный эксплуатационный срок – 25 лет.
- Биметаллическими радиаторами можно комплектовать любую отопительную систему (в том числе центральную) с некачественным внутренним теплоносителем. Изделия из двойного металла способны эффективно противостоять высокому уровню кислотности и других агрессивных составляющих благодаря хорошим антикоррозийным свойствам.
- Высокая прочность и надежность оснащенной таким образом системы отопления, без труда справится со скачками внутреннего давления до 35-37 атмосфер.
- Высокий коэффициент теплоотдачи биметаллических радиаторов отопления: биметаллические элементы содействуют хорошей энергоэффективности.
- Очень удобно наличие в конструкции батарей специального термостата, позволяющего регулировать уровень нагревания блоков. Благодаря малому сечению каналов, радиатор реагирует практически мгновенно на изменения положения его ручки.
- Удобная конструкция ниппелей дает возможность очень быстро выполнять монтаж.
- При выборе биметаллического радиатора расчет нужно количества секций в конкретном помещении проводится очень просто, при помощи элементарных математических формул. Это дает возможность избежать лишних финансовых трат при организации отопительной системы жилища.
Недостатки биметалла
Исследуя вопрос, какие биметаллические батареи отопления лучше для квартиры, следует знать также об их недостатках:
- Несмотря на хорошую стойкость к некачественному теплоносителю, продолжительность службы отопительных приборов в таких условиях уменьшается.
- За счет различия коэффициентов расширения стали и алюминия, в процессе эксплуатации биметаллические изделия могут издавать скрип, это может стать причиной преждевременного выхода из строя.
- Теплоноситель низкого качества провоцирует внутренние засоры и коррозию трубок из стали. В комплексе это приводит к снижению эффективности нагрева.
- Иногда в качестве недостатка называют большую стоимость биметаллических изделий, по сравнению с чугунными, алюминиевыми и стальными изделиями. Однако преимущества радиаторов данного типа вполне компенсируют их стоимость.
Как рассчитать число секций
Для того, чтобы определиться, какие биметаллические радиаторы лучше выбрать для квартиры, необходимо рассчитать число секций. Давайте разберемся, как рассчитать количество секций биметаллического радиатора. Простая математическая формула позволяет провести расчет. Для этого понадобятся размеры площади отапливаемой комнаты и мощности батареи (она обычно указывается на упаковке или в специальном каталоге сантехнической продукции). Формула эта выглядит так: A = S×100÷P (где А – число секций, S – площадь комнаты, а Р – мощность радиатора).
Для примера возьмем за показатель площади помещения 20 м2: при мощности радиатора 180 ватт получается A = 20×100÷180, то есть 11,11. То есть потребуется использование 11 или 12 секций. Однако слишком широкие биметаллические радиаторы отопления теряют свою эффективность, поэтому рекомендуется вместо одной сплошной батареи использовать две поменьше.
Особенности установки
Отопительная система состоит из труб, соединяющих между собой отдельные радиаторы. Для их фиксации обычно применяют точечную сварку. Эту работу желательно доверить квалифицированным сантехникам, способным реализовать всю процедуру в кратчайшие сроки и без особых нарушений внутренней отделки. Если имеются достаточные навыки и необходимый инструмент, установить биметаллические радиаторы можно самостоятельно, главное — четко следовать инструкции по монтажу.
По отзывам специалистов, наиболее оптимальный вариант труб для соединения батарей этого типа – полипропиленовые изделия, где в качестве армирования используется стекловолокно или алюминий. Особенно удобны в этом отношении трубы с глубоким залеганием алюминиевого армирования, так как для их обработки не потребуется шейвер. В результате заметно сокращается длительность процедуры монтажа. Что касается стальных или металлопластиковых труб, то их используют реже, по причине часто возникающих протечек.
Перед установкой новых батарей, выполняют демонтаж старых и делают подготовку рабочей зоны. В эту процедуру входит отсоединение труб от стояка, разметка места новых соединений и изготовление отверстий под кронштейны. Дистанция от пола до нижней поверхности устанавливаемого радиатора выбирается в пределах 60-12 мм: при нарушении этой рекомендации будет наблюдаться снижение энергоэффективности. Зазор между задней поверхностью и стеной оставляют примерно 20 мм, а между подоконником и верхней кромкой батареи – не менее 50 мм. Это позволяет создать условия для хорошей конвекции нагретого воздуха.
Чаще всего установка радиаторов выполняется в горизонтальном положении, по центру окна. Если в комнате уже имеются другие батареи, новую нужно монтировать на одном уровне с ними. Нанеся разметку строительным уровнем, в стене делают отверстия под кронштейны. Для их крепления используются дюбель-гвозди и цементный раствор. Важно зафиксировать кронштейны таким образом, чтобы добиться свободного прохода крюков между горизонтальными пластинами. Это станет залогом надежного крепления батареи к стене.
Перед началом монтажа на биметаллический радиатор нужно установить кран Маевского, который позволит стравливать излишки воздуха, а также переходники и фитинги на соединительных участках. После этого на вводный стояк монтируются специальные краны и трубы, соединяющие батарею со стояком.
Варианты подключения к отопительной системе
Основные схемы подключения радиаторов:
- Односторонняя (боковое подключение). В этом случае подводящая труба соединяется с верхним патрубком обогревательного прибора, а отводящая – с нижним. Уровень теплопотерь в таком случае обычно не превышает 2%.
- Нижняя. Позволяет скрывать подводящую трубу в напольную поверхность. Здесь подача и обратка монтируются с обратных сторон батареи, на нижние патрубки. За большую эстетичность нижней схемы приходится платить более внушительными теплопотерями (до 12%).
- Диагональная. Таким образом рекомендуется подключать радиаторы с большим числом секций. Труба подачи здесь подсоединяется на один из верхних боковых патрубков, а обратка – на нижний отвод с другой стороны.
По завершению установки радиатора система заполняется водой. При этом стабилизирующий кран рекомендуется закрыть на 2/3, чтобы не допустить гидравлический удар.
Правила эксплуатации
Для чистки биметаллических радиаторов запрещается использовать порошки и абразивные материалы. Дело в том, что это может повредить их двухслойное декоративное покрытие, состоящее из термостойкой краски. Перекрашивание систем данного типа обычно может потребоваться раз в десять лет, закрашивать термостат нельзя.
Основные разновидности биметаллических радиаторов
На биметаллические изделия любого типа необходимо требовать сертификацию в точках продажи.
В процессе выборе биметаллических радиаторов отопления для квартиры следует учитывать:
- Производителя биметаллических радиаторов отопления. Самые низкие цены на китайскую и российскую продукцию. Это объясняется применением в них упрощенных конструкций и более дешевых материалов. Все это негативно сказывается на уровне рабочего давления и внешнем оформлении биметаллических радиаторов.
- Ценовая категория. Обогревающие изделия ценой 15-20 долларов за секцию обычно изготовляются итальянской компанией Global и российской RIFAR. Какие биметаллические радиаторы отопления лучше – итальянские: внешний вид этой продукции на порядок красивее китайских образцов. Обычно они декорированы снежно-белым или кремовым покрытием. На отдельных моделях имеются воздухоотводчики и термостаты. Их наличие следует уточнять перед тем, как выбрать биметаллический радиатор для квартиры. Встречаются также и другие конструкционные нюансы, оказывающие некоторое влияние на производительность и надежность батарей. Товары данной ценовой категории зарекомендовали себя с очень хорошей стороны за годы эксплуатации на отечественном рынке. Об этом свидетельствуют многочисленные положительные отзывы. Читайте также: «Как выбрать биметаллические радиаторы отопления – советы и рекомендации по выбору».
Особая линейка биметаллических радиаторов RIFAR MONOLIT разработана для эксплуатации в отопительных системах со значительным давлением (до 100 атмосфер). Иногда конструкционные особенности системы требуют применения не прямых, а закругленных линий. В таком случае рекомендуется обратить внимание на серию RIFAR FLEX, которая отличается хорошим качеством и интересным дизайном. В некоторых случаях потребуется применять радиаторы с медными сердечниками, которые отлично противостоят коррозии. Наиболее качественная продукция данного типа выпускается компанией PILIGRIM, она входит в ТОП биметаллических радиаторов.
Радиатор биметалл. Termica-Biterm 500/80 -20 bar
Техническиие характеристики радиатора Высота — 560 мм, Глубина — 75 мм, Ширина — 75 мм, Межосевое расстояние — 500 мм, Материал — биметалл (алюминий+сталь)
В биметаллическом радиаторе применяются два металла — сталь и алюминий.
Стальной сердечник усиливает конструкцию биметаллических радиаторов.
Стальная начинка биметаллических радиаторов «спокойнее» других реагирует на щелочность воды (ph-фактор).
Поверхностный слой — алюминий обладает высокой теплопроводностью, что существенно улучшает теплоотдачу биметаллического радиатора и уменьшает его инертность.
Технология производства — литьё под давлением.
Описание конструкции
Оригинальность конструкции биметаллического радиатора в том, что он состоит из прочного и стойкого к электрохимической коррозии стального трубопроводного каркаса (скелета), оребренного снаружи высококачественным алюминием сплавом методом литья под высоким давлением.
При этом образуется монолитное соединение, исключающее возможность контакта алюминия с водой, а значит и коррозии. Гарантирована стойкость конструкции при резких сверхнормативных скачках давления в системе на протяжении всего срока службы, чего не выдерживает ни один алюминиевый и чугунный радиатор.
Радиаторы адаптированы к любым системам отопления жилых и производственных помещений с рабочим давлением в системе до 20 атм. Эти радиаторы не требуют специальной подготовки воды (очистки, снижение кислотности, щелочности), в отличие от западных аналогов (алюминиевые радиаторы).
Применение
Вас интересует как выбрать радиаторы отопления и где они применяются?
Наши радиаторы отопления используют в офисных, производственных и вспомогательных помещениях многие коммерческие, производственные, общественные и культурные организации практически из всех регионов Украины. Высоким спросом пользуются радиаторы и у населения — их надёжность, высокая функциональность, современный дизайн и, наряду с этим, невысокая стоимость, делают их бесспорными фаворитами на украинском рынке отопительных систем.
У нас вы сможете найти самые современные радиаторы отопления а также заказать монтаж радиаторов отопления.
Произошла ошибка при настройке пользовательского файла cookie
Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.
Настройка вашего браузера для приема файлов cookie
Существует множество причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:
- В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
- Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, нажмите кнопку «Назад» и примите файлы cookie.
- Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
- Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
- Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.
Почему этому сайту требуются файлы cookie?
Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.
Что сохраняется в файле cookie?
Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.
Как правило, в файлах cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.
Произошла ошибка при настройке пользовательского файла cookie
Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.
Настройка вашего браузера для приема файлов cookie
Существует множество причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:
- В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
- Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, нажмите кнопку «Назад» и примите файлы cookie.
- Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
- Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
- Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.
Почему этому сайту требуются файлы cookie?
Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.
Что сохраняется в файле cookie?
Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.
Как правило, в файлах cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.
Произошла ошибка при настройке пользовательского файла cookie
Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.
Настройка вашего браузера для приема файлов cookie
Существует множество причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:
- В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
- Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, нажмите кнопку «Назад» и примите файлы cookie.
- Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
- Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
- Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.
Почему этому сайту требуются файлы cookie?
Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.
Что сохраняется в файле cookie?
Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.
Как правило, в файлах cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.
Произошла ошибка при настройке пользовательского файла cookie
Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.
Настройка вашего браузера для приема файлов cookie
Существует множество причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:
- В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
- Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, нажмите кнопку «Назад» и примите файлы cookie.
- Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
- Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
- Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.
Почему этому сайту требуются файлы cookie?
Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.
Что сохраняется в файле cookie?
Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.
Как правило, в файлах cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.
