Антикоррозионная краска — надежная защита от ржавчины
Антикоррозионная краска — это лакокрасочное покрытие, предназначенное для защиты металлов от коррозии из-за атмосферных воздействий и других неблагоприятных факторов. Также подобные составы выполняют декоративную функцию, придавая изделию более привлекательный внешний вид.
Свойства красок для защиты от коррозии
Антикоррозионная краска представляет собой сложный многокомпонентный состав, в который входят связующие, пигменты, а также различные добавки и вспомогательные вещества. Именно их комбинации определяют конечные свойства покрытия. Несмотря на это, можно выделить некоторые общие черты, которые характерны для всех подобных красок:
Химическая и атмосферная стойкость. После полного высыхания ЛКМ образует на поверхности надежный защитный слой, который исключает последующее ржавление от воздействия атмосферных осадков и различных химических веществ.
Долговечность покрытия. Средний срок эксплуатации антикоррозионного красочного покрытия составляет около 3-3,5 лет. В течение этого срока металлоизделие полностью защищено от коррозии.
Нейтрализация коррозионных процессов. В состав антикоррозийной краски обязательно входит преобразователь ржавчины или подавители окисления. Это позволяет наносить состав поверх ржавчины и препятствует ее дальнейшему распространению.
Простота нанесения. В большинстве случаев антикоррозионные краски могут наноситься на покрытие как стандартными малярными инструментами, так и пульверизаторами. При этом чаще всего перед нанесением не нужно проводить никаких подготовительных работ.
Использование антикоррозионных красок при работе с различными металлоконструкциями обеспечивает надежную защиту от ржавчины и позволяет продлить срок их эксплуатации.
ЛКМ производства компании КрасКо
Компания КрасКо выпускает собственную линейку красок с антикоррозионной защитой разных видов металлов. В ассортименте представлены следующие наименования:
Нержамет. Алкидная эмаль, наносить которую можно поверх ржавчины. Данный состав выполняет функции сразу трех отдельных материалов: грунтовки, преобразователя коррозии и эмали.
Быстромет. Грунт-эмаль по металлу, которую можно наносить при температурах ниже нуля. Характеризуется быстрым высыханием даже в мороз, высокой адгезией и хорошей укрывистостью.
Полимерон. Специальная антикоррозионная эмаль по металлу с повышенной износостойкостью. Разработана для использования в условиях агрессивной промышленной атмосферы.
Сереброл. Алюминиевая краска, предназначенная для окрашивания черных металлов и поверхностей с оцинковкой. Отлично подойдет для любых конструкций, которые в процессе эксплуатации подвергаются воздействию влаги.
Нержалюкс. Эмаль для работы с изделиями из цветных металлов и их сплавов, включая алюминиевые и оцинкованные поверхности.
Цикроль. Атмосферостойкая краска, предназначенная для окрашивания крыш. Она отличается высокими защитными свойствами и стойкостью к атмосферным воздействиям.
Нержапласт. Антикоррозионная эмаль с эффектом «жидкий пластик».
Молотекс. Молотковая эмаль для стали, оцинкованной стали, медных и алюминиевых сплавов. Образует покрытие с особым декоративным эффектом.
Более подробную информацию по продукции КрасКо можно получить на сайте и у менеджера по тел. 8 (800) 301-21-80. Наши специалисты бесплатно помогут вам подобрать наиболее подходящий материал для конкретных задач.
Антикоррозийные краски – превосходная защита металлоконструкций
Антикоррозийные краски представляют собой сложные с химической точки зрения комбинации веществ, которые надежно предохраняют от влияния агрессивной внешней среды металлоконструкции. Кроме того, они эффективно нейтрализуют явления, связанные с окислением металлических поверхностей.
1 Особенности современных антикоррозионных составов
Интересующая нас краска по металлу при грамотном применении гарантирует длительную защиту трубопроводов, металлоконструкций, элементов всевозможных механизмов и производственных машин, а также деталей авто от ржавления. С ее помощью выполняется обработка сельскохозяйственной, строительной и промышленной техники, гидросооружений и автомобильных мостов, станочного оборудования.
Такие составы по металлу являются особенно востребованными промышленными предприятиями, на которых требуется защитить на длительное время от коррозии поверхности стальных и металлических конструкций различного назначения. Современные краски по металлу против ржавчины действуют за счет того, что они формируют на поверхности металлоконструкций и деталей авто особое покрытие, консервирующее металл и даже восстанавливающее его начальные свойства. Это существенно увеличивает эксплуатационный срок изделий.
При этом любая антикоррозийная композиция наших дней характеризуется и высоким уровнем декоративности. Окрашенные ею поверхности выглядят без преувеличения великолепно на протяжении долгого времени. Высококачественная краска по металлу с антикоррозионными свойствами обладает следующими особыми свойствами:
- Атмосферная и химическая стойкость. Нанесенный на металл или сталь состав исключает вероятность образования повторного ржавления, он эффективно противостоит любым неблагоприятным производственным и погодным воздействиям.
- Отличная технологичность. Любая антикоррозийная композиция очень легко наносится на обрабатываемую поверхность. Зачастую перед покраской даже не требуется специальной подготовки изделий. Кроме того, практически все антикоррозионные составы наносятся как механизированным, так и ручным способом, что значительно расширяет сферу их использования.
- Долговечность. Минимальный срок службы описываемых покрытий составляет 3–3,5 года. А некоторые производители выпускают и более долговечные краски.
- Эффективная нейтрализация процессов ржавления. В краски с антикоррозионным эффектом обязательно входят преобразователи и мощные подавители окисления металлов, а также специально подобранные химически активные соединения и отдельные компоненты.
- Отдельно отметим, что в большинстве своем антикоррозийные составы по металлу без проблем сочетаются с другими лакокрасочными композициями, которые изготавливают на самых разнообразных основах.
Указанные свойства интересующих нас специальных красок вполне оправдывают их достаточно высокую стоимость, ведь ни один «обычный» состав для покраски металлических поверхностей не обладает и десятой частью достоинств композиций, создаваемых специально для защиты металлоконструкций от коррозии. При подборе максимально эффективного состава для обработки изделий из стали и металла необходимо, прежде всего, проанализировать условия их эксплуатации.
Если металлические конструкции работают в агрессивных атмосферах, постоянно или периодически контактируют с химрастворами, солями, активными щелочами, их обработка должна выполняться красками, способными хорошо сопротивляться химическому воздействию. А вот краска для нанесения на элементы авто обычно подбирается так, чтобы она могла защитить поверхности транспортного средства от погодной «агрессии», и при этом имела привлекательные декоративные свойства.
2 Антикоррозионная защита металлоконструкций специальными красками
От ржавления изделия из металла и стали предохраняются комплексно по положениям Санитарных норм и правил 2.03.11 (их утвердили еще в 1985 году). Одним из важнейших этапов такой комплексной защиты является обработка металлоконструкций посредством их окрашивания специальными красящими композициями. И если раньше хорошая краска по металлу с антикоррозионными характеристиками была зачастую недоступна в нашей стране, то нынче ситуация кардинально изменилась.
На рынке имеется немало по-настоящему эффективных составов, выпускаемых известными зарубежными брендами и отечественными предприятиями.
Защита металлоконструкций красками по металлу выполняется по нескольким схемам. Базируются они на одном принципе – сначала выполняется обработка изделий грунтовкой, затем наносится краска либо специальная эмаль, обеспечивающая качественный и долговечный защитный слой. При эксплуатации металлоконструкций в химически неагрессивных или слабоагрессивных средах грунтовочная композиция наносится в один слой, в сильно- и среднеагрессивных – в два слоя. После этого используется краска против ржавления.
При ремонте металлоконструкций рассматриваемые антикоррозийные составы являются и вовсе незаменимыми. Нередко дробеструйное и пескоструйное оборудование не может полностью удалить старое покрытие. Приходится наносить новый лакокрасочный состав прямо на него. Это не всегда дает ожидаемые результаты – уровень защиты от коррозии получается очень и очень малым. А вот любая специальная краска по металлу может наноситься непосредственно на ржавчину, обеспечивая высочайшую степень противокоррозионной защиты.
3 Тонкости защиты от ржавчины элементов авто
Сейчас транспортные средства от коррозии предохраняют самыми разными методами.
Хороший эффект дает гальванирование, пассивирование, электрохимический способ. Но все они обладают явным недостатком, заключающимся в дороговизне подобных методик. По этой причине многими собственниками авто используется краска по металлу (антикор) с особыми характеристиками, которая обеспечивает высококачественную защиту днища машины, ее кузова и других узлов.Антикоры для автомобилей стоят сравнительно недорого, очень просто наносятся, имеют прекрасные декоративные параметры. Они играют роль изолятора металлических поверхностей авто от негативных влияний внешней среды. Подобные композиции бывают двух видов.
С помощью первых осуществляется обработка тех узлов транспортного средства, которые внешне не видны (их называют скрытыми). В данном случае используется краска на восковой либо масляной основе. Она нейтрализует уже имеющуюся ржавчину, а также не дает образовываться новой, проникая в мельчайшие трещинки на внутренних поверхностях элементов кузова транспортного средства, сделанных из металла.
Вторые антикоры, предназначенные для защиты внешних металлических поверхностей автомобилей, называют антигравийными. Их задача – предохранять пороги, днище авто, колесные арки и другие аналогичные элементы от песка и камней из-под колес движущегося транспортного средства. Такие композиции более густые, наносить их лучше при помощи распылителя либо малярной кисти. Делают их на базе современных полимерных составов, каучуковых и битумных соединений и смол.