Синтез биметаллически-органического каркаса на основе MIL-101 и приложения для литий-ионных аккумуляторов
Z.Y. Ван, Л. Чжоу, X.W. Лу, Полые наноструктуры из оксидов металлов для литий-ионных аккумуляторов. Adv. Матер. 24 , 1903–1911 (2012)
CAS Статья Google Scholar
Дж. Чен, Л. Сюй, В. Ли, Х. Гоу, α-Fe 2 O 3 нанотрубок в датчиках газа и литий-ионных аккумуляторах.Adv. Матер. 17 , 582–586 (2005)
CAS Статья Google Scholar
Н. Шарма, С. Шунериц, Р. Бухерроуб, Р. Йе, С. Огале, Прочный анод литий-ионной батареи с двумя лигандами на основе Fe-MOF и его использование в гибком формате батареи для электротермическое отопление. Acs Appl. Energy Mater. 2 , 4450–4457 (2019)
CAS Статья Google Scholar
B.J. Zhu, Z.B. Лян, Д. Xia, R.Q. Цзоу, Металлоорганические каркасы и их производные для металло-воздушных батарей. Материя хранения энергии. 23 , 757–771 (2019)
Статья Google Scholar
Y. Bai, M. Zeng, X. Wu, Y.Q. Чжан, Дж. Цзянь Ву Вэнь, Ли, Трехмерные каркасные композиты Si @ ZIF-67 ядро-оболочка для высокопроизводительного хранения лития. Прил. Серфинг. Sci. 510 , 145477 (2020)
КАС Статья Google Scholar
X. Li, H. Guo, Z. Wang, Z. Yu, Полый композит Si / C в качестве анодного материала для литий-ионных аккумуляторов с высокими рабочими характеристиками. Пудра Технол. 299 , 178–184 (2016)
Статья Google Scholar
J.W. Шин, М. Ким, Дж. Сирера, С. Чен, Г.Дж. Гальдер, Т. Ерсак, Ф. Пэсани, С.М. Коэн, Ю. Мэн, MIL-101 (Fe) в качестве материала электрода литий-ионной батареи: механизм релаксации и интеркаляции во время введения лития.J. Mater. Chem. А 3 , 4738–4744 (2015)
CAS Статья Google Scholar
P.L. Таберна, С. Митра, П. Пуазот, П. Саймон, Дж. М. Тараскон, Высокоскоростные возможности Fe 3 O 4 Наноархитектурные электроды на основе Cu на основе для литий-ионных аккумуляторов. Nat. Матер. 5 , 567–573 (2006)
CAS Статья Google Scholar
G.T. Цинь, Л. Дин, М. Цзэн, К.Б. Чжан, Ю. Чжан, Бай Ю., Дж. У. Вен, Дж. Ли, мезопористый Fe 2 O 3 / N-легированный графеновый композит в качестве анодного материала для литий-ионных батарей со значительно улучшенными электрохимическими характеристиками. J. Electroanal. Chem. 866 , 114176 (2020)
КАС Статья Google Scholar
Ю. Ван, Д. Су, А. Унг, Дж. Х. Ан, Г. Ван, Hollow CoFe 2 O 4 наносфер в качестве анодного материала большой емкости для литий-ионных батарей.Нанотехнологии 23 , 055402 (2012)
CAS Статья Google Scholar
П. Лавела, Дж. Л. Тирадо, CoFe 2 O 4 и NiFe 2 O 4 синтезированы золь-гель методами для их использования в качестве анодных материалов для ионно-литиевых батарей. J. Источники энергии 172 , 379–387 (2007)
CAS Статья Google Scholar
L. Wu, Q. Xiao, Z. Li, G. Lei, P. Zhang, L. Wang, CoFe 2 O 4 Композитные волокна / C в качестве анодных материалов для литий-ионных батарей со стабильными и высокими электрохимическими характеристиками. представление. Ион твердого тела. 215 , 24–28 (2012)
CAS Статья Google Scholar
Z.H. Ли, Т. Чжао, X.Y. Чжан, Д.С. Гао, Q.Z. Сяо, Г. Lei, Трехмерный упорядоченный макропористый CoFe высокой емкости 2 O 4 в качестве анодного материала для литий-ионных батарей.Электрохим. Acta 55 , 4594–4598 (2010)
CAS Статья Google Scholar
R.K. Сельван, Н. Калайселви, С.О. Августин, Ч. Дох, К. Сандживираджа, CuFe 2 O 4 / SnO 2 нанокомпозитов в качестве анодов для литий-ионных аккумуляторов. J. Источники энергии 157 , 522–527 (2006)
Статья Google Scholar
г.Qin, X. Wu, J. Wen, J. Li, M. Zeng, структура NiFe ядро-оболочка 2 O 4 @SiO 2 в качестве высокоэффективного анодного материала для литий-ионных аккумуляторов. ХимЭлектроХим 6 , 911–916 (2019)
CAS Статья Google Scholar
К. Чанг, В. Чен, Синтез на месте композитов MoS 2 / графен с нанолистами с чрезвычайно высокими электрохимическими характеристиками для литий-ионных аккумуляторов.Chem. Commun. 47 , 4252–4254 (2011)
CAS Статья Google Scholar
G.T. Цинь, М. Цзэн, X. Ву, Дж. Вен, Дж. Ли, Изготовление Fe 2 O 3 @TiO 2 наносфер ядро-оболочка в качестве анодных материалов для литий-ионных аккумуляторов. J. Mater. Sci.-Mater. Эл. 29 , 12944–12950 (2018)
CAS Статья Google Scholar
Лей, Хэ, Яньань, Донг, Яне, Чжэн, Цинмин, Цзя, Шаоюнь, Новый магнитный композит MIL-101 (Fe) / TiO 2 для фотодеградации тетрациклина под солнечным светом. J. Hazard. Матер. 361 , 85–94 (2019)
Статья Google Scholar
Y. Yao, M.T. Макдауэлл, И. Рю, Х. Ву, Н. Лю, Л. Ху, У. Д. Никс, Ю. Цуй, Связанные между собой кремниевые полые наносферы для анодов литий-ионных батарей с длительным сроком службы.Nano Lett. 11 , 2949–2954 (2011)
CAS Статья Google Scholar
X. Wu, M. Zeng, J.W. Вен, Дж. Ли, Электрохимические исследования MgFe 2 O 4 @TiO 2 наносфер ядро-оболочка в качестве материала анода для литиевых батарей. J. Mater. Sci.-Mater. Эл. 29 , 17872–17880 (2018)
CAS Статья Google Scholar
Х. Ю, Х. Фан, Б. Ядян, Х. Тан, К. Ян, Общий подход к полученной из MOF пористой шпинели AFe 2 O 4 полых структур и их превосходных свойств хранения лития. Acs Appl. Energy Mater. 7 , 26751 (2015)
CAS Статья Google Scholar
K.Y. Донг, С. Су, Г. Papaefthymiou, J.Y. Инь, Архитектура наночастиц по шаблону SiO 2 / Fe 2 O 3 нанокомпозитов.Chem. Матер. 18 , 614–619 (2006)
Артикул Google Scholar
H.B. Ли, Дж. Я. Чен, М. Лю, М. Фэн, Дж. Хуа, Получение и характеристика нанокомпозитов CoFe 2 O 4 / SiO 2 . Chem. J. Chin. Univ. 28 , 614–616 (2007)
Google Scholar
Х. Чен, З. Хэ, З. Хуанг, Л. Сун, К. Шен, Дж.Лю, Эффекты многофункционального покрытия на богатом литием катодном материале с полой сферической структурой для литий-ионных аккумуляторов. Ceram. Int. 43 , 8616–8624 (2017)
CAS Статья Google Scholar
Дж. Ван, Г. Ян, Л. Ван, В. Ян, В. Вэй, C @ CoFe 2 O 4 мезопористая наноструктура типа «волокно в трубке»: механизм образования и высокие электрохимические характеристики как анод для литий-ионных аккумуляторов.J. Соединение сплавов. 693 , 110–117 (2017)
CAS Статья Google Scholar
С. Баламуруган, Н. Нареш, И. Пракаш, Н. Сатьянараяна, Аддитивное влияние ионов и электронов на литий-ионные характеристики накопления заряда CuFe 2 O 4 / SiO 2 композитный аэрогелевый анод. Cerm. Int. 46 , 25330–25340 (2020)
CAS Статья Google Scholar
Границы | Последние достижения в области биметаллических сульфидных анодов для ионно-натриевых батарей
Введение
В последние годы ископаемое топливо чрезмерно эксплуатировалось в качестве основного источника энергии для промышленности и повседневной жизни людей во всем мире.В то же время риски нехватки ресурсов и загрязнения окружающей среды из-за сжигания ископаемого топлива привели к развитию исследований и применению возобновляемых источников энергии. В начале 1990-х годов LIB стали важным источником питания в различных электронных устройствах с момента их первой коммерциализации Sony. С ростом спроса на чистую энергию LIB стала одной из самых незаменимых технологий хранения энергии (Maleki Kheimeh Sari and Li, 2019; Su et al., 2020). Однако ограниченные ресурсы лития и высокая стоимость Li препятствовали крупномасштабному применению LIB. Поэтому очень важно изучить нового кандидата в качестве альтернативы этому типу батарей (Che et al., 2017; Hwang et al., 2017; Kang et al., 2017; Ortiz-Vitoriano et al. , 2017; Xiao et al., 2017; Fan, Li, 2018).
В последние годы SIB привлекли большое внимание из-за сходства между Na и Li с точки зрения химических / электрохимических свойств.Кроме того, натрий является четвертым по распространенности металлическим элементом после алюминия, железа и кальция, который равномерно распределен в земной коре (Yu and Chen, 2020). Кроме того, из-за обильных и дешевых ресурсов Na, SIB считались одними из наиболее многообещающих кандидатов для крупномасштабных систем хранения возобновляемой энергии для хранения электроэнергии от солнца, ветра и волн (Palomares et al., 2012; Kim et al. ., 2015; Kundu et al., 2015; Fan et al., 2016). Однако между этими двумя элементами все еще есть много различий.Как показано в Таблице 1, натрий имеет больший ионный радиус (1,02 Å), чем у Li (0,76 Å), который тяжелее атома, а также более высокий стандартный электродный потенциал (Slater et al., 2013; Chen J. et al. al., 2017; Meng, 2017; Xiao et al., 2017; Fang Y. et al., 2018; Wang et al., 2018). Хотя SIB уступают LIB с точки зрения плотности энергии и скорости заряда-разряда, Li и Na составляют лишь часть всего электрода, а емкость в значительной степени зависит от характеристик активных материалов.Таким образом, исследование анодов с исключительными свойствами для усовершенствованных SIB является ключевым моментом в разработке этой технологии, которая действительно сопряжена со многими проблемами (Li and Wang, 2012; Cao et al., 2017; Lin et al., 2018; Xiong et al. , 2018). В общем, хорошо спроектированные наноструктурные материалы могут сократить пути диффузии ионов и электронов, а также уменьшить механическое напряжение, вызванное большим объемным расширением. Кроме того, по сравнению с анодными материалами на основе углерода (например, пористым углеродом, углеродными нановолокнами, легированными азотом) (Lai et al., 2012; Kong et al., 2014; Xiao et al., 2014, 2017), металлические составные материалы обладают более высокой теоретической удельной емкостью из-за их превосходного механизма электрохимического преобразования (Yang et al., 2015; Yu et al., 2015; Chen Y. et al., 2016; Wu et al., 2016; Yu XY. Et al., 2016; Wen et al., 2017). Например, многие однослойные оксиды переходных металлов (MOs-NiO 2 , FeO 2 , TiO 2 , MnO 2 и т. Д. Xia et al., 2014; Yu DJ et al., 2016) были широко изучены в качестве материалов для хранения Na.NiO 2 показал обратимую емкость около 123 мАч g -1 с небольшой поляризацией. Однослойный FeO 2 показал наибольшую обратимую емкость (до 80 мАч g -1 ) при высоком напряжении отсечки 3,5 В. При использовании в качестве электродного материала в SIB TiO 2 также показал отличные сохранение емкости (снижение емкости на 25% за 1200 циклов). Действительно, MnO 2 был синтезирован простой окислительно-восстановительной реакцией и методом гидротермальной обработки, и была получена большая разрядная емкость 219 мАч г -1 .Jiang et al. разработали тонкую пленку Fe 2 O 3 в качестве анода для SIB с постоянной емкостью 380 мАч g -1 после 200 циклов. Однако оксиды металлов (МО) имеют ряд недостатков, связанных с их низкой электропроводностью и электрохимической активностью (Du et al., 2015; Zhu et al., 2015; Yu and David Lou, 2018).
Таблица 1 . Сравнение Ли и На.
Среди различных анодных материалов, описанных для SIB, сульфиды металлов (MS) привлекли большое внимание из-за их обратимости окислительно-восстановительных реакций, превосходной емкости и более высокой проводимости по сравнению с MO.Связь МС в МС более слабая, чем связь гомологичных МО в МО из-за разной электроотрицательности S и O, что облегчает химические реакции во время заряда-разряда (Li et al., 2015; Yu XY. Et al., 2016; Zheng et al. ., 2017). Например, нанолисты MoS 2 в качестве анодного материала в SIB показали хорошую зарядно-разрядную емкость 386 мАч g -1 . Однако МС страдают от серьезных проблем, таких как увеличение объема во время процесса введения / экстракции Na + , медленная кинетика диффузии Na + и плохая электропроводность, что может привести к некоторым дефектам, сопровождающимся потерей емкости, малым сроком службы и т.д. и неприемлемые показатели скорости.Известно, что многие исследования улучшают электрохимические характеристики этих анодных материалов за счет разумной конструкции конструкции (Zhou Q. et al., 2016; Hwang et al., 2017).
Наряду с МС, BMS также стали горячей темой, поскольку анодные материалы SIB с точки зрения их высокой электронной проводимости, хорошей электрохимической активности и сильной электрохимической управляемости (Li et al., 2013; Youn et al., 2016; Li Y. et al. ., 2017; Tang et al., 2017). Пока что BMS с разной морфологией и структурой (например,g., нанолисты, нанопластинки, нанотрубки, полые сферы типа «шарик в шарике», наночастицы и структуры, похожие на ежей) были описаны как высокоэффективные аноды в LIB (Chen T. et al., 2016; Li et al., 2016 ; Ma et al., 2016). К настоящему времени существует ряд замечательных работ по применению BMS в качестве анодных материалов в LIB. Синергетический эффект между BMS с более высокой теоретической емкостью и оптимизированной наноструктурой может более эффективно поддерживать механическую стабильность по сравнению с MO и MS (Lai et al., 2012; Kong et al., 2014; Чен Ю. и др., 2016; Wu et al., 2016). Одним из примеров является композит 0D / 1D C @ FeCo-S NDS / CNR, полученный гидротермальным методом (Gao et al., 2017), или порошки Fe-Ni-S со структурой желток-оболочка и (Ni 0,3 Co 0,7 ) 9 S 8 Композит / N-CNT / rGO со сверхвысокой длительной циклической стабильностью и выдающимися характеристиками скорости в качестве анода для SIB. Причина может быть связана с их меньшим изменением объема и более высокой начальной кулоновской эффективностью (ICE), что приводит к низкой необратимой емкости (Kim and Kang, 2017).Ли и его коллеги подготовили NiCo 2 S 4 с углеродом, легированным азотом, который служил анодным материалом для SIB, используя восходящую стратегию и, регулируя оптимальную область напряжения, выдающую емкость 570 мАч г -1 за 200 циклов при 0,2 A g −1 (Li S. et al., 2019).
Более того, BMS обладают более высокой электронной проводимостью и более многочисленными окислительно-восстановительными реакциями, чем одиночные MS, что может значительно улучшить электрохимические характеристики.Однако существует лишь несколько обзоров, посвященных анодам на основе BMS для SIB (Yan et al., 2014; Fan et al., 2016; Chang et al., 2017). В этом обзоре систематически обсуждаются последние достижения анода BMS в SIB, различные стратегии синтеза и их механизмы накопления натрия, а также их ограничения. В конце представлены существующие проблемы и возможности для разработки высокоэффективных анодов BMS для SIB.
Механизм хранения натрия
Благодаря высокой теоретической удельной емкости и низкой стоимости BMS были подходящим классом анодных материалов как для LIB, так и для SIB (Duan et al., 2019). При использовании в SIB, BMS могут резервировать Na + через специальный механизм. В некоторых случаях процесс интеркаляции / деинтеркаляции или реакция удаления сплава происходит в процессе заряда-разряда, который зависит от BMS (Li Z. et al., 2017; Yan et al., 2017).
Как правило, в процессе первого разряда BMS (например, NiCo 2 S 4 (Zhang et al., 2018), CuCo 2 S 4 (Gong et al., 2018; Li Q. et al., 2018) др., 2019), Ti 0.25 Sn 0,75 S 2 (Huang et al., 2018) и ZnSnS 3 Jia et al., 2018; Liu et al., 2019), Na + интеркалируется в BMS, после чего происходит обратимая реакция превращения (Li S. et al., 2019). Принцип корреляционной реакции аналогичен принципу LIBs. Тем не менее, есть некоторые различия в процессе реакции между SIB и LIB (Stephenson et al., 2014; Zhang et al., 2014). Первый процесс восстановления приписывается интеркаляции Na + в BMS без какого-либо фазового превращения, уравнение (1).В том же цикле происходят реакции превращения, как показано в уравнениях (2) и (3), которые обеспечивают впечатляющую способность вызывать структурную нестабильность (Jin et al., 2015; Song et al., 2017; Li S. et al. , 2019).
MSx + xNa ++ xe- → NaxMSx (1) NaxMSx + (2-x) Na ++ (2-x) e- → MS + Na2S (2) МС + 2Na ++ 2e- → M + Na2S (3)В качестве другого типа механизма накопления Na, ZnSnS 3 используется в качестве анода для SIB, Na + внедряется в слоистую структуру в начальном процессе содирования.В течение всего электрохимического процесса происходит комбинированный механизм преобразования и механизм удаления легирования сплава. Соответствующую реакцию можно изобразить следующим образом (например, ZnSnS 3 ): (Fu et al., 2015; Qin et al., 2016b; Dong et al., 2017; Deng et al., 2018; Zhang Y. et al. др., 2019).
Реакция превращения: ZnSnS3 + 6Na ++ 6e- → Sn + Zn + 3Na2S (4) Реакция легирования: 4Sn + 13Zn + 16Na ++ 16e- → Na15Sn4 + NaZn13 (5)Важно отметить, что во время электрохимического процесса электродов BMS (M = Zn, Co) обязательно должны происходить реакции превращения, и можно предположить следующие уравнения реакций, NiCo 2 S 4 можно использовать в качестве примера, в то время как Na x MS y является промежуточным продуктом реакции интеркаляции:
Разряд: MSx + xNa ++ xe- → NaxMSx (M = Ni / Co) 3.0-1,3 В (6) NaxMSx + (2-x) Na ++ (2-x) e- → MS + Na2S 1,3-0,6 В (7) МС + 2Na ++ 2e- → M + Na2S 0,6-0,1 В (8) NiCo2S4 + 8Na ++ 8e- → 4Na2S + Ni + 2Co 3,0-0,1 В (9) Заряд: Ni + Na2S → NiSx + 2Na 0,1-0,7 В (10) Co + Na2S → CoSx + 2Na1.7-3.0В (11) 2Na2S + Ni + Co → NiSx + CoSx + 4Na 0,1-3,0 В (12)Синтез БМС с наноструктурами
Сольвотермальные методы
Являясь недорогим и экологически безопасным методом синтеза, сольвотермическая реакция эффективна для синтеза различных наноматериалов с разной морфологией, полными кристаллическими частицами, небольшими размерами частиц, однородным распределением, контролируемой стехиометрией и высокой кристалличностью.Благодаря указанным выше достоинствам сольвотермический метод получил широкое распространение при синтезе новых структур и материалов. В последние десятилетия этот метод часто использовался для получения материалов на основе оксидов и серы с идеальной структурой и контролируемым размером для SIB. В последние годы успешно синтезированы БМС различной морфологии сольвотермическим методом. Например, NiCo 2 S 4 наноточек с углеродом, легированным N (NiCo 2 S 4 @NC) (Li S.et al., 2019), NiCo 2 S 4 полая призма, обернутая восстановленным оксидом графена (RGO) (Zhang et al., 2018), N / S-rGO @ ZnSnS 3 аморфный ZnSnS 3 @ rGO (Liu et al., 2019), ((Ni 0,3 Co 0,7 ) 9 S 8 / N-CNT / rGO) (Lv et al., 2018), (Co 0,5 Ni 0,5 ) 9 S 8 / NC) наночастиц (Cao et al., 2019), наночастиц CuCo 2 S 4 / rGO (Li Q. et al., 2019) и т. Д.Эти наноструктурированные материалы, синтезированные с помощью сольвотермического метода, обладают высокой управляемостью, отличными электрохимическими характеристиками, быстрыми ионами и путями переноса электронов, а также выдающимися скоростными характеристиками (Zhao and Manthiram, 2015; Liu et al., 2017; Jia et al., 2018; Chen et al. ., 2019).
Новый тип композиционного материала NiCo, обернутого иерархическим RGO 2 S 4 , был синтезирован группой Инь путем кипячения с обратным холодильником и сольвотермических реакций. Как показано на рисунках 1A – C, изображения SEM показывают, что нанопризмы NiCo 2 S 4 с однородным размером плотно поглощаются отрицательно заряженными нанолистами оксида графена из-за электростатических взаимодействий между ними (Zhang et al., 2018). (Ni 0,3 Co 0,7 ) 9 S 8 Наночастицы / N-CNT / rGO были также получены путем плотного роста in-situ на rGO, как показано на рисунке 1D (Lv et al., 2018). Chen et al. синтезировал фонарную архитектуру Ti 0,25 Sn 0,75 S 2 с композитом MWCNTs с помощью гидротермального метода (рис. 1E) (Huang et al., 2018). В частности, уникальная архитектура с обильными порами и большой площадью поверхности может не только сократить путь прохождения Na + , но и зарезервировать большое пространство для увеличения объема.Группа Лю впервые разработала полые наномикрокубы ZnSnS 3 с инкапсулированным N / S с двойным легированием rGO (подаренным как N / S-rGO @ ZnSnS 3 ). В процессе приготовления прекурсор ZnSn (OH) 6 кубиков был успешно синтезирован с помощью простого метода соосаждения. После этого предшественник был смешан с Na 2 S, тиомочевиной и дисперсией GO, и, наконец, материал N / S-rGO @ ZnSnS 3 был получен посредством типичной гидротермальной реакции (Рисунок 1F) (Liu et al., 2019). Все вышеупомянутые эксперименты проводились по двухэтапному методу. Тем не менее, недавно нанокомпозиты CuCo 2 S 4 / rGO были получены группой Чжао с помощью одностадийного сольвотермического метода, как схематически показано на рисунке 1G (Gong et al., 2018). Ян и др. также синтезировал анодный материал SIB без связующих с иерархической гибридной наноструктурой, которая состояла из массивов нанолистов NiMo 3 S 4 , выращенных на гибких углеродных тканях (обозначенных как NiMo 3 S 4 / CTs) в один этап. гидротермальный метод и последующий процесс после отжига (рис. 1H) (Kong et al., 2018).
Рис. 1. (A – C) СЭМ-изображения прекурсора NiCo, NiCo 2 S 4 и rGO-NiCo 2 S 4 , соответственно. Воспроизведено с разрешения Zhang et al. (2018) Авторское право 2018, Королевское химическое общество. (D) Схематическое изображение получения (Ni 0,3 Co 0,7 ) 9 S 8 / N-CNT / rGO. Воспроизведено с разрешения Lv et al. (2018) Авторское право 2018, Королевское химическое общество. (E) СЭМ-изображения фонарных частиц Ti 0,25 Sn 0,75 S 2 микрочастиц. Воспроизведено с разрешения Huang et al. (2018) Авторские права 2018, Elsevier. (F) Схематическое изображение процесса получения ZnSnS 3 и N / S-rGO @ ZnSnS 3 . Воспроизведено с разрешения Liu et al. (2019) Авторские права 2019, Elsevier. (G) Схематическое изображение образования CuCo 2 S 4 / rGO.Воспроизведено с разрешения Gong et al. (2018) Авторские права 2018, Elsevier. (H) Схематическая иллюстрация синтеза трехмерных иерархических NiMo 3 S 4 массивов нанолистов на гибких углеродных тканях. Воспроизведено с разрешения Kong et al. (2018) Авторские права 2018, Elsevier.
Кроме того, нанолисты VMo 2 S 4 -rGO (Zhang K. et al., 2019), наночастицы ZnSnS 3 @rGO (Jia et al., 2018), Cu 2 MoS 4 наночастиц (Чен и др., 2019), CuCo 2 S 4 субмикросфер (Li Q. et al., 2019) и нанобоксы CoSnS x @NC (Liu et al., 2017) были успешно получены с использованием аналогичного подхода. .
Распылительный пиролиз
Пиролиз распылением — популярный метод получения BMS с малым размером частиц и хорошей дисперсией. Действительно, пиролиз распылением — это метод обработки, который рассматривается во многих исследованиях для получения тонких и толстых пленок, керамических покрытий и порошков. Он предлагает чрезвычайно простой подход для приготовления образцов любого состава.По сравнению с другими методами осаждения, пиролиз распылением представляет собой очень простой и относительно недорогой способ обработки.
Например, полая сфера Ni 3 Co 6 S 8 -rGO с пластинчатыми нанокристаллами никель-кобальтового сульфида (Ni 3 Co 6 S 8 ), равномерно распределенными на смятом Структура rGO (рис. 2A) путем пиролиза распылением была приготовлена в качестве анода для SIB. Небольшие пластинчатые нанокристаллы Ni 3 Co 6 S 8 были встроены в rGO, в результате чего образовался трехмерный полый взаимосвязанный нанокомпозит (рис. 2B) (Choi and Kang, 2015a).Кроме того, порошок твердого раствора со структурой желток (Fe 0,5 Ni 0,5 ) 9 S 8 был приготовлен той же группой посредством процесса пиролиза распылением в одной емкости в качестве анода для SIB. В результате были достигнуты отличные электрохимические характеристики. Схематические диаграммы процесса подготовки показаны на рисунках 2C, D (Kim and Kang, 2017).
Рис. 2. (A) Схематическое изображение механизма образования порошка Ni 3 Co 6 S 8 -rGO. (B) ПЭМ-изображение композитного порошка Ni 3 Co 6 S 8 -rGO. Воспроизведено с разрешения Choi and Kang (2015a) Copyright 2015. Королевское химическое общество. (C) Схематические диаграммы для приготовления безуглеродистых порошков Fe – Ni – O (D) процессом сульфидирования. Воспроизведено с разрешения (Kim and Kang, 2017) Copyright 2017, Tsinghua University Press. (E) Схематическое изображение синтеза (SnCo) S 2 / SG.Воспроизведено с разрешения Yang et al. (2019) Авторские права 2019. Wiley-VCH.
Основным преимуществом этого метода является то, что материалы электродов BMS могут быть синтезированы только в одну стадию и без каких-либо дополнительных обработок.
Метод соосаждения
Метод соосаждения использовался в последние годы для получения гомодисперсных наноструктурных материалов BMS в SIB. Доказано, что этот метод обладает выдающимися достоинствами, такими как легкое получение наноматериалов с высокой фазовой чистотой и получение нанопорошков с контролируемым размером частиц и однородным распределением.
Используя метод соосаждения, Yang et al. сообщили о разновидности нанокубов (SnCo) S 2 / rGO (рис. 2E) (Yang et al., 2019). Кроме того, Оу и его коллеги синтезировали нанобоксы MnSn (OH) 6 сначала посредством прямого процесса соосаждения, затем SnS 2 / Mn 2 SnS 4 нанобокса / C (SMS / C) были приготовлено влажно-химическим методом для лица. В качестве анодного материала для SIB электрод SMS / C может иметь высокий ICE 90.8%, отличная способность выдерживать нагрузку (488,7 мАч г -1 при 10 А г -1 ) и стабильность при длительном цикле (522,5 мАч г -1 при 5 А г -1 сохраняется после 500 циклов) ( Ou et al., 2019).
Благодаря своим преимуществам, простоте эксплуатации, низкой стоимости и меньшему времени синтеза, метод соосаждения широко используется для получения BMS в качестве анодных материалов для SIB.
Другие методы
В дополнение к вышеупомянутым методам синтеза, все большее количество высокоэффективных способов было исследовано для получения BMS с различными структурами.Например, группа Sun сообщила о губчатом композите (ZnxCo 1-x S QD @ HCP) @rGO посредством одновременного термического сульфидирования, карбонизации и восстановления. Полученные квантовые точки (QD) ZnxCo 1 − x S были равномерно распределены на мезопористой полоуглеродной полиэдрической (HCP) матрице и покрытии rGO с большой удельной поверхностью, обозначенном как [ZnxCo 1 − x S QD @ HCP] @rGO (Рисунки 3A, B) (Chen Z. et al., 2017; Hwang et al., 2017). Используя метод твердофазной реакции, Кренгель синтезировал частицы CuV 2 S 4 с широким распределением по размерам от 5 до 50 мкм (рис. 3C).Полученные продукты обеспечивали превосходную стабильность при циклическом воздействии 580 мАч. -1 сохранялась после 500 циклов при 0,7 А г -1 и относительно высоком ICE 72,5% (Qin et al., 2016a; Xu et al., 2016 ; Zhou J. et al., 2016; Krengel et al., 2017).