Мастики и краски для защиты разных деталей авто от коррозии имеют, как вы поняли, разный состав. Поэтому производители четко указывают, для каких именно частей машины предназначается тот или иной антикор. Так, например, колесные арки и днище оптимально обрабатывать составами на базе резинобитумных смесей. А вот сланцевые композиции больше подходят для открытых элементов кузова и внешних частей колесных арок. Битумно-каучуковые же составы идеальны для нанесения на крылья, пороги, капот и багажник (изнутри) авто.
Перед приобретением антикоррозийной композиции для обработки машины рекомендуется внимательно изучить инструкцию по ее применению, чтобы точно знать, для каких именно поверхностей она создана. Если есть возможность, стоит обязательно проконсультироваться со специалистами автодела по поводу целесообразности использования какого-либо конкретного противокоррозионного состава.
4 Небольшой обзор популярных красок по металлу
К востребованным композициям против ржавления металлоконструкций относят широкую гамму средств под торговой маркой КрасКо. Данная компания изготавливает следующие антикоррозионные лакокрасочные материалы:
- для цветмета, оцинкованного металла и «нержавейки» –
- преобразователь коррозии Фосфомет;
- спецэмали – Быстромет, Нержамет, Молотекс, Полимерон, Сереброл;
- защитные грунтовки – Фосфогрунт, Полиуретол, Цинконол;
- водная эмаль Акваметаллик для обработки авто и металлоконструкций.
Все указанные составы отличаются простотой нанесения и отличными антикоррозионными свойствами. Их активно применяют в промышленности (окрашивание конструкций из металла и углеродистой стали, железнодорожных цистерн, емкостей, работающих в контакте с агрессивными химическими соединениями, трубопроводов).
Популярны и специальные эмали «ЭП». Для обработки титановых, алюминиевых, магниевых сплавов, а также изделий из высоколегированных сталей рекомендована композиция «ЭП-140», состоящая из эпоксидной смолы, суспензий с особыми характеристиками, отвердителя и растворителей органического вида. «ЭП-140» применяется на предприятиях авиастроительной промышленности, в машиностроительной отрасли, так как отлично защищает металл от влияния бензина, нефтепродуктов, кислот, минеральных масел, щелочей и влаги.
Для антикоррозионной защиты стали и чугуна используется краска «ЭП-5287» – подобранная суспензия органических и неорганических наполнителей и пигментов, а также полиэтиленполиамина (играет роль мощного отвердителя). А вот защиту опор мостов, резервуаров для нефти и любых видов трубопроводов лучше производить при помощи композиции «ЭП-5116», которая причислена к составам высшего класса качества.
Эффективное предохранение элементов автомобилей от ржавления обеспечивается материалами для окраски под брендами:
- Футура;
- Кирье;
- Мовиль;
- Феррекс;
- Антикоррозит.
виды и применение (+32 фото)
Металлические конструкции в строительстве широко используются при возведении многоквартирных сооружений, а также являются неотъемлемой частью загородного строительства. Выбор металла, как одного из строительных материалов, обусловлен его высокой прочностью, доступностью, а также прочими свойствами. Но, не смотря на все положительные характеристики, одно из уязвимых мест – коррозия. Чтобы не допустить дальнейшее образование ржавчины, применяется антикоррозионная краска по металлу.
О коррозии и технологиях борьбы с ней
Главный существенный минус металла – это слабая устойчивость к коррозионным процессам. По этой причине не только существенно ухудшается внешний вид металлоконструкции, но и снижается их эксплуатационный срок. Чтобы понять, как работает антикоррозийная краска, следует немного знать о ржавчине. Она образуется в результате окислительных процессов. Металл подвержен окислению тогда, когда в воздухе содержится много влаги.
Под воздействием паров влажности металл теряет свою прочность и привлекательность. Если окислительные процессы будут прогрессировать и начнут проникать глубоко в структуру материала, конструкции из него будут разрушаться изнутри.
Коррозионные процессы притягивают влагу, которая удерживается в металлах за счет пористой структуры.
Для борьбы с коррозией существуют традиционные защитные способы, большинство из них предполагает тщательную очистку последствий коррозионных процессов. Затем металлическая поверхность обрабатывается антикоррозийной грунтовкой и покрывается краской.
Но, с точки зрения финансовых и временных затрат, очистка, грунтование и покраска не всегда оправданы. Это обусловило необходимость в новых более выгодных средствах, позволяющих при меньшей трудоемкости обеспечить надежную защиту поверхностей. Сейчас такие средства есть.
Для защиты изделий из металла от прогрессирующих коррозионных процессов применяется специализированная лакокрасочная продукция, призванная воспрепятствовать окислительным процессам.
Виды красок по металлу
Перед тем как рассматривать спецсредства по ржавчине, необходимо изучить основные краски для металлических поверхностей. К ним относятся следующие типы составов:
- масляные;
- алкидные;
- акриловые;
- эпоксидные краски и эмали.
Эпоксидную эмаль за счет высокой токсичности очень редко используют в быту. Данный материал, в основе которого лежат силиконовые смолы, защищает от высоких температур.
Масляная краска на основе олифы и натуральных масел по причине слабой устойчивости к перепадам температур подходит лишь для внутренней отделки. Это значительно ограничивает возможности ее использования. Кроме того, масляная краска не способна надежно защитить металлы от окислительных процессов.
Алкидные красящие составы, подходящие для обработки оцинкованных поверхностей, также имеют преимущества и недостатки. Хоть алкидные ЛКМ и отличаются самой высокой адгезией, они не выдерживают высокотемпературных воздействий и подвержены горению.
Акриловые лакокрасочные материалы для металла очень популярны. Это легко объяснить наличием хороших характеристик. За счет высокой долговечности и гарантированной защиты от коррозионных процессов акриловые краски применяются и для внутренней, и для наружной отделки.
Также акриловые ЛКМ эффективны для обработки радиаторов отопления и других горячих деталей.
Также существуют и другие виды красок для защиты металла:
- Кровельная – наиболее популярна для защиты оцинкованных поверхностей.
- Маслобензостойкая – обеспечит антикоррозийную защиту не только от воздействия влаги, но и от агрессивных химических сред.
- Краска по ржавчине – обеспечивает двойную защиту. Так, поверхность надежно защищается от внешнего воздействия, а также нейтрализуется развитие уже начавшейся коррозии.
- Молотковая – применяется для защиты от коррозии садового инструмента.
- Износостойкая – ее применяют для покрытия деталей, которые подвержены механическим воздействиям.
- Краски на основе алюминия – продукция в быту не применяется. Эти ЛКМ популярны в кораблестроении. Они снижают интенсивность разрушений металлов при воздействии соленой воды.
Специальные антикоррозийные ЛКМ
Не каждая краска способна обеспечить оптимальный уровень защиты от коррозии. Поэтому стоит отдельно рассмотреть виды антикоррозийных эмалей по металлу и по ржавчине. Специалисты применяют такие ЛКМ для снижения трудоемкости и стоимости работ. Кроме того, такая продукция упрощает технологические процессы нанесения защитного покрытия.
Краски по ржавчине представляют собой быстровысыхающую однокомпонентную смесь, приготовленную на основе эпоксидно-модифицированной синтетической смолы. В составе имеются антикоррозийные пигменты, обеспечивающие эффективную и устойчивую защиту от коррозии и эффектное финишное покрытие.
За счет качественно подобранного комплекса синтетических смол, такие красящие материалы дают возможность получать глянцевое, полуматовое и матовое покрытие. Главное достоинство ЛКМ – покрытие способно сопротивляться грязи, которая является одной из причин образования коррозии.
Что касается областей применения, то сейчас эти краски применяют в промышленном и частном строительстве. Ими красят кровельные системы, газовые, а также водопроводные трубы, станки, сельскохозяйственную технику, а также прочие конструкции.
За счет наличия в составе специальных высокомолекулярных силиконов краска по ржавчине обладает массой преимуществ. Так, защитный слой способен препятствовать разрушительному воздействию влаги на поверхность. Смачивающая способность позволяет наносить ее на металлы без какой-либо подготовки.
Эксплуатационная температура поверхностей, обработанных этими составами, находится в диапазоне между -20 и +80 градусам. Покрытие устойчиво к ультрафиолету и может эксплуатироваться в жарком климате.
Преимущества красок по ржавчине
Можно выделить главные плюсы специальных лакокрасочных материалов:
- Состав можно наносить непосредственно на поврежденную коррозией поверхность, а также на плохо подготовленные участки.
- Материал образовывает устойчивое к атмосферным воздействиям покрытие, которое отталкивает воду и грязь.
- Высокая укрывистость и адгезия к ржавчине.
- Высокая сопротивляемость коррозии.
- Быстрое высыхание.
- Срок эксплуатации до 8 лет.
- Большой ассортимент цветов.
Наряду с достоинствами имеются и недостатки – нельзя красить оборудование, рабочая температура которого выше 150 градусов. Также нельзя наносить ЛКМ на металл, находящийся в контакте с водой для питья.
На видео: всё о краске по ржавчине.
Особенности молотковой краски
Антикоррозийная эмаль имеет большую палитру цветов и оттенков. Поверхность может быть матовой, полуматовой, молотковой. Обработанный участок имеет ощутимую шероховатость и металлический блеск. Производство этого ЛКМ осуществляют с применением алкидно-стирольных, акриловых и эпоксидных основ. Также в состав добавляют стекло мелкой фракции и алюминиевую пудру.