Рис. 3. (A, B) СЭМ-изображения композитов [Zn x Co 1-x S QD @ HCP] @rGO. Воспроизведено с разрешения Chen Z. et al. (2017) Copyright 2017. Wiley-VCH. (C) SEM-изображение CuV 2 S 4 .Воспроизведено с разрешения Krengel et al. (2017) Copyright 2017. Американское химическое общество.
С развитием новых методов синтеза наноматериалов с уникальной структурой в EES было применено множество BMS с высокоэффективной наноструктурой. Сравнение структурных свойств, методов синтеза и S-ресурса BMS приведено в таблице 2.
Таблица 2 . Сравнение структурных свойств, методов синтеза и S-ресурса BMS.
Как уже упоминалось, наноматериалы, полученные сольвотермическим методом, характеризуются хорошей морфологией кристаллов, контролируемым нанометровым размером и высокой чистотой. Однако масштабирование производства может оказаться затруднительным. В результате струйного пиролиза получаются порошковые материалы с достоинствами небольшого нанометрового размера и однородной дисперсии, но этот многообещающий метод требует специального оборудования со сложной работой. Несмотря на некоторые преимущества, заключающиеся в простоте эксплуатации, низкой стоимости и более коротком времени реакции, метод соосаждения по-прежнему вызывает некоторые проблемы, которые необходимо решить, например, скорость реакции не поддается контролю с сервером агломерации наноматериалов.Таким образом, желаемые материалы и материалы могут быть рассмотрены путем выбора подходящих стратегий синтеза для BMS (Lai et al., 2012; Palomares et al., 2012).
Приложения в SIBS
Transition BMS
Учитывая особый механизм реакции, обилие активных центров и короткие пути диффузии, наноматериалы переходных БМС имеют много преимуществ в качестве перспективных анодных материалов для СИП. Большой объем работ был посвящен разработке переходных анодов BMS в SIB.В этом разделе обсуждаются и рассматриваются переходные BMS как высокоэффективные анодные материалы SIB.
В некоторых случаях Fe – Ni – O со структурой желтка и скорлупы был разработан путем пиролиза распылением в одной емкости, как показано на рисунке 4A. При использовании в качестве анода в SIB, (Fe 0,5 Ni 0,5 ) 9 S 8 показал емкость 527 мАч г -1 при 1 А г -1 после 100 циклов. Выдающиеся показатели скорости были также получены при емкости обратимого разряда 465 мАч g -1 при 5.0 A g −1 (Kim, Kang, 2017). Канг и др. исследовали FeS 2 , легированный кобальтом, путем изменения содержания Co простым сольвотермическим методом. При первом использовании в качестве анодного материала в SIB FeS 2 , легированный Co, показал хорошие характеристики цикличности и скорости в диапазоне напряжений 0,8–2,9 В благодаря высокой производительности FeS 2 и высокой емкости. CoS 2 . Все образцы имели сферическую форму частиц со средним диаметром около 100 нм (рисунки 4B, C).Когда содержание Co увеличилось до 0,5, Co 0,5 Fe 0,5 S 2 показал лучшие электрохимические характеристики. Как показано на рисунках 4D, E, стабильная удельная емкость 220 мАч g -1 была достигнута после 5000 циклов при 2 A g -1 (Zhang et al., 2016; Ge et al., 2017). Feng et al. использовали простой сольвотермический метод для синтеза суб микросфер CuCo 2 S 4 с размерами от 300 до 500 нм (рис. 4F). Уникальная структура и синергетические эффекты двойного металла CuCo 2 S 4 могут эффективно улучшить стабильность электродных материалов, избегая агрегации наноматериалов и сокращая пути диффузии ионов / электронов.Полученный композит CuCo 2 S 4 продемонстрировал превосходную стабильность при циклическом воздействии и высокую кулоновскую эффективность в качестве анода для SIB Рисунок 4G (Li Q. et al., 2019). Как показано на вставке к фиг. 4H, неправильный микрополиэдр CuV 2 S 4 был синтезирован методом твердотельной реакции. Возможность переключения CuV 2 S 4 , как показано на рисунке 4H, который показывает емкость 490 мАч g -1 при 0,15 A g -1 и 410 мАч g -1 при 0.7 А г −1 . Промежуточный продукт Na 2 S матрица начинает участвовать в окислительно-восстановительном процессе, вызывая стабильное увеличение емкости до 580 мАч g −1 в течение первых 250 циклов при 0,7 A g −1 и поддерживая ее на этом уровне в течение следующие 50 циклов (Krengel et al., 2017).
Рис. 4. (A) ПЭМ-изображения порошка (Fe 0,5 Ni 0,5 ) 9 S 8 порошок желтка-скорлупы. Воспроизведено с разрешения Kim and Kang (2017) Copyright 2017, Tsinghua University Press. (B, C) СЭМ- и ПЭМ-изображения образца Co 0,5 Fe 0,5 S 2 . (D, E) Иллюстрация состава и циклических характеристик Na / Co 0,5 Fe 0,5 S 2 полуячейка. Воспроизведено с разрешения Zhang et al. (2016) Авторские права 2016, Wiley-VCH. (F) СЭМ-изображение CuCo 2 S 4 субмикросфер; (G) Циклические характеристики CuCo 2 S 4 .Воспроизведено с разрешения Li Q. et al. (2019) Авторские права 2019, Wiley-VCH. (H) Циклические характеристики и кулоновский КПД CuV 2 S 4 ячеек с гальваностатическим циклированием при 0,15 A g -1 между 3 и 0,1 В и 3 и 0,01 В при 0,7 A g -1 . На вставке в (H) показана элементарная ячейка шпинельного типа. Воспроизведено с разрешения Krengel et al. (2017) Авторское право 2017 г., Американское химическое общество.
В заключение, обилие переходных металлов с различными валентными состояниями заставляет их проявлять высокую теоретическую удельную емкость во время электрохимических реакций.
Несмотря на многие преимущества BMS, все еще остаются проблемы с точки зрения медленной кинетики реакции, плохих электрохимических свойств из-за большого радиуса Na + и значительного изменения объема во время цикла. Чтобы преодолеть упомянутые выше ловушки, были введены материалы на основе углерода из-за их устойчивости к циклическим нагрузкам, обширных ресурсов и платформы с низким содержанием натрия. Действительно, покрытие и легирование BMS углеродными материалами использовались в качестве многообещающих методов для улучшения характеристик накопления ионов натрия в SIB, поскольку они могут улучшить электропроводность и поддерживать структурную стабильность BMS (Chen S.et al., 2017; Lin et al., 2018; Lv et al., 2018; Zhang et al., 2018).
Как типичный BMS, NiCo 2 S 4 привлек большое внимание благодаря своей превосходной электропроводности, чрезвычайно стабильным характеристикам электрохимического циклирования и выдающимся скоростным характеристикам. Тем не менее, его медленная кинетика Na + ограничила продвижение этого анодного материала. Чтобы решить эту проблему, были исследованы композиты NiCo 2 S 4 с материалами на основе углерода, такими как углерод с примесью азота (NC), rGO и углеродные нанотрубки (CNT).Материалы на основе углерода могут не только улучшить электропроводность, но также предоставить больше активных центров для быстрого накопления Na + и уменьшить объемное расширение во время процесса заряда-разряда (Xiao et al., 2017). Например, Инь и др. сообщили об эффективности матрицы rGO в улучшении электрохимических свойств полой призмы NiCo 2 S 4 , подтвержденной ее циклическими характеристиками (рис. 5A). Во время процесса разряда полые наночастицы оболочки NiCo 2 S 4 будут схлопываться, когда Na + вставляется в анод, в то время как наноматериал NiCo 2 S 4 , завернутый в rGO, может хорошо сохраняться ( Рисунок 5B) (Zhang et al., 2018). Следовательно, ультратонкие нанолисты rGO с большой удельной поверхностью, активным центром и пористыми каналами обеспечивают выдающиеся электрохимические характеристики с хорошим накоплением натрия. Рисунок 5C иллюстрирует циклическую работу Ni 3 Co 6 S 8 @rGO электрода при 0,5 A g -1 , полученного Канг и др. с распределением пластинчатых нанокристаллов Ni 3 Co 6 S 8 по смятой структуре rGO. Эти нанокристаллы имели емкость 298 мкм.1 мАч g -1 после 300 циклов при 25 мАч g -1 в качестве материала анода в SIB (Choi and Kang, 2015b). CuCo 2 S 4 были синтезированы нанокомпозиты / rGO, которые показали емкость 433 мАч г -1 после 50 циклов при 0,1 А г -1 и показали отличную производительность при 336 мАч г -1 при 1 A g −1 (Gong et al., 2018).
Рис. 5. (A) Циклические характеристики NiCo 2 S 4 и rGO – NiCo 2 S 4 при 50 мА г −1 . (B) Схема процесса внедрения ионов натрия в NiCo 2 S 4 и rGO – NiCo 2 S 4 . Воспроизведено с разрешения Zhang et al. (2018) Copyright 2018. Королевское химическое общество. (C) Циклические характеристики (Ni, Co) O-rGO и Ni 3 Co 6 S 8 — rGO при 0,5 A g -1 . Воспроизведено с разрешения Choi and Kang (2015a) Copyright 2015. Королевское химическое общество. (D) СЭМ изображения NiCo 2 S 4 -NC, (E) Циклические характеристики NiCo 2 S 4 -NC в различных электролитах при 1.0 A g −1 , (F) Циклические характеристики и кулоновский КПД NiCo 2 S 4 -NC в различных окнах напряжения отключения при 0,2 A g −1 . Воспроизведено с разрешения Li S. et al. (2019) Авторские права 2019. Elsevier.
Более того, комбинируя с графеном, Ji et al. использовали восходящую стратегию для получения наноточек NiCo 2 S 4 , однородно включенных в углерод с примесью азота (обозначенный как NiCo 2 S 4 -NC) (рис. 5D).Затем было исследовано влияние различных электролитов и окон напряжения на его электрохимические характеристики. Как показано на рисунке 5E, из-за гибкой одномерной цепной структуры DEGDME, ячейка с электролитом на основе простого эфира NaClO 4 / DEGDME обеспечивает максимальную емкость 530 мАч g -1 при 1,0 A g — 1 . Действительно, наилучший диапазон напряжения был определен как 0,4–3,0 В, в котором ячейка может эффективно поддерживать обратимое фазовое превращение и избегать побочных реакций (рис. 5F) (Li S.и др., 2019). Chen et al. также синтезированы полые нанокубы Co 8 FeS 8 с углеродным покрытием, легированным азотом, с большой площадью поверхности, малым сопротивлением переносу заряда и быстрым коэффициентом диффузии Na + . Кроме того, этой группой был получен слоистый Cu 2 MoS 4 -rGO с кристаллической структурой (Chen et al., 2019).
Co 1 Zn 1 -xS (600) — еще одна уникальная композитная структура, полученная путем простого сульфидирования и прокаливания.Эта особая структура может замедлить изменение объема во время электрохимического процесса, ускорить кинетику диффузии Na + и повысить электропроводность, что приводит к относительно низкой необратимой емкости и превосходным циклическим и скоростным характеристикам (рис. 6A). При использовании в SIB превосходная емкость 542 мАч г -1 может быть достигнута после 100 циклов при 0,1 А г -1 с впечатляющими характеристиками скорости 219,3 мАч г -1 при 10 А г — 1 (Choi et al., 2015; Qin et al., 2016b; Fang G. et al., 2018; Wang et al., 2018). В другом исследовании был приготовлен подобный губке (Zn x Co 1 − x S QD @ HCP) композит @rGO в сочетании с мезопористой полой углеродной полиэдрической (HCP) матрицей и листами, обернутыми rGO. Благодаря достоинствам этой структуры (Zn x Co 1 − x S QD @ HCP) @rGO в качестве анода без связующего в SIB показал хорошую обратимую емкость и циклические характеристики (т. Е. 638 мАч г — 1 при 0,3 A г -1 после 500 циклов), что было лучше, чем у монометаллического сульфида в тех же условиях (Рисунок 6B) (Chen Z.и др., 2017). Чтобы решить проблемы низкой плотности энергии и низкого срока службы при использовании в качестве анода в SIB, прекурсоры MOF были использованы для изготовления на месте NC, украшенных полыми сферическими наноматериалами BMS. Они приготовили (Co 0,5 Ni 0,5 ) 9 S 8 твердый раствор в сочетании с in-situ NC [подарен как (Co 0,5 Ni 0,5 ) 9 S 8 / NC], который показал превосходные свойства хранения Na.Действительно, хорошая удельная емкость 723,7 мАч g -1 сохранялась после 100 циклов при 1 A g -1 , с кулоновской эффективностью 83% по сравнению со вторым циклом. Впечатляющая способность к скорости 596,1 мАч g -1 была достигнута при 10 A g -1 с сохранением высокой емкости 60,2% при 0,1 A g -1 , демонстрируя отличные характеристики скорости. В результате модификации углерода и иерархической сферической структуры в процессе циклирования были достигнуты высокая электропроводность и механическая стабильность (Cao et al., 2019).
Рис. 6. (A) Циклические характеристики Co 1 Zn 1 -xS. Воспроизведено с разрешения Fang G. et al. (2018) Copyright 2018. Wiley-VCH. (B) Циклические характеристики композитов (ZnS QD @ HCP) @rGO и (Zn x Co 1 − x S QD @ HCP) @rGO при 3 A g −1 . Воспроизведено с разрешения Chen Z. et al. (2017) Copyright 2017. Wiley-VCH.
Из-за присущих BMS недостатков материалы электродов очень чувствительны к расширению, а затем легко отделяются от токосъемника во время цикла.Соответствующие результаты показали, что модификация углерода и оптимизация наноструктуры являются хорошим выбором для получения высокоэффективной системы хранения ионов натрия. Кроме того, Yang et al. разработал электродный материал без связующего в качестве анода SIB, который имеет массивы нанолистов NiMo 3 S 4 / CTs с иерархической гибридной наноструктурой (Kong et al., 2018). Следовательно, он обеспечивал высокую емкость накопления натрия и отличную производительность при циклических нагрузках.
За последнее десятилетие было проведено большое количество исследований по изучению превосходных электродных материалов для хранения натрия.Таким образом, подробное сравнение электрохимических характеристик анодов BMS в SIB представлено в таблице 3.
Таблица 3 . Сравнение электрохимических характеристик анодов BMS в SIB.
Смешанные BMS
BMS на основе олова (ZnSnS 3 , CoSnS x ) показали высокую емкость в качестве анодов SIB и привлекли большое внимание из-за большого расстояния между слоями, обусловленного их слоистой структурой типа CdI2, и высокой теоретической емкости благодаря сочетание конверсионного и легирующего типов механизма электрохимической реакции (Qu et al., 2014; Choi et al., 2015; Cho et al., 2016; Лу и др., 2016). Однако важно решить проблемы, связанные с расширением большого объема и их низкой проводимостью. Поэтому для изменения электрохимических свойств BMS были предприняты структурные разработки и внедрение углеродных материалов.
Наночастицы сульфида цинка и олова @ rGO (ZnSnS 3 @rGO) были получены Zhang et al. путем сочетания сольвотермической реакции с процессом отжига. При использовании в SIB превосходная производительность Na-хранилища с большой удельной емкостью (472.2 мАч г -1 при 0,1 А г -1 ), высокая емкость (165,8 мАч г -1 при 2 А г -1 ) и сверхдлительный срок службы (401,2 мАч г -1 при 0,1 A г -1 после 200 циклов) (Jia et al., 2018). Таким образом, представленная конструкция композитного анода обеспечивает новые изменения для разработки высокостабильных анодных материалов, которые обладают превосходной проводимостью и высокой адаптируемостью к большим изменениям объема во время процесса натрирования / десодиации.Лю и др. разработала наноструктуру ZnSnS 3 с полыми наномикрокубами с помощью методов соосаждения и гидротермальных методов. После этого процесса было нанесено покрытие на rGO с двойным легированием N / S (N / S-rGO @ ZnSnS 3 ) (Рисунки 7A, B) для улучшения кинетики медленной реакции и плохих электрохимических свойств BMS. В результате приготовленный композит N / S-rGO @ ZnSnS 3 показал высокую удельную емкость 501,7 мА · ч · г -1 после 100 циклов при 0,1 А · г -1 и превосходный длительный срок службы 290.7 мАч г -1 после 500 циклов при 1 А г -1 . Между тем, поддерживалась высокоскоростная емкость 256,6 мА · ч -1 при 2 A g -1 (Фигуры 7C, D). Такие выдающиеся характеристики были в первую очередь приписаны покрытию из двойного легированного rGO, которое обеспечивает некоторые синергетические преимущества для EES, а именно: (1) из-за сильной полярности области легирования, которая сдерживает агрегацию приготовленного rGO; (2) повышение электропроводности за счет уменьшения полупроводникового зазора; (3) из-за недостатков обладают высокой электроотрицательностью, могут легко притягивать положительные ионы, что приводит к увеличению количества ионов щелочных металлов; (4) из-за эффекта адсорбции между анодом и rGO, который усиливает структурную стабильность (Liu et al., 2019). Кроме того, Chen et al. вводит титан в кристаллическую структуру SnS 2 для частичной замены олова, образуя подобный фонарю Ti 0,25 Sn 0,75 S 2 с последующим покрытием одномерных многостенных углеродных нанотрубок (MWCNT) (обозначенных как Ti 0,25 Sn 0,75 S 2 @MWCNTs) для улучшения дефектов объемного расширения SnS 2 и низкой проводимости. Благодаря своей фонарно-подобной структуре с большой удельной поверхностью электролит мог полностью проникать в Ti 0.25 Sn 0,75 S 2 @MWCNTs, увеличивающие перенос электронов / ионов во время циклирования. Высокая удельная емкость 307 мАч g -1 была получена после 1000 циклов при 0,4 A g -1 в процессе электрохимического тестирования (Huang et al., 2018). Монокристаллические мезопористые нанобоксы CoSn (OH) 6 также были синтезированы методом соосаждения. TAA использовался в качестве ресурса S для достижения CoSnSx с помощью сольвотермического метода с последующим нанесением полимерного покрытия и карбонизацией дофамином при более высокой температуре в потоке N 2 для получения электродных материалов CoSnS x @ NC.Впоследствии были исследованы характеристики накопления натрия и влияние содержания углерода на электрохимические свойства нанобоксов CoSnS x @NC. Результаты показали, что наилучшее количество углерода составляет 36,8 мас.% Для защиты нанобоксов от разрушения во время глубоких циклов. Электрод продемонстрировал отличные характеристики циклирования и достиг высокой емкости 300 мАч г -1 с высокой кулоновской эффективностью почти 100% после 500 циклов, а также выдающимся длительным сроком службы 180 мАч г -1 после 4000 циклов при 1 A g -1 (Рисунок 7E) (Liu et al., 2017). Более того, Ou et al. приготовили гетероструктурированные нанобоксы SnS 2 / Mn 2 SnS 4 / углерод размером около 100 нм с помощью метода лицевого соосаждения. При оценке в качестве анодного материала в SIB особая структура между SnS 2 и Mn 2 SnS 4 может облегчить изменение объема в результате массового электрохимического процесса, предотвратить когезию наночастиц Sn и повысить обратимость реакция превращения-легирования.Он также продемонстрировал высокий ICE 90,8%, выдающуюся стабильность при длительном цикле 522,5 мА · ч -1 после 500 циклов при 5 A g -1 и замечательную производительность (752,3, 604,7, 570,1, 546,9, 519,7 и 488,7 мАч г -1 при 0,1, 0,5, 1,0, 2,0, 5,0 и 10,0 А г -1 соответственно). Обладая преимуществами этих преимуществ (огромная удельная поверхность, большое количество активных центров и высокая электропроводность) углеродных материалов, полученный композитный электрод показал впечатляющие электрохимические характеристики (Ou et al., 2019). Ян и др. сообщили о новом материале, состоящем из нанокубов (SnCo) S 2 , чередующихся с двумерными нанолистами легированного серой графена (SG) ((SnCo) S 2 / SG), синтезированных с помощью простого метода соосаждения и отжига. Он продемонстрировал превосходную обратимую емкость 487 мАч g −1 для 5000 циклов при 5 A g −1 , а также высокую сохраняемость емкости 92,6% (Yang et al., 2019).
Рис. 7. (A, B) FESEM-изображения ZnSnS 3 и N / S-rGO @ ZnSnS 3 , (C, D) Скорость и циклические характеристики N / S-rGO, ZnSnS 3 и электродов Н / С-рГО @ ZnSnS 3 .Воспроизведено с разрешения Liu et al. (2019) Авторские права 2019. Elsevier. (E) Долговременная стабильность аморфных нанобоксов CoSnS x @NC с различным содержанием углерода, нанобоксов аморфного CoSnS x , кристаллических нанобоксов CoS-Sn 2 S 3 нанобоксов @NC и N- легированный углерод при 1,0 А г −1 . На вставке в (E) показаны характеристики циклирования и кулоновская эффективность электрода CoSnS x @NC в виде нанобоксов при 0,2 A g -1 .Воспроизведено с разрешения Liu et al. (2017) Copyright 2017. Королевское химическое общество.
Другие BMS
В дополнение к вышеупомянутым BMS, Manthiram et al. сообщили о кластере наностержней Bi 0,94 Sb 1,06 S 3 -графит в качестве анодного материала SIB. Они обнаружили, что создание твердых растворов можно рассматривать как идеальный метод исследования новых анодных материалов с превосходными электрохимическими характеристиками для SIB. Би 0,94 Сб 1.06 S 3 -графитовый анод показал замечательную емкость 380 мАч g -1 после 200 циклов при 1 A g -1 , что выше, чем у Sb 2 S 3 -графита электрод (~ 50 мАч г -1 ) и Bi 2 S 3 -графитовый электрод (~ 210 мАч г -1 ). Это означает, что биметаллические атомы могут не только повысить устойчивость электродных материалов к циклированию, но и улучшить их емкость (Zhao and Manthiram, 2015).Чжун и др. успешно спроектировал новый композитный микрорельеф, подобный гортензии, желтку и скорлупе, самособирающийся с помощью нанолистов для SIBs. Соответственно, высокая емкость 607,14 мАч г -1 была доставлена при 0,05 А г -1 , наряду с уменьшением объемного расширения и повышением стабильности при циклическом воздействии в значительной степени благодаря уникальной структуре материала электродов (Zhong и др., 2019). Кроме того, производительность различных материалов BMS показана на Рисунке 8, а сравнение характеристик цикла BMS и MS приведено в Таблице 4.
Рисунок 8 . Расчетная способность при различных плотностях тока от 0,1 до 5 А г -1 для различных биметаллических сульфидов в SIB. Ссылка 1 (Choi and Kang, 2015a), ссылка 2 (Chen J. et al., 2017), ссылка 3 (Zhang et al., 2016), ссылка 4 (Yang et al., 2019), ссылка .5 (Lv et al., 2018), ссылка 6 (Zhang et al., 2018), ссылка 7 (Gong et al., 2018), ссылка 8 (Huang et al., 2018), ссылка 9 (Liu et al., 2017), ссылка 10 (Liu et al., 2019), ссылка 11 (Zhang K. et al., 2019), ссылка 12 (Jia et al., 2018), ссылка.13 (Cao et al., 2019), ссылка 14 (Chen et al., 2019), ссылка 15 (Ou et al., 2019), ссылка 16 (Li Q. et al., 2019), ссылка. 17 (Kong et al., 2018), ссылка 18 (Kim and Kang, 2017), ссылка 19 (Zhao and Manthiram, 2015), ссылка 20 (Krengel et al., 2017).
Таблица 4 . Сравнение электрохимических характеристик анодов BMS и MS в SIB.
Выводы и перспективы
В этом обзоре систематизированы последние разработки BMS в качестве анодных материалов для SIB.БМС демонстрируют очевидные достоинства относительно высокой электропроводности и электрохимической активности. Более того, значительный эффект самоматрицы и самопроводимости из-за реакции двух металлических элементов с Na может быть полностью эффективным. Действительно, из-за наличия «синергетического эффекта» непрореагировавшая часть может служить временным демпфером / проводником для прореагировавшей из-за их разного окислительно-восстановительного потенциала (Pumera et al., 2014; Wang et al., 2014; Chang et al., 2016; Liu et al., 2019).В этом обзоре, во-первых, были представлены стратегии синтеза BMS. Затем были обсуждены механизмы накопления натрия в различных BMS в процессе заряда-разряда. Что еще более важно, применение BMS в качестве анодов SIB систематически анализировалось, и в то же время высказывались глубокие ожидания относительно его будущего развития.
Чтобы избежать потери емкости анодных материалов BMS, первая стратегия заключается в разработке новых наноструктур с подходящим пустым пространством, чтобы уменьшить влияние объемного расширения и сжатия во время процесса реакции (Palomares et al., 2012; Slater et al., 2013; Оу и др., 2016; Путунган и др., 2016; Шен и др., 2016; Су и др., 2016). В качестве второй стратегии интеграция с другими электрохимически стабильными материалами может не только ограничить объемное расширение, но также повысить общую электропроводность анода. Кроме того, растворение полисульфидов в электролите во время электрохимического процесса можно до некоторой степени подавить (Wang et al., 2018). До сих пор многие аноды BMS в SIB, о которых сообщалось, относятся к их комбинации с материалами на основе углерода.Таким образом, для разработки анодных материалов SIB важно полностью изучить достоинства наноструктурированных материалов (Lu et al., 2017; Ma et al., 2018). В будущем необходимо приложить гораздо больше усилий, чтобы преодолеть недостаток плохой длительной езды на велосипеде. Ожидается, что использование рационально спроектированных структур в BMS может эффективно улучшить электрохимические характеристики в SIB (Kim et al., 2012; Jiang et al., 2014; Su et al., 2015; Gao et al., 2017; Hwang и др., 2017).
Несмотря на то, что к настоящему времени были выполнены все новые работы, следует посвятить еще больше времени и усилий эффективному повышению электрохимических свойств BMS, чтобы проложить путь их практического применения в SIB в ближайшем будущем.
Авторские взносы
YH, DX и XL внесли свой вклад в концепцию и дизайн исследования. YH организовал базу данных, выполнил статистический анализ и написал рукопись с помощью HM, JP, YiL, YuL, DL, QS и XS. Все авторы одобрили окончательную версию рукописи.
Конфликт интересов
Авторы заявляют, что исследование проводилось при отсутствии каких-либо коммерческих или финансовых отношений, которые могут быть истолкованы как потенциальный конфликт интересов.
Благодарности
Авторы искренне благодарны за поддержку Фонда естественных наук провинции Цинхай в Китае (2020-ZJ-910), Национального фонда естественных наук Китая (51672189) и Тяньцзиньского научно-технологического проекта (18PTZWHZ00020).