Из-за высокой стойкости к высокой влажности и температурным перепадам, а также механическим воздействиям и вибрации, краска подойдет для обработки промышленного оборудования и для антикоррозийной защиты цветных металлов.
Материал наносится прямо на ржавые участки без подготовки. Воздухонепроницаемая пленка создается за счет наличия в составе вяжущих компонентов.
Грунт-эмаль
Антикоррозийная грунт-эмаль также наносится на поврежденные коррозией поверхности без какой-либо предварительной подготовки. Это обуславливается эффектом состава.
Такой продукт имеет свойства грунтовки, антикоррозийного покрытия и эмали. За счет этого значительно упрощается работа с материалом.
Рекомендации специалистов
Если учесть огромное количество поверхностей из металла, специалисты рекомендуют несколько важных моментов, которые следует учитывать:
- Для окрашивания радиаторов и труб отопления лучше выбирать термостойкие виды ЛКМ;
- Окрашивать отопительные трубы лучше до начала сезона отопления;
- Печные детали также окрашивают материалами, устойчивыми к высокотемпературным воздействиям;
- Поверхности из цветных металлов должны покрываться спец. грунтами;
- При работе с промышленными объектами на свежем воздухе подойдут органические растворители.
ЛКМ для населения на ржавчину – это современные защитные продукты, позволяющие продлить срок службы металлических изделий. Использование этих специальных составов позволяет сэкономить массу времени на очистку покрытия. Используя антикоррозийную эмаль по металлу, можно получить хороший результат при минимальных вложениях.
Обзор антикоррозийных красок (2 видео)
Продукция разных производителей (32 фото)
Антикоррозийная краска СилТЭК по низким ценам в Екатеринбурге
Описание и назначение
По своей сути данный материал является антикоррозийной кремнийорганической краской, которая производится согласно ТУ 2312-002-56215126-2002.
СилТЭК – отечественное декоративно-защитное покрытие, основной функцией которого является эксплуатация в агрессивных средах. Благодарю своему составу, в который включены абразивостойкие элементы и соединения хрома, краска крайне устойчива к различным механическим воздействиям.
Антикоррозийная краска СилТЭК: назначение
В первую очередь антикоррозийная краска СилТЭК обеспечивает надежную защиту различных металлоконструкций, топливных трубопроводов, дымоходов, а также деталей из бетона, кирпича и дерева от негативных воздействий внешней среды. Также данный материал применяется для:
- Создание защитного слоя, который предотвратит влияние коррозийных и окислительных процессов в тяжелых условиях;
- Повышение показателей устойчивости к износу;
- Улучшение пожаробезопасных свойств конструкций, выполненных из дерева;
- Повышение свойств электроизоляции металлических и бетонных поверхностей;
- Отсутствует необходимость в дополнительной полировке;
- Исключена возможность отслаивания при влиянии переменных температур.
Преимущества
Отличительными качествами данной краски можно назвать качественную защиту от негативных воздействий внешней среды при диапазоне температур от -70 до +800 градусов по Цельсию. Покрытие из данной краски является самоочищающимся. Также благодаря отличным параметрам краски, её изначальный внешний вид сохраняется на протяжении длительного количества времени
Область применения
Антикоррозийная краска используется в самых разных сферах, среди которых:
- Строительная;
- Химическая промышленность, а также атомная энергетика;
- ГЭС, ГРЭС;
- Изоляция грунтовых вод, износостойкие разметочные покрытия;
- Обеспечение защиты металлоконструкций, эксплуатирующихся в тяжелых условиях;
- Высоковольтные линии электропередач;
- При отделке фасадов.
Мы следим за тем, чтобы вся продукция в нашем каталоге соответствовала современным требованиям качества и безопасности. Актуальность использования данного покрытия объясняется его свойствами. Купить антикоррозийную краску СилТЭК по доступной цене можно на сайте компании «Пенетрон».
Рекомендации по нанесению материала.
Работа с органосиликатной краской «СилТЭК» допускается при положительных и отрицательных температурах окружающего воздуха от минус 10 ° С до плюс 40 °С. Отверждённая композиция сохраняет свои свойства в диапазоне рабочих температур от минус 70 °С до плюс 300 °С (при горячем отверждении — до плюс 800 °С). При работе с краской «СилТЭК» необходимо соблюдать правила техники безопасности, производственной санитарии и пожарной безопасности.
Подготовка поверхностей.
Перед нанесением краски «СилТЭК» поверхность металлоконструкций очищают от ржавчины, окалины, остатков флюса, сварных брызг, жиров и других загрязнений, а также от всех видов грунтовок, за исключением органосиликатных. Очистку поверхности металлоконструкций производят механическим способом, вручную или химическим способом.При нанесении краски «СилТЭК» на оцинкованную поверхность, она должна быть тщательно обезжирена непосредственно перед нанесением краски. Обезжиривание производится растворителем (толуолом, ацетоном, 646) или составами на основе ортофосфорной кислоты.
Нанесение покрытий.
Для придания долговечности органосиликатную краску «СилТЭК» следует наносить на очищенные, сухие поверхности. Нанесение покрытий осуществляется обычными методами лакокрасочной технологии: кистью, валиком, пневматическим или безвоздушным распылением или окунанием. Нанесение покрытия на поверхность производится не менее чем в два слоя.
При положительной температуре воздуха второй и последующие слои наносятся после каждого предыдущего не ранее чем:
— через 2-3 мин. — при распылении или окунании;
— через 4 мин. — при нанесении кистью или валиком.
При отрицательной температуре окружающего воздуха второй и последующие слои наносят не ранее чем:
— через 40 мин. — при температуре от 0 °С до минус 5 °С;
— через 60 мин. — при температуре от минус 5 °С до минус 10 °С.
Методом окунания при отрицательной температуре окружающего воздуха наносить покрытия не рекомендуется.
Технические характеристики
1.Температура применения……………………..-10 °С +40 °С
2. Растворитель……………………………………….. толуол
3.Плотность, кг/л……………………………………….1,27
4. Укрывистость (расход), г/м2…………….250-300 (на 1 слой)
5. Внешний вид покрытия……………….. После отвердения поверхность ровная, гладкая, матовая, без пузырей и трещин
6. Марка по водонепроницаемости……………….. W10 – W12
7. Срок службы покрытия……………………………..10 – 12 лет
8. Время высыхания до степени 3 при +20 °С, ч…….2
9. Стойкость к температурам, °С………..-70…+300 (при горячем отверждении до +800)
10. Срок годности:
-без перемешивания………………………..1 год
-с перемешиванием………………………….5 лет
11. Цвет………………………………………Любой по ралу
Антикоррозийная защита и обработка металлоконструкций: как выбрать покрытие?
Схема нанесения лакокрасочных материалов на металл.
Антикоррозийна защита по типовой схеме представляет собой сочетание антикоррозийного грунта, огнезащитной краски и финишного покрытия.
О том как выбрать огнезащитную краску мы писали ранее. В этой статье мы хотели бы рассмотреть основные параметры выбора антикоррозийного грунта.
Все стальные конструкции, находящиеся на воздухе в воде или в грунте, требуют постоянной защиты. Степень защиты и выбор краски зависит от многих факторов:
Условия эксплуатации металлоконструкций
- Температура и влажность воздуха
- Наличие ультрафиолетового излучения.
- Химическое воздействие
- Механическое воздействие
Тип металла
Антикоррозийная защита требуется для таких материалов, как углеродистая, оцинкованная горячим способом или металлонапыленная сталь, алюминий или нержавеющая сталь.
Сроки службы покрытия
Имеется в виду предполагаемый промежуток времени до первого ремонта.
Определив параметры можно приступать к выбору грунта. На рынке представлены десятки импортных и отечественных материалов на любой бюджет.
Как выбрать качественное покрытие?
Стоит разобраться какие характеристики материала важны для конкретно объекта. Мы рекомендуем учитывать при выборе 9 показателей материала:
-
Скорость сушки
От скорости сушки зависит скорость выполнения работ, а следовательно, и стоимость антикоррозийных работ.
-
Адгезия
Низкая агдезия влияет на недолговечность покрытия и уязвимость к механическому воздействию. Антикоррозийный материал должен обеспечить прочное сцепление с окрашиваемой поверхностью. Это очень важно и для огнезащиты металлоконструкции.
-
Укрывистость
Экономически важный показатель. От класса укрывистости зависит расход материала до полного закрашивания поверхности.
-
Возможность нанесения при низких температурах
Для некоторых регионов нашей страны это один из решающих показателей.
-
Антикоррозионные свойства
Свойства материала, позволяющие препятствовать проникновению ржавчины в глубокие слои металла, и его разрушению в течение долгого времени.
-
Безопасность для здоровья
Обратите внимание на этот показатель, если ищете покрытие для жилых или административных зданий или помещений.
-
Лёгкость нанесения, растекаемость
К сожалению, об этом не прочитать на упаковке, но многие производители предлагают образцы покрытия.
-
Возможность нанесения на неподготовленную поверхность
Такая возможность позволяет значительно экономить на подготовке металлоконструкций к окраске, но и сильно влияет на стоимость продукта.
-
Совместимость с другими покрытиями
Совместимость с выбранным вами огнезащитным материалом.Обязательное условие для дальнейшей огнезащиты металлокнструкций.
Подходите с умом к выбору антикоррозийного покрытия и вы сможете сократить расходы на антикоррозийную защиту и найти идеальное решение для вашего объекта строительства.
© «KRON construction», при полном или частичном копировании материала ссылка на первоисточник обязательна.
Краска антикоррозийная «ЦИНОЛ» — лучшая цена от Лакокрасочные материалы «Партнер НН» в Иваново на СКИДКОМ.РФ
Купить краску антикоррозийную в Иваново «ЦИНОЛ»
Нужна антиккорозийная краска? В наличии магазина лакокрасочных материалов Краски 52 широкий выбор предложений в категории антикоррозийные краски. Покрытие обладает прочностью, эластичностью, хорошей адгезией, термостойкостью, стойкостью к сильнозагрязненной промышленной атмосфере; морской и пресной воде, водным растворам солей, нефти и нефтепродуктам. Применяется в комплексном покрытии с материалами на эпоксидной, полиуретановой, акриловой и виниловой основах. В нашем магазине красок Краски 52 Вы можете купить краску антикоррозийную в Иваново «ЦИНОЛ». Краски для внутренних работ, фасадные краски, краски для дерева и металла, эмали, лаки для пола и яхтные, масла и воски для внутренних и наружных работ, грунтовки для стен и потолка, антисептики для древесины и много других необходимых составов. В нашем магазине Краски 52 представлены товары только известных мировых и отечественных брендов.
ЗАКАЗАТЬ КРАСКУ АНТИКОРРОЗИЙНУЮ
Характеристика краски «ЦИНОЛ»:
- ПРОИЗВОДИТСЯ В СООТВЕТСТВИИ С ТУ 2313-012-12288779-99
- Предназначена для металлических поверхностей.
- Разбавляется: сольвентом.
- Расход: 195 — 325 г/м2.
- Время высыхания: 30 минут при температуре 20С.
- Назначение: Антикоррозийная защита
Купить краски оптом и в розницу в Иваново стало проще. К Вашим услугам магазин лакокрасочных материалов Краски 52, в котором представлен весь ассортимент лакокрасочной продукции для любого вида работ. Профессионально подготовленные менеджеры, помогут подобрать необходимую краску под Ваши запросы.
Чтобы заказать краску антикоррозийную в Иваново «ЦИНОЛ» звоните по телефону или заполните форму обратно звонка и наш специалист свяжется с Вами в ближайшее время:
Пожалуйста, скажите, что узнали номер на СКИДКОМ
Показать телефонЦИНОЛ — цинкнаполненная антикоррозийная композиция
Грунтовка «Цинол» — цинкнаполненная грунт-краска
Краска «Цинол» представляет собой композицию материалов, в основу которой входит высокомолекулярный синтетический полимер, высокодисперсный порошок цинка. «Цинол» предназначен для покраски металлических поверхностей, предотвращающий коррозию и ржавчину. Эмаль «Цинол» является универсальной, подходит для покрытия всех металлических и стальных поверхностей, которые претерпевают различные атмосферные влияния и температурные перепады. Металлические поверхности, которые покрыты «Цинолом», можно эксплуатировать в соленой и пресной воде, растворах этилового спирта, солевых растворах. Одно ограничение – покрытие не устойчиво в бензине.
Где можно использовать грунтовку «Цинол»?
Покрытие «Цинол» используют как самостоятельно так и в комплексе с покрывными эмалями для покраски различных видов металлоконструкций и изделий, среди которых:
- Мостовые конструкции и гидротехнические сооружения;
- Закладные детали в железобетонных конструкциях;
- Сварные швы;
- Резервуары нефтехранилищ;
- Каркасы и металлические фермы быстровозводимых зданий;
- Ёмкости с технической водой.
Покрытие ремонтопригодно
Грунт-краска хороша тем, что ее можно использовать как самостоятельный материал для покрытия металлических поверхностей от коррозии, и в качестве грунтовки под покрывные материалы при ремонтных работах металлических изделий. Покрытие можно наносить валиком или кистью, что существенно упрощает и облегчает процесс покраски. Покрытие наносится как ручным так и механизированным методами окраски. Материал обладает высокой адгезией, это позволяет обеспечить отличное сцепление грунта с поверхностью металла.
После нанесения на металлические изделия по методу холодного цинкования, «Цинол» образует защитную пленку. Благодаря краске «Цинол» можно увеличить срок службы металлических изделий в 2-4 раза. Если металлическому изделию важен декоративный вид, то «Цинол» можно использовать как грунтовку с покрывной эмалью «Алпол».
Как правильно наносить эмаль «Цинол»?
Работы по покраске можно производить при температуре от минус 15°С до плюс 40°С, также необходимо учитывать уровень влажности, он не должен превышать более 90%. Перед нанесением краски необходимо обезжирить водными растворами органических растворителей и обеспылить поверхность. Если необходимо многослойное покрытие, то каждый последующий слой наносится только после полного высыхания предыдущего слоя. Здесь стоит обратить внимание на то, что грунтовка высыхает достаточно быстро.
Купить «Цинол» в СПб».
Производителем «Цинола» является компания ВМП-«Цинол», основанная еще в 1991 году. Компания выпускает лакокрасочные материалы высокого качества, которые отвечают всем современным международным стандартам. Компания распространяет свою продукцию не только в городах России, но и сотрудничает с другими странами бывшего СССР, имеет представительства в Азии и США.
Компания ООО «ЭГО» в Санкт-Петербурге предлагает своим клиентам широкий выбор лакокрасочных покрытий, в том числе «Цинол» и его аналоги. Находясь на рынке по продаже лакокрасочных покрытий с 1996 года, мы успели завоевать неоспоримый авторитет среди других профильных компаний. Мы индивидуально подходим к каждому клиенту, и предлагаем вам купить «Цинол» оптом и в розницу.
Мы предлагаем своим клиентам:
- выгодные цены на «Цинол»;
- доставка «Цинола» в СПб и по всей России;
- гарантия качества товара;
- оперативные сроки поставки товара.
Как заказать в ООО «Эго» краску цинкнаполненную «Цинол»?
Заказать краску можно несколькими способами:
- позвонить нам по телефону или заказать обратный звонок;
- написать нам на электронный адрес.
Наши менеджеры предоставят вам всю необходимую информацию по покупке и доставке эмали «Цинол». Порядок работы по покупке в нашей компании проходит таким образом:
- сотрудник нашей компании согласовывает с вами количество товара, сроки и способы доставки;
- менеджер высылает реквизиты для оплаты;
- после поступления средств на счет, сотрудники согласовывают транспортную компанию или же вы осуществляете самовывоз.
На все товары, предоставленные на нашем сайте, действует гарантия качества. Вся продукция нашей компании сертифицирована. В нашей компании постоянно проходят акции на лакокрасочные материалы.
Звоните нам и заказывайте «Цинол» в ООО «ЭГО».
Типы антикоррозионных покрытий и их применение
ВведениеВ этой главе рассматриваются основные типы покрытий, которые в настоящее время доступны для использования, и содержится общая информация о составе покрытий. Он предназначен для предоставления основной информации о покрытиях и не является исчерпывающим руководством по выбору антикоррозионных покрытий. Если требуется информация о конкретном продукте или покрытиях, подходящих для определенных областей, следует проконсультироваться с производителем покрытия.
Покрытия часто делятся на две большие категории:
1) продукты для применения в новостройках и;
2) продукты, подходящие для технического обслуживания и ремонта, которые будут включать как капитальный ремонт, так и обслуживание на борту (OBM).
Типы антикоррозионных покрытий, используемых для OBM, часто представляют собой однокомпонентные продукты, поскольку это позволяет избежать трудностей с измерением и смешиванием небольших количеств продуктов из двух упаковок, хотя небольшие количества продуктов из двух упаковок иногда доступны от производителей красок.Ремонт, проводимый экипажем находящихся в эксплуатации судов, редко бывает успешным в долгосрочной перспективе из-за трудностей подготовки поверхностей к достаточно высоким стандартам.
Как правило, краски предназначены либо для определенных участков резервуара и для определенных функций для достижения наилучших характеристик, либо доступны универсальные покрытия для всех областей с компромиссными характеристиками. Во всех случаях необходимо соблюдать баланс между стоимостью, производительностью и сложностью обслуживания. Например, антикоррозионные покрытия, используемые на внешней стороне жилого помещения, имеют другие требования к характеристикам, чем антикоррозионные краски, используемые в балластных танках морской воды, поскольку коррозионное напряжение, оказываемое на последние, намного выше.Балластные цистерны также намного труднее обслуживать из-за трудностей доступа, и поэтому использование высокоэффективного (и часто более дорогого) покрытия является предпочтительным для поддержания стали в хорошем состоянии.
Напротив, трюмы навалочных судов страдают от истирания из-за удара груза и повреждения захвата, что часто приводит к коррозии. Грузовые трюмы, используемые в качестве балластных цистерн в тяжелую погоду, могут быть особенно подвержены коррозии в местах повреждения, и иногда для этого грузового трюма используется другое покрытие.Это также относится к грузовым танкам для нефтеналивных судов с обозначением класса «Чистые продукты», где любой грузовой танк может использоваться для тяжелого погодного балласта.
Состав краски
Краска может быть описана как жидкий материал, который можно наносить или растекать по твердой поверхности, на которой он впоследствии высыхает или затвердевает с образованием непрерывной липкой пленки. Краски в основном состоят из трех основных компонентов и множества добавок, которые включены в незначительных количествах. Основные компоненты:
• Связующее (также называемое наполнителем, средой, смолой, пленкой или полимером)
• Пигмент и наполнитель
• Растворитель
Из них , только первые два образуют окончательную сухую пленку краски. Растворитель необходим только для облегчения нанесения краски и начального образования пленки, но неизбежно, что на практике всегда остается некоторое количество растворителя в зависимости от уровня вентиляции.