Список литературы
Цао, Д., Кан, В., Ван, С., Ван, Ю., Сун, К., Ян, Л. и др. (2019). In situ модифицированный углерод, легированный азотом (Co 0,5 Ni 0,5 ) 9 S 8 полых сфер в виде твердых растворов в качестве анодов большой емкости для натрий-ионных аккумуляторов. J. Mater. Chem. А 7, 8268–8276. DOI: 10.1039 / C9TA00709A
CrossRef Полный текст | Google Scholar
Цао, X., Тан, К., Синдоро, М., и Чжан, Х. (2017). Гибридные микро- / наноструктуры, полученные из металлоорганических каркасов: подготовка и применение в накоплении и преобразовании энергии. Chem. Soc. Rev. 46, 2660–2677. DOI: 10.1039 / C6CS00426A
PubMed Аннотация | CrossRef Полный текст | Google Scholar
Чанг, К., Хай, X., и Йе, Дж.(2016). Дисульфиды переходных металлов как альтернативные благородные металлы сокатализаторы для производства солнечного водорода. Adv. Energy Mater. 6: 1502555. DOI: 10.1002 / aenm.201502555
CrossRef Полный текст | Google Scholar
Chang, L., Wang, K., Huang, L.A., He, Z., Zhu, S., Chen, M., et al. (2017). Иерархическая пленка из микроцветов CoO с отличными электрохимическими характеристиками накопления лития / натрия. J. Mater. Chem. А 5, 20892–20902. DOI: 10.1039 / C7TA05027E
CrossRef Полный текст | Google Scholar
Че, Х., Chen, S., Xie, Y., Wang, H., Amine, K., Liao, X-Z., Et al. (2017). Стратегии проектирования электролитов и результаты исследований натриево-ионных аккумуляторов, работающих при комнатной температуре. Energy Environ. Sci. 10, 1075–1101. DOI: 10.1039 / C7EE00524E
CrossRef Полный текст | Google Scholar
Чен, Дж., Ли, С., Кумар, В., и Ли, П. С. (2017). Биметаллические полые нанокубки из сульфида с углеродным покрытием в качестве усовершенствованного анода для ионно-натриевой батареи Adv. Energy Mater. 7: 1700180. DOI: 10.1002 / aenm.201700180
CrossRef Полный текст | Google Scholar
Chen, J., Mohrhusen, L., Ali, G., Li, S., Chung, K. Y., Al-Shamery, K., et al. (2019). Исследование электрохимического механизма полых наносфер Cu 2 MoS 4 для быстрого и стабильного хранения ионов натрия. Adv. Функц. Матер. 29: 1807753. DOI: 10.1002 / adfm.201807753
CrossRef Полный текст | Google Scholar
Chen, S., Wu, C., Shen, L., Zhu, C., Huang, Y., Xi, K., et al.(2017). Проблемы и перспективы для электродных материалов типа NASICON для перспективных натриево-ионных аккумуляторов. Adv. Матер. 29: 1700431. DOI: 10.1002 / adma.201700431
PubMed Аннотация | CrossRef Полный текст | Google Scholar
Chen, T., Cheng, B., Chen, R., Hu, Y., Lv, H., Zhu, G., et al. (2016). Иерархические тройные карбидные наночастицы / углеродные нанотрубки со вставленными N-легированными углеродными вогнутыми многогранниками для эффективного хранения лития и натрия. ACS Appl. Матер. Интерфейсы 8, 26834–26841.DOI: 10.1021 / acsami.6b08911
PubMed Аннотация | CrossRef Полный текст | Google Scholar
Чен, Ю., Ю, X., Ли, З., Пайк, У., и Лу, X. Д. (2016). Иерархические MoS 2 трубчатые структуры с внутренними связями углеродными нанотрубками в качестве высокостабильного анодного материала для литий-ионных аккумуляторов. Sci. Adv. 2: e1600021. DOI: 10.1126 / sciadv.1600021
PubMed Аннотация | CrossRef Полный текст | Google Scholar
Чен, З., Ву, Р., Лю, М., Ван, Х., Xu, H., Guo, Y., et al. (2017). Общий синтез двойных углеродных квантовых точек сульфидов металлов в направлении высокоэффективных анодов для натрий-ионных аккумуляторов. Adv. Функц. Матер. 27: 1702046. DOI: 10.1002 / adfm.201702046
CrossRef Полный текст | Google Scholar
Чо, Э., Сонг, К., Пак, М. Х., Нам, К. В., и Кан, Ю. М. (2016). Цветы SnS 3D с превосходными кинетическими свойствами для анодного использования в натриевых аккумуляторных батареях нового поколения. Малая 12, 2510–2517.DOI: 10.1002 / smll.201503168
PubMed Аннотация | CrossRef Полный текст | Google Scholar
Чой, С. Х., и Канг, Ю. К. (2015a). Синергетические композиционные и морфологические эффекты для улучшенных свойств накопления Na + Ni 3 Co 6 S 8 -восстановленных композитных порошков оксида графена. Наноразмер 7, 6230–6237. DOI: 10.1039 / C5NR00012B
PubMed Аннотация | CrossRef Полный текст | Google Scholar
Цой, С.Х., Канг Ю.С. (2015b). Синергетический эффект структуры желточной оболочки и равномерного перемешивания нанокристаллов SnS-MoS 2 для улучшенных возможностей хранения Na-ионов. ACS Appl. Матер. Интерфейсы 7, 24694–24702. DOI: 10.1021 / acsami.5b07093
PubMed Аннотация | CrossRef Полный текст | Google Scholar
Чой, С. Х., Ко, Ю. Н., Ли, Дж. К., и Кан, Ю. К. (2015). 3D MoS 2 — графеновые микросферы, состоящие из множества наносфер с превосходными свойствами хранения ионов натрия. Adv. Функц. Матер. 25, 1780–1788. DOI: 10.1002 / adfm.201402428
CrossRef Полный текст | Google Scholar
Deng, P., Yang, J., He, W., Li, S., Zhou, W., Tang, D., et al. (2018). Оловянные наночастицы Sb 2 S 3 , равномерно привитые на графен, эффективно улучшают характеристики накопления ионов натрия. ChemElectroChem 5, 811–816. DOI: 10.1002 / celc.201800016
CrossRef Полный текст | Google Scholar
Донг, С., Ли, К., Ге, X., Ли, З., Мяо, X., и Инь, Л. (2017). ZnS-Sb 2 S 3 @C структура многогранника ядро-двойная оболочка, полученная из металлоорганического каркаса в качестве анодов для высокоэффективных ионно-натриевых батарей. ACS Nano 11, 6474–6482. DOI: 10.1021 / acsnano.7b03321
PubMed Аннотация | CrossRef Полный текст | Google Scholar
Ду Й., Чжу Х., Чжоу Х., Ху Л., Дай З. и Бао Дж. (2015). Co 3 S 4 пористых нанолистов, внедренных в листы графена в качестве высокоэффективных анодных материалов для хранения лития и натрия. J. Mater. Chem. А 3, 6787–6791. DOI: 10.1039 / C5TA00621J
CrossRef Полный текст | Google Scholar
Дуань, Дж., Тан, X., Дай, Х., Ян, Ю., Ву, В., Вэй, X., и др. (2019). Создание безопасных литий-ионных аккумуляторов для электромобилей: обзор. Electrochem. Energy Rev. 3, 1–42. DOI: 10.1007 / s41918-019-00060-4
CrossRef Полный текст | Google Scholar
Фан, Л., и Ли, X. (2018). Последние достижения в области эффективной защиты анода из металлического натрия. Nano Energy 53, 630–642. DOI: 10.1016 / j.nanoen.2018.09.017
CrossRef Полный текст | Google Scholar
Fan, L., Li, X., Yan, B., Feng, J., Xiong, D., Li, D., et al. (2016). Контролируемая кристалличность SnO 2 эффективно доминирует над характеристиками накопления натрия. Adv. Energy Mater. 6: 1502057. DOI: 10.1002 / aenm.201502057
CrossRef Полный текст | Google Scholar
Fang, G., Wu, Z., Zhou, J., Zhu, C., Cao, X., Lin, T., et al.(2018). Наблюдение псевдоемкостного эффекта и быстрой диффузии ионов в биметаллических сульфидах в качестве перспективного анода натрий-ионной батареи. Adv. Energy Mater. 8: 1703155. DOI: 10.1002 / aenm.201703155
CrossRef Полный текст | Google Scholar
Фанг, Ю., Сяо, Л., Чен, З., Ай, X., Цао, Ю., и Ян, Х. (2018). Последние достижения в области материалов для натриево-ионных аккумуляторов. Electrochem. Энергия. Ред. 1, 294–323. DOI: 10.1007 / s41918-018-0008-x
CrossRef Полный текст | Google Scholar
Fu, Y., Zhang, Z., Yang, X., Gan, Y., and Chen, W. (2015). Наночастицы ZnS, внедренные в пористые углеродные матрицы в качестве анодных материалов для литий-ионных аккумуляторов. RSC Adv. 5, 86941–86944. DOI: 10.1039 / C5RA15108B
CrossRef Полный текст | Google Scholar
Гао, X., Ван, Дж., Чжан, Д., Адаир, К., Фэн, К., Сун, Н., и др. (2017). Биметаллические сульфидные наноточки с углеродным покрытием / гетероструктура углеродных наностержней, обеспечивающая длительный срок службы литий-ионных аккумуляторов. J. Mater. Chem. А 5, 25625–25631.DOI: 10.1039 / C7TA06849B
CrossRef Полный текст | Google Scholar
Ge, X., Li, Z., and Yin, L. (2017). Металлоорганические каркасы образованы пористыми многогранниками ядро / оболочка CoP @ C, закрепленными на трехмерных сетках из восстановленного оксида графена в качестве анода для натрий-ионной батареи. Nano Energy 32, 117–124. DOI: 10.1016 / j.nanoen.2016.11.055
CrossRef Полный текст | Google Scholar
Гонг Ю., Чжао Дж., Ван Х. и Сюй Дж. (2018). CuCo 2 S 4 / Нанокомпозиты из восстановленного оксида графена, синтезированные одностадийным сольвотермическим методом, в качестве анодных материалов для натриево-ионных аккумуляторов. Электрохим. Acta 292, 895–902. DOI: 10.1016 / j.electacta.2018.09.194
CrossRef Полный текст | Google Scholar
Хуан Ю., Се М., Ван З., Цзян Ю., Сяо Г., Ли С. и др. (2018). Кинетика быстрого накопления натрия в фонарном Ti 0,25 Sn 0,75 S 2 , связанных углеродными нанотрубками. Energy Storage Mater. 11, 100–111. DOI: 10.1016 / j.ensm.2017.10.004
CrossRef Полный текст | Google Scholar
Цзя, Х., Dirican, M., Sun, N., Chen, C., Yan, C., Zhu, P., et al. (2018). Усовершенствованный анодный материал ZnSnS 3 @rGO для превосходного накопления ионов натрия и лития со сверхдлительным сроком службы. ChemElectroChem 6, 1183–1191. DOI: 10.1002 / celc.201801333
CrossRef Полный текст | Google Scholar
Jiang, Y., Hu, M., Zhang, D., Yuan, T., Sun, W., Xu, B., et al. (2014). Оксиды переходных металлов для анодов высокоэффективных ионно-натриевых батарей. Nano Energy 5, 60–66.DOI: 10.1016 / j.nanoen.2014.02.002
CrossRef Полный текст | Google Scholar
Цзинь, Р., Лю, Д., Лю, К., и Лю, Г. (2015). Иерархический NiCo 2 S 4 полых сфер в качестве высокоэффективного анода для литий-ионных батарей. RSC Adv. 5, 84711–84717. DOI: 10.1039 / C5RA14412D
CrossRef Полный текст | Google Scholar
Кан В., Ван Ю. и Сюй Дж. (2017). Недавний прогресс в создании слоистых наноструктур из дихалькогенидов металлов в качестве электродов для высокоэффективных натриево-ионных батарей. J. Mater. Chem. А 5, 7667–7690. DOI: 10.1039 / C7TA00003K
CrossRef Полный текст | Google Scholar
Kim, H., Lim, E., Jo, C., Yoon, G., Hwang, J., Jeong, S., et al. (2015). Упорядоченно-мезопористый композит Nb 2 O 5 / углерод в качестве материала для вставки натрия. Nano Energy 16, 62–70. DOI: 10.1016 / j.nanoen.2015.05.015
CrossRef Полный текст | Google Scholar
Ким, Дж. Х., и Канг, Ю. К. (2017). Желточно-ракушечная структура (Fe 0.5 Ni 0,5 ) 9 S 8 твердые порошки: синтез и применение в качестве анодных материалов для Na-ионных аккумуляторов. Nano Res. 10, 3178–3188. DOI: 10.1007 / s12274-017-1535-1
CrossRef Полный текст | Google Scholar
Ким С.-З., Сео, Д.-Х., Ма, X., Седер, Г., и Канг, К. (2012). Электродные материалы для аккумуляторных натриево-ионных батарей: потенциальные альтернативы нынешним литий-ионным батареям. Adv. Energy Mater. 2, 710–721.DOI: 10.1002 / aenm.201200026
CrossRef Полный текст | Google Scholar
Kong, D., Wang, Y., Lim, Y.V, Huang, S., Zhang, J., Liu, B., et al. (2018). Трехмерные иерархические массивы NiMo с большим количеством дефектов 3 S 4 массивов нанолистов, выращенных на углеродном текстиле для высокоэффективных натрий-ионных батарей и реакции выделения водорода. Nano Energy 49, 460–470. DOI: 10.1016 / j.nanoen.2018.04.051
CrossRef Полный текст | Google Scholar
Конг, С., Цзинь, З., Лю, Х., Ван, Ю. (2014). Морфологическое влияние графеновых нанолистов на ультратонкие нанолисты CoS и их применение для высокопроизводительных литий-ионных аккумуляторов и фотокатализа. J. Phys. Chem. C 118, 25355–25364. DOI: 10.1021 / jp508698q