СвязующиеСвязующие — это пленкообразующие компоненты краски, которые определяют основные характеристики покрытия, как физические, так и химические. Краски обычно называются по их связующему компоненту (например, эпоксидные краски, краски на основе хлорированного каучука, алкидные краски и т. Д.). Связующее образует прочную непрерывную пленку, которая отвечает за адгезию к поверхности и способствует общей стойкости покрытия к окружающей среде.Связующие, используемые при производстве красок, делятся на два класса: термореактивные и термопластичные. После высыхания термореактивное покрытие будет отличаться по химическому составу от краски в банке. После отверждения термоотверждаемые покрытия не подвержены действию растворителей.
В случае термопластичного покрытия сухая пленка и влажная краска различаются только содержанием растворителя и химически, они остаются практически одинаковыми. Если первоначально использованный растворитель наносится на термопластичное покрытие, оно размягчается и может быть повторно растворено в этом растворителе.
Сшитые (термореактивные) покрытияЭти покрытия обычно поставляются в двух отдельных упаковках, которые смешиваются вместе непосредственно перед нанесением. В жидких красках, содержащих растворитель, сушка считается двухэтапным процессом. Обе стадии на самом деле происходят вместе, но с разной скоростью.
Этап первый: растворитель уходит из пленки в результате испарения, и пленка становится сухой на ощупь. Этап второй: Пленка постепенно становится более химически сложной с помощью одного из следующих четырех методов:1) Реакция с кислородом воздуха, известная как окисление.
2) Реакция с добавлением химического отвердителя.
3) Реакция с водой (влажность в атмосфере).
4) Искусственное отопление.
Это преобразование в краске известно как высыхание или отверждение. Пленки, сформированные указанными выше способами, химически отличаются от исходных связующих и не будут повторно растворяться в исходном растворителе.
Эпоксидные смолыЭти смолы особенно важны, и их разработка для использования в качестве связующих была одним из самых значительных достижений в технологии антикоррозионных покрытий.Скорость сшивания или отверждения зависит от температуры. При температуре ниже 5 ° C скорость отверждения стандартных эпоксидных смол значительно снижается, и для получения оптимальных свойств пленки необходимо полное отверждение. Эпоксидные смолы со специальными отвердителями затвердевают или затвердевают при температуре до –5 ° C. Важно строго соблюдать рекомендации производителя покрытия по температуре нанесения, чтобы покрытия были эффективными в эксплуатации.
Выбор отвердителя очень важен, так как в случае основы он определяет свойства пленки.Существует широкий выбор как смол, так и отвердителей, что позволяет создавать продукты, подходящие для большинства областей применения. Эпоксидные смолы используются как под водой, так и над водой и демонстрируют хорошую стойкость ко многим морским средам, включая катодную защиту с использованием цинка или других анодов, но они имеют тенденцию к мелу на солнечном свете. Этот процесс происходит, когда связующее разрушается ультрафиолетовым светом с образованием рыхлой и рыхлой поверхности с частицами пигмента, остающимися на поверхности.
Полиуретановые смолыЭто полимеры, образующиеся в результате реакции между гидроксильными соединениями и соединениями, содержащими изоцианаты. В двухкомпонентных системах специальная полиэфирная или полиэфирная смола со свободными гидроксильными группами взаимодействует с высокомолекулярным изоцианатным отвердителем. Возможная проблема с этими материалами заключается в их чувствительности к воде при хранении и применении. Транспортировка и хранение должны осуществляться в строгом соответствии с рекомендациями производителей.Из-за их плохих свойств отверждения при низких температурах при нанесении необходимо соблюдать рекомендации производителя.
Полиуретановые смолы обладают превосходной химической стойкостью и стойкостью к растворителям и превосходят стандартные эпоксидные смолы по кислотостойкости. Эпоксидные смолы более устойчивы к щелочам, чем полиуретаны. Полиуретановые финишные покрытия очень твердые, обладают очень хорошим блеском, сохраняют блеск и могут не желтеть. Однако в некоторых случаях на них может быть трудно нанести следующий слой после старения, и для достижения оптимальной адгезии требуются очень чистые поверхности.Изоцианатный отвердитель также представляет потенциальную опасность для здоровья при распылении, которую можно преодолеть с помощью соответствующих средств защиты.
Алкидные смолы Алкидные смолы образуются в результате реакции между специальной органической кислотой (например, фталевой кислотой), специальным спиртом (например, глицерином или пентаэритритом) и растительным маслом или его жирными кислотами. Конечные свойства алкидных масел зависят от процентного содержания масла (называемого «маслянистость»), а также от используемых спирта и органической кислоты.Алкиды не устойчивы к кислотам или щелочам, и многие из приведенных ниже модификаций направлены на улучшение этой слабости, однако ни одна из них не обеспечивает полной устойчивости. Алкидные смолы можно дополнительно модифицировать различными смолами для конкретных целей. Неорганические смолыЭти типы включают силикаты, которые почти всегда используются в сочетании с цинковой пылью. Существуют неорганические силикаты на водной основе на основе силиката лития, калия или натрия и неорганические силикаты на основе растворителей, обычно основанные на этилсиликате.Покрытия на основе этих смол очень твердые, коррозионно-стойкие и термостойкие. Они требуют хорошей подготовки поверхности и часто ремонтируются с использованием органических покрытий. Цинк в неорганических смолах может растворяться в кислотных или щелочных условиях, но покрытия хорошо работают при нейтральном pH и часто используются в качестве покрытий для резервуаров.
Термопластические покрытияЭти типы связующих для красок представляют собой простые растворы различных смол или полимеров, растворенных в подходящих растворителях, и обычно поставляются в виде одной упаковки, что делает их особенно подходящими для работ по техническому обслуживанию.Сушка происходит просто за счет потери растворителя при испарении. Это называется физической сушкой, поскольку никаких химических изменений не происходит. Таким образом, полученная пленка всегда легко растворяется в исходном растворителе, а также может размягчаться при нагревании. Поскольку эти покрытия по определению требуют наличия значительного количества растворителя, они исчезают с рынков, где регулируется содержание летучих органических соединений, особенно в США и ЕС. Общие типы связующих в этой категории включают:
Смолы хлорированного каучукаСмолы хлорированного каучука обладают хорошей кислотостойкостью и водостойкостью на хорошо подготовленных поверхностях.Их температурная чувствительность может привести к различным дефектам пленки при использовании в очень жарком климате. Кроме того, белые и бледные цвета имеют ярко выраженную тенденцию к желтизне при воздействии яркого солнечного света. Краски на основе хлорированного каучука высыхают при низких температурах и обеспечивают хорошую межслойную адгезию как в свеженанесенных, так и в старых системах, что делает их пригодными для технического обслуживания.
Виниловые смолыВиниловые смолы основаны на пленкообразующих полимерах, состоящих из поливинилхлорида, поливинилацетата и поливинилового спирта в различных соотношениях.Используемые типы пластификаторов — трикрезилфосфат или диоктилфталат. Твердые материалы большего объема могут быть получены путем смешивания виниловой смолы с другими материалами, такими как акриловые смолы. Обычно свойства пленки и погодоустойчивые характеристики также показывают хорошие характеристики сушки при низких температурах и межслойной адгезии. Каменноугольная смола может быть добавлена для повышения водостойкости.
Пигменты и наполнителиПигменты и наполнители используются в красках в виде тонких порошков.Они диспергированы в связующем до размеров частиц примерно 5-10 микрон для отделочных красок и примерно 50 микрон для грунтовок.
Антикоррозионные пигменты (1) ЦинкМеталлический цинк широко используется в грунтовках, придающих коррозионную стойкость стали. Первоначальная защита осуществляется гальваническим воздействием. Однако, когда покрытие подвергается воздействию атмосферы, происходит прогрессирующее накопление продуктов коррозии цинка, в результате чего образуется непроницаемый барьер с небольшой гальванической защитой или без нее.Для обеспечения хорошей гальванической и барьерной защиты требуется высокий уровень цинка, около 85% цинка в сухой пленке по весу. В качестве смол можно рассматривать эпоксидные смолы и силикаты. Очевидно, что для правильного функционирования цинк должен находиться в тесном контакте со стальной подложкой, и поэтому важна хорошая чистота поверхности перед нанесением.
(2) Алюминиевые пигментыМеталлические алюминиевые чешуйки обычно используются в качестве антикоррозийного пигмента и действуют как антикоррозийные средства, создавая обходной путь для воды и ионов вокруг пластинчатых чешуек, а также поглощая кислород для дают оксиды алюминия, которые блокируют поры в покрытии.Там, где алюминий контактирует со сталью, также будет работать ограниченный механизм катодной защиты, хотя при использовании на танкерах и продуктовозах содержание алюминия в сухой пленке не должно превышать 10 процентов, чтобы избежать возможной опасности искры при скоплении горючих газов.
(3) Фосфат цинкаЭто также широко используемый антикоррозионный пигмент, и считается, что при нормальных условиях воздействия защита обеспечивается за счет барьерного эффекта, поскольку для обеспечения адекватной защиты от коррозии необходимы высокие уровни пигментации. защита.Фосфат цинка может быть включен практически в любое связующее, и из-за его низкой непрозрачности или прозрачности можно производить краски любого цвета.
Барьерные пигментыНаиболее распространенными типами этих пигментов являются алюминий (листовой алюминий) и слюдяной оксид железа (MIO). Оба имеют форму частиц, которые называются пластинчатыми (пластинчатыми). Эти материалы можно использовать в сочетании, при этом алюминий осветляет почти черный оттенок MIO. Пигментированные пленки MIO обладают долговечностью, но для этого необходимы высокие уровни MIO, порядка 80% от общего пигмента.Алюминий уже много лет используется в качестве основного пигмента в красках. Пластинчатая форма делает пленку более водонепроницаемой. Стеклянные хлопья также используются в качестве барьерного пигмента.
Красящие пигменты Эти пигменты обеспечивают как цвет, так и непрозрачность, и их можно разделить на неорганические и органические типы. Самый распространенный красящий пигмент — диоксид титана белого цвета. В краске все пигменты обычно диспергированы до очень мелких частиц, чтобы обеспечить максимальный цвет и непрозрачность (укрывистость).Традиционно яркие цвета получали с помощью свинцовых и хромовых пигментов. Однако из-за проблем со здоровьем и безопасностью они встречаются реже. Теперь вместо них используются органические пигменты, но непрозрачность этих продуктов не такая высокая. Extender PigmentsКак следует из названия, они в основном регулируют или «расширяют» пигментацию краски до тех пор, пока не будет достигнута требуемая объемная концентрация пигмента (PVC). Пигменты-наполнители представляют собой неорганические порошки с различными формами и размерами частиц.Хотя они вносят небольшой вклад в непрозрачность цвета краски или не вносят ее вообще, они могут иметь значительное влияние на физические свойства. К ним относятся текучесть, степень блеска, противоосадочные свойства, способность к распылению, водо- и химическая стойкость, механическая прочность, твердость и твердость (твердый объем, задерживающая тиксотропия). Смеси наполнителей часто используются для получения желаемых свойств. Они относительно недороги по сравнению со смолами, антикоррозийными пигментами и красящими пигментами.
РастворителиРастворители используются в красках в основном для облегчения нанесения. Их функция заключается в растворении связующего и снижении вязкости краски до уровня, подходящего для различных методов нанесения, таких как кисть, валик, обычное распыление, безвоздушное распыление и т. Д. После нанесения растворитель испаряется и не играет никакой роли. Дальнейшая часть в финальной лакокрасочной пленке. Жидкости, используемые в качестве растворителей в красках, можно описать одним из трех способов:
(1) Истинные растворители — жидкость, которая растворяет связующее и полностью с ним совместима.
(2) Скрытый растворитель — жидкость, которая не является настоящим растворителем. Однако при смешивании с настоящим растворителем смесь обладает более сильными растворяющими свойствами, чем один настоящий растворитель.
(3) Растворитель-разбавитель — жидкость, которая не является настоящим растворителем. Обычно используется в качестве смеси с истинным растворителем / смесями скрытого растворителя для снижения стоимости.
Связующие допускают только ограниченное количество разбавителя. В лакокрасочной промышленности используется множество растворителей, отчасти это связано с рядом различных свойств, которые необходимо учитывать при выборе растворителя или смеси растворителей.Помимо коммерческих факторов, таких как цена и доступность, свойства включают токсичность, летучесть, воспламеняемость, запах, совместимость и пригодность. В некоторых странах использование некоторых типов растворителей запрещено. Это особенно верно в США, где Закон об опасных веществах, загрязняющих воздух (HAPS) определяет сроки удаления многих растворителей и наполнителей с покрытий. При реализации этого закона, скорее всего, будут затронуты свойства нанесения, время высыхания и окна перекрытия.
Антикоррозийные краскиЗа некоторыми исключениями (например, противообрастающие краски, косметические эффекты, антипирены и т. Д.), Большинство покрытий, наносимых на сосуд, используется для защиты от коррозии. Существует много типов антикоррозионных покрытий, но эпоксидные краски обычно покрывают большую часть судна, особенно когда они используются в балластных цистернах морской воды. В последние годы ведутся споры о терминологии, используемой для эпоксидных покрытий, и обычно используются следующие термины:
(1) Чистая эпоксидная смола
Чистые эпоксидные покрытия обычно рассматриваются как краски, содержащие только эпоксидные полимеры, сшивающий агент, пигменты, наполнители и растворители.Покрытия содержат большое количество эпоксидного связующего, поэтому ожидается, что они обеспечат максимально возможные характеристики покрытия с точки зрения защиты от коррозии, длительного срока службы и низких эксплуатационных расходов. Кроме того, некоторые продукты также обладают устойчивостью к истиранию. К чистым эпоксидным покрытиям могут быть добавлены другие пигменты, такие как алюминий, для обеспечения дополнительных антикоррозионных свойств. Эпоксидно-фенольные покрытия могут использоваться в грузовых танках, где требуется высокий уровень дополнительной устойчивости груза, например, на нефтепродуктах и химовозах.Особая осторожность требует подготовки поверхности; может потребоваться отверждение покрытия путем нагревания резервуаров. Производители покрытий сообщат конкретные требования для каждого резервуара.
(2) Модифицированная эпоксидная смола
Эта группа, также известная как эпоксидная мастика, не содержащая смол эпоксидная смола и отбеленная эпоксидная смола, охватывает широкий спектр продуктов и обеспечивает антикоррозионные свойства. В эксплуатации могут быть эффективны модифицированные эпоксидные смолы. Однако, поскольку существует множество возможных модифицированных составов эпоксидных смол, невозможно сделать обобщения об их антикоррозионных характеристиках.Модифицированные эпоксидные смолы могут содержать неэпоксидные материалы, которые способны образовывать поперечные связи в конечную пленку. Они также могут содержать инертные материалы, твердые или жидкие, которые не участвуют в образовании пленки, но остаются в конечном покрытии как пигменты или наполнители. Если эти материалы растворимы в воде (или в грузе), они могут вымываться в течение длительного периода времени, оставляя пористую или хрупкую пленку с пониженными антикоррозийными свойствами.
(3) Каменноугольная смола эпоксидная
Каменноугольная смола является продуктом природного происхождения.Угольные гудроны доступны в широком диапазоне типов от жидких до твердых. Включение каменноугольных смол в покрытие приводит к очень темно-коричневому или черному цвету покрытия, который можно немного осветлить, добавив пигмент в виде чешуек алюминия для более светлых красок. Однако маловероятно, что эпоксидные смолы каменноугольной смолы будут достаточно светлыми для использования в соответствии с требованиями IMO PSPC 4.4, таблица 1, пункт 1.2, для окончательного покрытия. Светлый верхний слой из эпоксидной смолы без содержания смолы может быть использован поверх первого слоя на основе смолы.Однако «просачивание» смолы может обесцветить верхнее покрытие. Некоторые компоненты покрытия могут вымываться в течение длительного времени, в результате чего покрытие становится более хрупким и менее защищенным. Эпоксидные смолы каменноугольной смолы имеют долгую историю эксплуатации и в целом хорошо себя зарекомендовали. С 1990-х годов они были выведены из эксплуатации в балластных цистернах из-за проблем со здоровьем и безопасностью нанесения покрытий, а также из-за рекомендаций по нанесению светлых покрытий для облегчения инспекций балластных танков.
(4) Эпоксидная смола, не содержащая растворителей
Краски, не содержащие растворителей (иногда называемые твердыми веществами на 100%), как следует из названия, формулируются и наносятся без необходимости в дополнительных растворителях, тем самым преодолевая проблемы остатки растворителей в покрытии.Вязкость, необходимая для распыления краски, получается путем выбора низкомолекулярного сырья или путем нагревания и использования многокомпонентных систем. Типичные области применения включают балластные и грузовые танки. Иногда они используются там, где удаление летучих органических компонентов (ЛОС) затруднено из-за плохой вентиляции, хотя следует отметить, что ЛОС для систем без растворителей не обязательно равен нулю. Типичные области применения покрытий, не содержащих растворителей, включают внутреннюю часть трубопроводов, некоторые резервуары и другие области, где не может быть обеспечена соответствующая вентиляция, или для областей, где действуют строгие меры контроля ЛОС.
Покрытия, устойчивые к ударам и истиранию Этот тип покрытия обычно наносится на те участки судов, которые наиболее подвержены повреждениям, такие как крыша багажника и палуба, и иногда используется для трюмов навалочных судов. Области вокруг концов всасывающих труб и горловины раструба иногда покрываются износостойкими покрытиями, так как эти области могут быть повреждены из-за высоких расходов груза или балластной воды и могут пострадать от эрозии из-за присутствия песка или мелких частиц. мусора в балластной воде.Покрытия, которые описываются как устойчивые к истиранию или повреждениям, демонстрируют повышенную стойкость к повреждению груза, но не смогут выдержать сильного удара грейферов и оборудования для очистки трюмов, что приводит к деформации самой стали.Антикоррозионные покрытия: обзор | SpringerLink
Кох, Г.Х., Бронгерс, М. П. Х., Томсон, Н. Г., Вирмани, Ю. П., Пайер, Дж. Х., (2002) «Стоимость коррозии и превентивные стратегии в Соединенных Штатах». Матер. Производительность, 65: 1.
Google Scholar
Фрагата, Ф., Салаи, Р.П., Аморин, К., Алмейда, Э., (2006) «Совместимость и несовместимость в антикоррозийной окраске — частный случай ремонтной окраски». Прог. Орг. Пальто., 56: 257.
CAS Google Scholar
Пандей, М.Д., Нессим, М.А., «Проверка на надежность бетонных плит с последующим натяжением». Canadian Journal Of Civil Engineering, (1996), 23 242.