CrossRef Полный текст | Google Scholar
Krengel, M., Hansen, A. L., Kaus, M., Indris, S., Wolff, N., Kienle, L., et al. (2017). CuV 2 S 4 : высокая емкость и стабильный анодный материал для ионно-натриевых батарей. ACS Appl. Матер. Интерфейсы 9, 21283–21291. DOI: 10.1021 / acsami.7b04739
PubMed Аннотация | CrossRef Полный текст | Google Scholar
Кунду Д., Талаи Э., Даффорт В. и Назар Л. Ф. (2015). Возникающая химия натриево-ионных аккумуляторов для электрохимического хранения энергии. Angew. Chem. Int. Эд. Англ. 54, 3431–3448. DOI: 10.1002 / anie.201410376
PubMed Аннотация | CrossRef Полный текст | Google Scholar
Лай, Ц-Х., Лу, М-У., и Чен, Л. Дж. (2012). Наноструктуры сульфидов металлов: синтез, свойства и применение в преобразовании и хранении энергии. J. Mater. Chem. 22, 19–30. DOI: 10.1039 / C1JM13879K
CrossRef Полный текст | Google Scholar
Ли, Л., Пэн, С., Ву, Х. Б., Ю, Л., Мадхави, С., и Лу, X. W. D. (2015). Гибкий квазитвердотельный асимметричный электрохимический конденсатор на основе иерархических пористых нанолистов V 2 O 5 на углеродных нановолокнах. Adv.Energy Mater. 5: 1500753. DOI: 10.1002 / aenm.201500753
CrossRef Полный текст | Google Scholar
Ли, К., Цзяо, К., Фэн, X., Чжао, Ю., Ли, Х., Фэн, К. и др. (2019). Синтез CuCo в одном резервуаре 2 S 4 субмикросфер для высокоэффективных литий- / натрий-ионных батарей. ChemElectroChem 6, 1558–1566. DOI: 10.1002 / celc.201
9
CrossRef Полный текст | Google Scholar
Ли, С., Ге, П., Цзян, Ф., Шуай, Х., Сюй, В., Jiang, Y., et al. (2019). Продвижение никель-кобальт-сульфида как сверхбыстрых материалов с высоким содержанием натрия: влияние морфологической структуры, фазового развития и свойств границы раздела. Energy Storage Mater. 16, 267–280. DOI: 10.1016 / j.ensm.2018.06.006
CrossRef Полный текст | Google Scholar
Ли, X., Ху, Ю., Лю, Дж., Лашингтон, А., Ли, Р., и Сан, X. (2013). Структурно адаптированные графеновые нанолисты в качестве анодов литий-ионных аккумуляторов: понимание, обеспечивающее исключительно высокую производительность хранения лития. Nanoscale 5, 12607–12615. DOI: 10.1039 / c3nr04823c
PubMed Аннотация | CrossRef Полный текст | Google Scholar
Ли, X., и Ван, C. (2012). Значительно увеличены циклические характеристики нового анода «самоматрица» NiSnO 3 в литий-ионных батареях. RSC Adv. 2, 6150–6154. DOI: 10.1039 / c2ra20527k
CrossRef Полный текст | Google Scholar
Ли, Й., Ху, И-С., Ци, Х., Ронг, X., Ли, Х., Хуанг, X., и др. (2016).Усовершенствованные натриево-ионные батареи с превосходным недорогим пиролизованным антрацитовым анодом: к практическому применению. Energy Storage Mater. 5, 191–197. DOI: 10.1016 / j.ensm.2016.07.006
CrossRef Полный текст | Google Scholar
Ли Ю., Чжэн Ю., Яо Дж., Сяо Дж., Ян Дж. И Сяо С. (2017). Простой синтез собранных из нанокристаллов полых микросфер NiO в форме гнезда с превосходными характеристиками накопления лития. RSC Adv. 7, 31287–31297. DOI: 10.1039 / C7RA05373H
CrossRef Полный текст | Google Scholar
Li, Z., Zhang, L., Ge, X., Li, C., Dong, S., Wang, C., et al. (2017). Пористые микрокубы из CoP / FeP со структурой ядро-оболочка, соединенные восстановленным оксидом графена в качестве высокоэффективных анодов для ионно-натриевых батарей. Nano Energy 32, 494–502. DOI: 10.1016 / j.nanoen.2017.01.009
CrossRef Полный текст | Google Scholar
Лин Ю., Цю, З., Ли, Д., Уллах, С., Хай, Ю., Синь, Х. и др. (2018).NiS 2 @CoS 2 нанокристаллов, заключенных в углеродные нанокубы с примесью азота для высокоэффективных литий-ионных аккумуляторов. Energy Storage Mater. 11, 67–74. DOI: 10.1016 / j.ensm.2017.06.001
CrossRef Полный текст | Google Scholar
Лю X., Хао Й., Шу Дж., Сари, Х. М. К., Лин, Л., Коу, Х. и др. (2019). Двойное легирование восстановленного оксида графена азотом / серой с получением полых наномикрокубов ZnSnS 3 с превосходным хранением натрия. Nano Energy 57, 414–423. DOI: 10.1016 / j.nanoen.2018.12.024
CrossRef Полный текст | Google Scholar
Лю, X., Ван, Y., Wang, Z., Zhou, T., Yu, M., Xiu, L., et al. (2017). Достижение сверхдлительного хранения натрия в нанобоксах из аморфного бинарного сульфида кобальта и олова, заключенных в углеродную оболочку с примесью азота. J. Mater. Chem. А 5, 10398–10405. DOI: 10.1039 / C7TA01701D
CrossRef Полный текст | Google Scholar
Лу, Х., Чен, Р., Ху, Ю., Ван, X., Ван, Ю., Ма, Л. и др. (2017). Восходящий синтез легированных азотом пористых углеродных каркасов для хранения лития и натрия. Nanoscale 9, 1972–1977. DOI: 10.1039 / C6NR08296C
PubMed Аннотация | CrossRef Полный текст | Google Scholar
Лу, Ю., Чжао, К., Чжан, Н., Лей, К., Ли, Ф., и Чен, Дж. (2016). Легкий синтез распылением и высокоэффективное накопление натрия мезопористых микросфер MoS 2 / C. Adv. Функц. Матер. 26, 911–918. DOI: 10.1002 / adfm.201504062
CrossRef Полный текст | Google Scholar
Lv, J., Bai, D., Yang, L., Guo, Y., Yan, H., and Xu, S. (2018). Биметаллические сульфидные наночастицы, заключенные в двойные углеродные наноструктуры в качестве анодов для литий- / натрий-ионных аккумуляторов. Chem. Commun. 54, 8909–8912. DOI: 10.1039 / C8CC04318C
PubMed Аннотация | CrossRef Полный текст | Google Scholar
Ma, L., Chen, R., Hu, Y., Zhu, G., Chen, T., Lu, H., et al. (2016). Иерархические пористые богатые азотом углеродные наносферы с высокими и прочными возможностями для хранения лития и натрия. Nanoscale 8, 17911–17918. DOI: 10.1039 / C6NR06307A
PubMed Аннотация | CrossRef Полный текст | Google Scholar
Ma, L., Gao, X., Zhang, W., Yuan, H., Hu, Y., Zhu, G., et al. (2018). Сверхвысокая скорость и сверхдлительная устойчивость натрий-ионных аккумуляторов при циклической работе благодаря морщинистым черным нанолистам диоксида титана с большим количеством кислородных вакансий. Nano Energy 53, 91–96. DOI: 10.1016 / j.nanoen.2018.08.043
CrossRef Полный текст | Google Scholar
Maleki Kheimeh Sari, H., и Ли, X. (2019). Управляемая граница раздела катод – электролит Li [Ni 0,8 Co 0,1 Mn 0,1 ] O 2 для литий-ионных аккумуляторов: обзор. Adv. Energy Mater. 9: 1
7. DOI: 10.1002 / aenm.201
7
CrossRef Полный текст
Мэн, X. (2017). Модификации поверхности в атомном масштабе и новые конструкции электродов для высокоэффективных натриево-ионных аккумуляторов посредством осаждения атомных слоев. J. Mater. Chem. А 5, 10127–10149.DOI: 10.1039 / C7TA02742G
CrossRef Полный текст | Google Scholar
Ортис-Виториано Н., Дрюетт Н. Э., Гонсало Э. и Рохо Т. (2017). Высокоэффективные катоды на основе слоистого оксида марганца: решение проблем, связанных с ионно-натриевыми батареями. Energy Environ. Sci. 10, 1051–1074. DOI: 10.1039 / C7EE00566K
CrossRef Полный текст | Google Scholar
Ou, X., Cao, L., Liang, X., Zheng, F., Zheng, H. S., Yang, X., et al. (2019). Изготовление SnS 2 / Mn 2 SnS 4 / углеродных гетероструктур для натрий-ионных аккумуляторов с высокой начальной кулоновской эффективностью и циклической стабильностью. ACS Nano 13, 3666–3676. DOI: 10.1021 / acsnano.9b00375
PubMed Аннотация | CrossRef Полный текст | Google Scholar
Ou, X., Xiong, X., Zheng, F., Yang, C., Lin, Z., Hu, R., et al. (2016). In situ Определение рентгеновских лучей нанолистов NbS 2 в качестве анодного материала для ионно-натриевых батарей. J. Источники энергии 325, 410–416. DOI: 10.1016 / j.jpowsour.2016.06.055
CrossRef Полный текст | Google Scholar
Паломарес, В., Серрас, П., Вильялуэнга, И., Уэсо, К. Б., Карретеро-Гонсалес, Дж., И Рохо, Т. (2012). Na-ионные батареи, последние достижения и проблемы, связанные с превращением в недорогие системы хранения энергии. Energy Environ. Sci. 5: 5884–5901. DOI: 10.1039 / c2ee02781j
CrossRef Полный текст | Google Scholar
Пумера М., Софер З. и Амбрози А. (2014). Слоистые дихалькогениды переходных металлов для электрохимического производства и хранения энергии. J. Mater. Chem. А 2, 8981–8987.DOI: 10.1039 / C4TA00652F
CrossRef Полный текст | Google Scholar
Путунган Д. Б., Лин С. Х. и Куо Дж. Л. (2016). Металлические однослойные политипы VS 2 как потенциальный анод натрий-ионной батареи с помощью неэмпирического поиска случайной структуры. ACS Appl. Матер. Интерфейсы 8, 18754–18762. DOI: 10.1021 / acsami.6b03499
PubMed Аннотация | CrossRef Полный текст | Google Scholar
Qin, W., Chen, T., Lu, T., Chua, D.H.C., Pan, L. (2016a).Слоистые композиты из оксида графена с восстановленным сульфидом никеля, синтезированные с помощью микроволнового метода, в качестве высокоэффективных анодных материалов натрий-ионных аккумуляторов. J. Источники энергии 302, 202–209. DOI: 10.1016 / j.jpowsour.2015.10.064
CrossRef Полный текст | Google Scholar
Цинь, В., Ли, Д., Чжан, X., Янь, Д., Ху, Б., и Пань, Л. (2016b). Наночастицы ZnS, встроенные в восстановленный оксид графена, в качестве высокоэффективного анодного материала натрий-ионных аккумуляторов. Электрохим.Acta 191, 435–443. DOI: 10.1016 / j.electacta.2016.01.116
CrossRef Полный текст | Google Scholar
Qu, B., Ma, C., Ji, G., Xu, C., Xu, J., Meng, Y. S., et al. (2014). Слоистый композит из восстановленного оксида графена SnS 2 — анодный материал для натрий-ионных аккумуляторов с большой емкостью, быстродействием и длительным сроком службы. Adv. Матер. 26, 3854–3859. DOI: 10.1002 / adma.201306314
PubMed Аннотация | CrossRef Полный текст | Google Scholar
Шен, Ф., Луо, В., Дай, Дж., Яо, Ю., Чжу, М., Хитц, Э., и др. (2016). Сверхтолстый мезопористый древесно-угольный анод с низкой извилистостью для высокопроизводительных натриево-ионных батарей. Adv. Energy Mater. 6: 1600377. DOI: 10.1002 / aenm.201600377
CrossRef Полный текст | Google Scholar
Слейтер, М. Д., Ким, Д., Ли, Э. и Джонсон, К. С. (2013). Натрий-ионные аккумуляторы. Adv. Функц. Матер. 23, 947–958. DOI: 10.1002 / adfm.201200691
CrossRef Полный текст | Google Scholar
Песня, Ю., Chen, Z., Li, Y., Wang, Q., Fang, F., Zhou, Y-N., Et al. (2017). Высокоскоростная и долговременная циклическая способность NiCo с регулировкой псевдоемкости. 2 S 4 гексагональных нанолистов, полученных путем преобразования пара для хранения лития. J. Mater. Chem. А 5, 9022–9031. DOI: 10.1039 / C7TA01758H
CrossRef Полный текст | Google Scholar
Стивенсон Т., Ли З., Олсен Б. и Митлин Д. (2014). Применение в литий-ионных батареях нанокомпозитов дисульфида молибдена (MoS 2 ). Energy Environ. Sci. 7, 209–231. DOI: 10.1039 / C3EE42591F
CrossRef Полный текст | Google Scholar
Су Д., Доу С. и Ван Г. (2015). Ультратонкие нанолисты MoS 2 в качестве анодных материалов для натрий-ионных аккумуляторов с превосходными характеристиками. Adv. Energy Mater. 5: 1401205. DOI: 10.1002 / aenm.201401205
CrossRef Полный текст | Google Scholar
Су, Х., Джаффер, С., Ю, Х. (2016). Оксиды переходных металлов для натрий-ионных аккумуляторов. Energy Storage Mater. 5, 116–131. DOI: 10.1016 / j.ensm.2016.06.005
CrossRef Полный текст | Google Scholar
Su, Z., Liu, J., Li, M., Zhu, Y., Qian, S., Weng, M., et al. (2020). Разработка дефектов в оксидах на основе титана для электрохимических накопителей энергии. Electrochem. Energy Rev 3, 90–147. DOI: 10.1007 / s41918-020-00064-5