Статья Google Scholar
Пиччиотти, М., Пиччиотти, Ф., «Выбор коррозионно-стойких материалов». Chem. Англ. Прог., 102 (2006), 45.
CAS Google Scholar
Шипилов С.А., Ле Мэй И., «Структурная целостность стареющих подземных трубопроводов, имеющих катодную защиту». , 13, (2006), 1159. DOI: 10.1016 / j.engfailanal.2005.07.008
CAS Google Scholar
Кулумби, Н., Гивалос, Л.Г., Пантазопулу, П., «Определение характеристик эпоксидных покрытий, содержащих наполнитель на основе полевого шпата». Технология пигментов и смол, 34, (2005), 148.
CAS Google Scholar
Дабрал, М., Фрэнсис, Л.Ф., Скривен, Л.Е., «Пути процесса сушки покрытия из раствора тройного полимера». AlChE J., 48, (2002), 25.
CAS Google Scholar
Алмейда, Э., «Обработка поверхности и покрытия для металлов. Общий обзор ». Ind. Eng. Chem. Res., 40, (2001), 3. DOI: 10.1021 / ie000209l
CAS Google Scholar
Элснер, К.И., Кавальканти, Э., Ферраз, О., Ди Сарли, А. Р., «Оценка влияния обработки поверхности на антикоррозионные свойства лакокрасочных систем на стали». Прог. Орг. Пальто., 48, (2003), 50.
CAS Google Scholar
Сантагата, Д.М., Сере, П.Р., Элснер, К.И., Ди Сарли, А. Р., «Оценка влияния обработки поверхности на коррозионные характеристики углеродистой стали с лакокрасочным покрытием». Прог. Орг. Пальто., 33, (1998), 44.
CAS Google Scholar
Нараянан, Т. Н. С., «Предварительная обработка поверхности фосфатными конверсионными покрытиями — обзор». Rev. Adv. Матер. Наук, 9, (2005), 130.
CAS Google Scholar
Нгуен, Т., Хаббард, Дж. Б., Макфадден, Г. Б., «Математическая модель катодного образования пузырей органических покрытий на стали, погруженной в электролиты». J. Protect. Пальто. Накладки, 63, (1991), 43.
CAS Google Scholar
Вайс, К.Д., «Краски и покрытия: зрелая отрасль в переходный период». Прог. Polym. Sci., 22, (1997), 203. DOI: 10.1016 / S0079-6700 (96) 00019-6
CAS Google Scholar
Гринфилд, Д., Скантлбери, Д., «Защитное действие органических покрытий на стали: обзор». J. Corros. Sci. Англ. , 2 (2000)
Уолтер Г.В., «Критический обзор защиты металлов красками». Коррос. Sci., 16, (1986), 39. DOI: 10.1016 / 0010-938X (86) -6
Google Scholar
ISO 12944 . Международная организация по стандартизации, Женева (1998)
ISO 9226 . Международная организация по стандартизации, Женева (1992)
Бардал, Э., «Коррозия и защита», Springer-Verlag, Лондон, (2005).
Google Scholar
Писториус П.К., Бурштейн Г.Т. «Метастабильная питтинговая коррозия нержавеющей стали и переход к стабильности». Филос. Пер. R. Soc. Лонд., А., 341, (1992), 531.
ADS CAS Google Scholar
Хусейн, А., Аль-Шамали, О., Абдулджалил, А., «Исследование ухудшения состояния эпоксидной краски на основе каменноугольной смолы, связанного с морской средой». Опреснение, 166, (2004), 295. doi: 10.1016 / j.desal.2004.06.084
CAS Google Scholar
Эпплман, Б., «Обзор методов ускоренных испытаний характеристик антикоррозионного покрытия». J. Coat. Technol., 62, (1990), 57.
CAS. Google Scholar
Кнудсен, О.О., Стейнсмо, У., Бьордал, М., Ниджер, С., «Ускоренное тестирование: корреляция между четырьмя ускоренными тестами и пятью годами полевых испытаний на море». J. Protect. Пальто. Покрытия , 52 (2001)
Чандлер, К.А., «Морская и морская коррозия», Баттервортс, Лондон, (1985).
Google Scholar
Йебра, Д.М., Киил, С., Дам-Йохансен, К., «Противообрастающие технологии — прошлые, настоящие и будущие шаги на пути к эффективным и экологически чистым необрастающим покрытиям.”Prog. Орг. Пальто., 50, (2004), 75.
CAS Google Scholar
Джонс, Д.А., «Принципы и предотвращение коррозии», Prentice Hall, Upper Saddle River, (1992).
Google Scholar
Гервасио Д., Сонг, И., Пайер, Дж. Х., «Определение продуктов восстановления кислорода на стали ASTM A516 во время катодной защиты». J. Appl. Электрохимия, 28, (1998), 979.DOI: 10.1023 / A: 1003451418717
CAS Google Scholar
Вроблова, Х.С., «Промежуточные продукты восстановления атмосферного кислорода и целостность границы раздела металл-органическое покрытие». J. Electroanal. Chem., 339, (1992), 31. DOI: 10.1016 / 0022-0728 (92) 80443-8
CAS Google Scholar
Wroblowa, H., Кадери, С., «Механизм и кинетика восстановления кислорода на стали». J. Electroanal. Chem., 279, (1990), 231. DOI: 10.1016 / 0022-0728 (90) 85179-9
CAS Google Scholar
Брубейкер Г.Р., Фиппс П.Б. (1979) «Химия коррозии». Американское химическое общество, Вашингтон, округ Колумбия,
Google Scholar
Baeckmann, W., Schwenk, W., Prinz, W., «Справочник по защите от катодной коррозии», Butterworth-Heinemann, Oxford, (1997).
Google Scholar
Кьернсмо, Д., Клевен, К., Шайе, Дж., «Защита от коррозии», Bording A / S, Копенгаген, (2003).
Google Scholar
Zhang, R., Chen, H., Cao, H., Huang, CM, Mallon, PE, Li, Y., He, Y., Sandreczki, TC, Jean, YC, Ohdaira, T ., «Деградация систем полимерных покрытий, исследованная с помощью аннигиляционной спектроскопии позитронов.IV. Кислородный эффект УФ-излучения ». J. Polym. Наук, 39, (2001), 2035.
CAS Google Scholar
Посписил, Дж, Неспурек, С, «Фотостабилизация покрытий. Механизмы и производительность ». Прог. Polym. Sci. , 25–1261 (2000)
Сангай Н.С., Мальше В.К. «Проницаемость полимеров в защитных органических покрытиях». Прог. Орг. Пальто., 50, (2004), 28.
CAS Google Scholar
Hare, C, «Неисправности системы покрытия, связанные с внутренним напряжением». J. Protect. Пальто. Покрытия , 99 (1996)
Чой, К.Л., «Покрытия с химическим осаждением из паровой фазы». Прог. Матер. Наук, 48, (2001), 57.
Google Scholar
Уилкокс, Г.Д., Гейб, Д.Р., «Электроосажденные покрытия из цинкового сплава». Коррос. Sci., 35, (1993), 1251. DOI: 10.1016 / 0010-938X (93)
-H
CAS Google Scholar
Хэр, К., «Барьерные покрытия». J. Protect. Пальто. Накладки, 6, (1989), 59.
Google Scholar
Хейр, К., «Антикоррозионные, барьерные и ингибирующие грунтовки», Федерация обществ по технологиям покрытий, Филадельфия, (1979).
Google Scholar
Steinsmo, U., Skari, J.I., «Факторы, влияющие на скорость катодного отслоения покрытий». Коррос.Sci., 50, (1994), 934.
CAS Google Scholar
Кин, Дж. Д., Веттах, В., Бош, К., «Минимальная толщина краски для экономичной защиты горячекатаной стали от коррозии». Journal of Paint Technology, 41, (1969), 372.
CAS Google Scholar
Соренсен, Пенсильвания, Киил, С., Дам-Йохансен, К., Вайнелл, CE, «Влияние топографии поверхности на катодное расслоение антикоррозионных покрытий.” Prog. Орг. Пальто. (в печати). DOI: 10.1016 / j.porgcoat.2008.08.027
ВМС США, Проектирование и дизайн: Покраска: Новое строительство и обслуживание, EM 1110-2-3400 (1995)
Томас, Н.Л., «Барьерные свойства лакокрасочных покрытий». Прог. Орг. Пальто., 19, (1991), 101.
CAS Google Scholar
Дики, Р.А., Смит, А.Г., «Как Paint останавливает Rust.”Chemtech, 10, (1980), 31.
CAS Google Scholar
Бэкон, К.Р., Смит, Дж. Дж., Рагг, Ф.Г., «Электролитическое сопротивление при оценке защитных свойств покрытий на металлах». Ind. Eng. Chem., 40, (1948), 161. DOI: 10.1021 / ie50457a041
CAS Google Scholar
Киттельбергер, У.В., Эльм, А.С., «Распространение хлорида через различные системы окраски.”Ind. Eng. Chem. Res., 44, (1952), 326.
CAS Google Scholar
Манро, Дж. И., Сегалл, С., «Катодная защита ледяных щитов на мосту Конфедерации через пролив Норттуберленд». Материалы перформанса, 37, (1998), № 362.
Google Scholar
Морган, Дж. Х., «Катодная защита», NACE, Хьюстон (1987).
Google Scholar
Роберж, П.Р., «Справочник по инженерии коррозии», МакГроу-Хилл, Нью-Йорк, (1999).