CrossRef Полный текст | Google Scholar
Тан, К., Цуй, Ю., Ву, Дж., Цюй, Д., Бейкер, А. П., Ма, Ю., и другие. (2017). Тройной наносплав сульфида олова и селена (SnSe 0,5 S 0,5 ) как высокоэффективный анод для литий-ионных и натрий-ионных аккумуляторов. Nano Energy 41, 377–386. DOI: 10.1016 / j.nanoen.2017.09.052
CrossRef Полный текст | Google Scholar
Ван Х., Фенг Х. и Ли Дж. (2014). Графен и графеноподобные слоистые дихалькогениды переходных металлов в преобразовании и хранении энергии. Малый 10, 2165–2181. DOI: 10.1002 / smll.201303711
PubMed Аннотация | CrossRef Полный текст | Google Scholar
Ван, Т., Су, Д., Шанмукарадж, Д., Рохо, Т., Арман, М., и Ван, Г. (2018). Электродные материалы для натрий-ионных аккумуляторов: соображения о кристаллических структурах и механизмах накопления натрия. Electrochem. Energy Rev. 1, 200–237. DOI: 10.1007 / s41918-018-0009-9
CrossRef Полный текст | Google Scholar
Вэнь, Ю., Пэн, С., Ван, З., Хао, Дж., Цинь, Т., Лу, С. и др. (2017).Легкий синтез ультратонких NiCo 2 S 4 нанолепестков, вдохновленных цветущими бутонами, для высокопроизводительных суперконденсаторов. J. Mater. Chem. А 5, 7144–7152. DOI: 10.1039 / C7TA01326D
CrossRef Полный текст | Google Scholar
Ву, X., Ли, С., Ван, Б., Лю, Дж., И Ю, М. (2016). NiCo 2 S 4 массивов нанотрубок, выращенных на гибких углеродных пенопластах, легированных азотом, в качестве трехмерных интегрированных анодов без связующего для высокопроизводительных литий-ионных батарей. Phys. Chem. Chem. Phys. 18, 4505–4512. DOI: 10.1039 / C5CP07541F
PubMed Аннотация | CrossRef Полный текст | Google Scholar
Xia, X., Zhu, C., Luo, J., Zeng, Z., Guan, C., Ng, C.F., et al. (2014). Синтез автономных наномассивов сульфидов металлов посредством реакции анионного обмена и их применение в электрохимическом накоплении энергии. Малый 10, 766–773. DOI: 10.1002 / smll.201302224
PubMed Аннотация | CrossRef Полный текст | Google Scholar
Сяо, Дж., Ван, Л., Ян, С., Сяо, Ф., и Ван, С. (2014). Разработайте иерархические электроды из высокопроводящих NiCo 2 S 4 массивов нанотрубок, выращенных на бумаге из углеродного волокна для высокопроизводительных псевдоконденсаторов. Nano Lett. 14, 831–838. DOI: 10.1021 / nl404199v
PubMed Аннотация | CrossRef Полный текст | Google Scholar
Сяо, Ю., Ли, С. Х., и Сунь, Ю. К.. (2017). Применение сульфидов металлов в ионно-натриевых батареях. Adv. Energy Mater. 7: 1601329.DOI: 10.1002 / aenm.201601329
CrossRef Полный текст | Google Scholar
Xu, X., Yu, D., Zhou, H., Zhang, L., Xiao, C., Guo, C., et al. (2016). Нанолисты MoS 2 , выращенные на аморфных углеродных нанотрубках для увеличения накопления натрия. J. Mater. Chem. А 4, 4375–4379. DOI: 10.1039 / C6TA00068A
CrossRef Полный текст | Google Scholar
Ян Б., Ли X., Бай З., Линь Л., Чен Г., Сонг X. и др. (2017). Превосходное хранение натрия в новых наночастицах VO 2 , инкапсулированных в смятый восстановленный оксид графена. J. Mater. Chem. А 5, 4850–4860. DOI: 10.1039 / C6TA10309J
CrossRef Полный текст | Google Scholar
Янь, Й., Инь, И-Х., Го, И-Г., И Ван, Л-Дж. (2014). Иерархически пористый композит углерод / графен в виде сэндвича в качестве высокоэффективного анодного материала для натрий-ионных аккумуляторов. Adv. Energy Mater. 4: 1301584. DOI: 10.1002 / aenm.201301584
CrossRef Полный текст | Google Scholar
Янг, К., Лян, X., Оу, X., Чжан, К., Чжэн, Х.С., Zheng, F., et al. (2019). Гетероструктурированный бинарный сульфид в форме нанокубика (SnCo) S 2 , чередующийся с S-легированным графеном, в качестве высокоэффективного анода для усовершенствованных аккумуляторов Na + . Adv. Функц. Матер. 29: 1807971. DOI: 10.1002 / adfm.201807971
CrossRef Полный текст | Google Scholar
Янг, Дж., Ма, М., Сунь, К., Чжан, Ю., Хуанг, В., и Дун, X. (2015). Гибридные NiCo 2 S 4 @MnO 2 гетероструктуры для электродов высокопроизводительных суперконденсаторов. J. Mater. Chem. А 3, 1258–1264. DOI: 10.1039 / C4TA05747C
CrossRef Полный текст | Google Scholar
Юн Д. Х., Штауфер С. К., Сяо П., Парк Х., Нам Й., Долокан А. и др. (2016). Простой синтез композитов нанокристаллического сульфида олова / восстановленного оксида графена, легированного азотом, в качестве анодов литий-ионных аккумуляторов. ACS Nano 10, 10778–10788. DOI: 10.1021 / acsnano.6b04214
PubMed Аннотация | CrossRef Полный текст | Google Scholar
Ю., Д.J., Yuan, Y.F., Zhang, D., Yin, S.M., Lin, J.X., Rong, Z., et al. (2016). Массив никель-кобальт-сульфидных нанотрубок на никелевой пене в качестве анодного материала для современных литий-ионных аккумуляторов. Электрохим. Acta 198, 280–286. DOI: 10.1016 / j.electacta.2016.01.189
CrossRef Полный текст | Google Scholar
Ю. Л., Чен Г. З. (2020). Супераккумуляторы как высокоэффективные электрохимические накопители энергии. Electrochem. Energy Rev 3, 85–89. DOI: 10.1007 / s41918-020-00063-6
CrossRef Полный текст | Google Scholar
Ю, Н., Чжу, М.К., и Чен, Д. (2015). Гибкие твердотельные асимметричные суперконденсаторы с трехмерными электродами из CoSe 2 / углеродная ткань. J. Mater. Chem. А 3, 7910–7918. DOI: 10.1039 / C5TA00725A
CrossRef Полный текст | Google Scholar
Ю., X. Y., и Дэвид Лу, X. W. (2018). Смешанные сульфиды металлов для электрохимического накопления и преобразования энергии. Adv. Energy Mater. 8: 1701592. DOI: 10.1002 / aenm.201701592
CrossRef Полный текст | Google Scholar
Ю, Х-У., Ю., Л., и Лу, X. W. D. (2016). Полые наноструктуры сульфидов металлов для электрохимического накопления энергии. Adv. Energy Mater. 6: 1501333. DOI: 10.1002 / aenm.201501333
CrossRef Полный текст | Google Scholar
Zhang, K., Park, M., Zhou, L., Lee, G.H., Shin, J., Hu, Z., et al. (2016). Легированные кобальтом наносферы FeS 2 с полной растворимостью в твердых веществах в качестве высокоэффективного анодного материала для натрий-ионных аккумуляторов. Angew. Chem. Int. Эд. Англ. 55, 12822–12826.DOI: 10.1002 / anie.201607469
PubMed Аннотация | CrossRef Полный текст | Google Scholar
Чжан, К., Сунь, Ю., Чжан, В., Го, Дж., И Чжан, X. (2019). VMo с межслойным расширением 2 S 4 нанолистов на RGO для быстрого и быстрого хранения лития и натрия. J. Alloys Compd. 772, 178–185. DOI: 10.1016 / j.jallcom.2018.09.082
CrossRef Полный текст | Google Scholar
Zhang, L., Wu, H. B., Yan, Y., Wang, X., and Lou, X. W. (2014).Иерархические микробоксы MoS 2 , построенные из нанолистов с улучшенными электрохимическими свойствами для хранения лития и расщепления воды. Energy Environ. Sci. 7, 3302–3306. DOI: 10.1039 / C4EE01932F
CrossRef Полный текст | Google Scholar
Zhang, Y., Wang, P., Yin, Y., Zhang, X., Fan, L., Zhang, N., et al. (2019). Гетероструктурированные полые нанобоксы SnS-ZnS @ C, залитые в графен, для высокоэффективных литиевых и ионно-натриевых батарей. Chem. Англ.J. 356, 1042–1051. DOI: 10.1016 / j.cej.2018.09.131
CrossRef Полный текст | Google Scholar
Чжан З., Ли З. и Инь Л. (2018). Полая призма NiCo 2 S 4 , соединенная между собой восстановленным оксидом графена в качестве высокоэффективного анодного материала для натриевых и литий-ионных батарей. N. J. Chem. 42, 1467–1476. DOI: 10.1039 / C7NJ03581K
CrossRef Полный текст | Google Scholar
Чжао, Ю., и Мантирам, А. (2015).Bi 0,94 Sb 1,06 S 3 кластерные аноды с наностержнями для натрий-ионных аккумуляторов: повышенная обратимость за счет синергетического эффекта твердого раствора Bi 2 S 3 -Sb 2 S 3 . Chem. Матер. 27, 6139–6145. DOI: 10.1021 / acs.chemmater.5b02833
CrossRef Полный текст | Google Scholar
Zheng, P., Dai, Z., Zhang, Y., Dinh, K. N., Zheng, Y., Fan, H., et al. (2017). Масштабируемый синтез графеновых композитов, легированных SnS 2 / S, для создания превосходных Li / Na-ионных аккумуляторов. Nanoscale 9, 14820–14825. DOI: 10.1039 / C7NR06044K
PubMed Аннотация | CrossRef Полный текст | Google Scholar
Чжун, Дж., Сяо, X., Чжан, Ю., Чжан, Н., Чен, М., Фань, X., и др. (2019). Рациональная разработка композита Sn-Sb-S со структурой, напоминающей гортензию, в качестве перспективного анодного материала для натрий-ионных аккумуляторов. J. Alloys Compd. 793, 620–626. DOI: 10.1016 / j.jallcom.2019.04.232
CrossRef Полный текст | Google Scholar
Чжоу, Дж., Цинь, Дж., Го, Л., Чжао, Н., Ши, К., и Лю, Э. З. (2016). Масштабируемый синтез высококачественных нанолистов из дихалькогенидов переходных металлов и их применение в качестве анодов натрий-ионных аккумуляторов. J. Mater. Chem. А 4, 17370–17380. DOI: 10.1039 / C6TA07425A
CrossRef Полный текст | Google Scholar
Чжоу, К., Лю, Л., Хуан, З., И, Л., Ван, X., и Цао, Г. (2016). Co 3 S 4 @ полианилиновые нанотрубки в качестве высокоэффективных анодных материалов для ионно-натриевых батарей. J. Mater. Chem. А 4, 5505–5516. DOI: 10.1039 / C6TA01497F
CrossRef Полный текст | Google Scholar
Zhu, Y., Nie, P., Shen, L., Dong, S., Sheng, Q., Li, H., et al. (2015). Высокая производительность и превосходная циклическая стабильность цветочного анода Sb 2 S 3 для ионно-натриевых батарей большой емкости. Наноразмер 7, 3309–3315. DOI: 10.1039 / C4NR05242K
PubMed Аннотация | CrossRef Полный текст | Google Scholar
Высокоэффективные биметаллические сульфиды для литий-серных аккумуляторов
Основные характеристики
- •
Впервые мы применили биметаллические сульфиды для Li-S аккумуляторов.
- •
Li-S батареи показали отличные циклические характеристики и высокую кулоновскую эффективность.
- •
NiCo 2 S 4 @CNTs обладают сильной адсорбцией полисульфида (Li 2 S 6 ).
- •
Гибрид NiCo 2 S 4 @CNT имеет уникальную структуру.
Реферат
Чтобы получить замечательные катодные материалы для литий-серных батарей со сверхвысоким использованием активных материалов и превосходной циклической стабильностью, мы сначала используем карбоксилированные углеродные нанотрубки для приготовления NiCo 2 S 4 @ CNTs / S для литий-серные батареи простым гидротермальным методом с последующим низкотемпературным отжигом.NiCo 2 S 4 @CNT представляют собой уникальную структуру, которая обладает тонкими ветвями, заполненными плотно упакованными маленькими листочками, по которым распределяется большое количество микропор. В новой сверхструктуре карбоксилированные углеродные нанотрубки могут эффективно улучшить способность электронного транспорта и проводимость катодного материала. В литий-серных батареях сульфиды биметалла обладают сильной адсорбцией полисульфидов, эффективно подавляя диффузию полисульфидов лития.Электрод NiCo 2 S 4 @ CNT / S показывает емкость 788 мАч -1 при плотности тока 0,5 ° C и 758 мАч -1 при 2 ° C. Даже после 1000 циклов при плотности тока 0,6 ° C емкость уменьшается только на 0,0489% за каждый цикл. Следует отметить, что большая часть кулоновской эффективности электрода NiCo 2 S 4 @ CNT / S составляет около 99%, независимо от плотности тока. Что еще более важно, NiCo 2 S 4 @CNT могут демонстрировать выдающуюся способность абсорбировать полисульфиды лития, что обеспечивает многообещающую стратегию для изготовления усовершенствованных литий-серных батарей.