Google Scholar
Ламбурн, Р., Стривнес, Т.А., «Краски и покрытия поверхностей — теория и практика», Вудхед, Кембридж, (1999).
Google Scholar
Rouw, A.C., «Модельные эпоксидные порошковые покрытия и их адгезия к стали». Прог. Орг. Пальто., 34, (1998), 181.
CAS Google Scholar
Кинселла, Э.М., Мейн, Дж. Э. О., «Ионная проводимость в полимерных пленках, I: влияние электролита на сопротивление». Br. Polym. J., 1, (1969), 173.
CAS Google Scholar
Funke, W., «На пути к экологически приемлемой защите от коррозии с помощью органических покрытий. Проблемы и реализация». J. Coat. Технол., 55, (1983), 31.
CAS Google Scholar
Mayne, JEO, Scantlebury, JD, «Ионная проводимость в полимерных пленках. II. Неоднородная структура пленок лака ». Br. Polym. J. , 6 240 (1970)
Google Scholar
Риттер, Дж. Дж., Родригес, М. Дж., «Явления коррозии для железа, покрытого покрытием из нитрата целлюлозы». Коррозия, 38 (1982), 223.
CAS Google Scholar
Кинселла, Э.М., Мейн, Дж. Э. О., Скантлбери, Дж. Д., «Ионная проводимость в полимерных пленках, III: влияние температуры на водопоглощение». Br. Polym. J., 3, (1971), 41.
CAS Google Scholar
Мэйн, Дж. Э. О., Миллс, Д. Дж., «Влияние подложки на электрическое сопротивление полимерных пленок». J. Oil Color Chem.Assoc., 58, (1975), 155.
CAS Google Scholar
Вилче, Дж. Р., Бучарский, Э. К., Гвидице, К., «Применение EIS и SEM для оценки влияния формы и содержания пигмента в рецептуре ZRP на предотвращение коррозии морской стали». Коррос. Sci., 44, (2002), 1287. DOI: 10.1016 / S0010-938X (01) 00144-5
CAS Google Scholar
Хейр, К., Стил, М., Коллинз, С.П., «Цинковые нагрузки, катодная защита и посткатодные защитные механизмы в органических грунтовках с высоким содержанием цинка». J. Protect. Пальто. Покрытия , 54 (2001)
Фелиу, С., Барахас, Р., Бастидас, Дж. М., Морсилло, М., «Механизм катодной защиты красок с высоким содержанием цинка с помощью спектроскопии электрохимического импеданса. 1. Гальванический каскад ». J. Coat. Technol., 61, (1989), 63.
CAS. Google Scholar
Фелиу, С., Барахас, Р., Бастидас, Дж. М., Морсилло, М., «Механизм катодной защиты красок с высоким содержанием цинка с помощью спектроскопии электрохимического импеданса. 2. Барьерный этап ». J. Coat. Technol., 61, (1989), 71.
CAS. Google Scholar
Свобода, М., Материалы XXXI Международной конференции по КНХ , с. 5, 2000
Ruf, J, Korrosion Schutz durch Lacke und Pigmente , Verlag W.А. Коломб (2000)
Коэн, М., «Разрушение и восстановление ингибирующих пленок в нейтральном растворе». Коррозия, 32, (1976), 12.
Google Scholar
Романьоли Р., Ветере В.Ф. «Гетерогенная реакция между сталью и фосфатом цинка». Коррозия, 51, (1995), 116.
Статья Google Scholar
Менг, Q, Рамгопал, Т., Франкель, GS, «Влияние ионов-ингибиторов на кинетику растворения Al и Mg с использованием метода искусственной щели».” Electrochem. Solid-State Lett. , 5 B1 (2002). DOI: 10.1149 / 1.1429542
Rafey, S. A. M., Abd El Rehim, S. S., «Ингибирование хлоридной точечной коррозии олова в щелочной и близкой к нейтральной среде некоторыми неорганическими анионами». Электрохим. Acta, 42, (1996), 667.
Google Scholar
Шмуки П., Виртанен С., Айзекс Х.С., Райан М.П., Давенпорт А.Дж., Бёни, Х., Стенберг, Т., «Электрохимическое поведение искусственных пассивных пленок Cr2O3 / Fe2O3, исследованное in situ XANES». J. Electrochem. Soc., 145, (1998), 791. DOI: 10.1149 / 1.1838347
Google Scholar
Сакашита, М., Сато, Н., «Влияние молибдат-аниона на ионную селективность пленок водородного оксида железа в растворах хлоридов». Коррос. Sci., 17, (1977), 473. DOI: 10.1016 / 0010-938X (77) -8
CAS Google Scholar
Бюхлер М., Шмуки П., Бёни Х. «Пассивность железа в боратном буфере». J. Electrochem. Soc., 145, (1998), 609. DOI: 10.1149 / 1.1838311
CAS Google Scholar
Синко, Дж. «Проблемы замены пигментов-ингибиторов хромата в органических покрытиях». Прог. Орг. Пальто., 42, (2001), 267.
CAS Google Scholar
Rammelt, U., Райнхард, Г., «Определение характеристик активных пигментов при повреждении органических покрытий на стали с помощью спектроскопии электрохимического импеданса». Прог. Орг. Пальто., 24, (1994), 309.
CAS Google Scholar
Просек, Т., Тьерри, Д., «Модель выделения хромата из органических покрытий». Прог. Орг. Пальто., 49 (2004), 209.
CAS Google Scholar
Лю В.М., «Эффективность барьерных и ингибирующих антикоррозионных пигментов в грунтовках». Матер. Коррос., 49, (1998), 576.
CAS Google Scholar
Митчелл, М.Дж., Саммерс, М., «Как выбрать цинкосиликатные грунтовки». Защитить. Пальто. Евро. J. , 12 (2001)
Mitchell, MJ, «Силикат цинка или эпоксидная смола цинка в качестве предпочтительной высокоэффективной грунтовки», Международная конференция по коррозии , Южная Африка, 1999 г.
Ундрам, Х., «Превосходная защита — силикатные и эпоксидно-цинковые грунтовки». Прибой. Пальто. Aus., 44, (2007), 14.
CAS Google Scholar
Гульельми М., «Золь-гелевые покрытия на металлах». J. Sol – Gel Sci. Technol., 8, (1997), 443.
CAS Google Scholar
Баллард, Р.Л., Уильямс, Дж. П., Ньюс, Дж. М., Килэнд, Б. Р., Соучек, М. Д., «Неорганические-органические гибридные покрытия со смешанными оксидами металлов.» Евро. Polym. J., 37, (2001), 381. doi: 10.1016 / S0014-3057 (00) 00105-1
CAS Google Scholar
Шоттнер, Г., «Гибридные золь-гель-производные полимеры: применение многофункциональных материалов». Chem. Матер., 342213, (2001), 3422. doi: 10,1021 / см011060m
Google Scholar
Касеманн Р., Шмидт Х. «Покрытия для механической и химической защиты на основе органико-неорганических золь-гелевых нанокомпозитов.”New Journal of Chemistry, 18, (1994), 1117.
CAS. Google Scholar
Желудкевич, М.Л., Серра, Р., Монтемор, М.Ф., Ясакау, К.А., Сальвадо, ИММ, Феррейра, MGS, «Наноструктурированные золь-гелевые покрытия, легированные нитратом церия в качестве предварительной обработки для AA2024-T3 — Характеристики защиты от коррозии ». Электрохим. Acta, 51, (2005), 208. DOI: 10.1016 / j.electacta.2005.04.021
CAS Google Scholar
Воеводин, Н.Н., Гребаш, Н.Т., Сото, В.С., Кастен, Л.С., Грант, Дж. Т., Арнольд, Ф.Э., Донли, М.С., «Органически модифицированная цирконатная пленка как антикоррозионная обработка алюминия 2024-T3». Прог. Орг. Пальто., 41, (2001), 287.
CAS Google Scholar
Messaddeq, S.H., Pulcinelli, S.H., Santilli, C.V., Guastaldi, A.C., Messaddeq, Y., «Микроструктура и коррозионная стойкость неорганического-органического (ZrO2-PMMA) гибридного покрытия на нержавеющей стали.”J. Non-Cryst. Твердые тела, 247, (1999), 164. DOI: 10.1016 / S0022-3093 (99) 00058-7
CAS ОБЪЯВЛЕНИЯ Google Scholar
Шмидт, Х., Йоншкер, Г., Гедике, С., Меннинг, М., «Золь-гель процесс как основная технология для неорганических-органических композитов с дисперсными наночастицами». J. Sol – Gel Sci. Technol., 19, (2000), 39. DOI: 10.1023 / A: 1008706003996
CAS Google Scholar
Хофакер, С., Метчел, М., Магер, М., Краус, Х., «Золь – гель: новый инструмент для химии покрытий». Прог. Орг. Пальто., 45, (2002), 159.
CAS Google Scholar
Сек, С.И., Ким, Дж. Х., Чой, К. Х., Хванг, Ю. Ю., «Приготовление антикоррозионных покрытий на оцинкованном железе из водных неорганических-органических гибридных золей золь-гель методом». Прибой. Пальто. Technol., 200, (2006), 3468.
CAS Google Scholar
Патак, С.С., Ханна, А.С., М. Синха, Т. Дж., «Органико-неорганическое гибридное покрытие на основе золь-геля: новая эра защиты материалов от коррозии». Коррос. Ред., 24, (2006), 281.
CAS Google Scholar
Желудкевич, М.Л., Серра, Р., Монтемор, М.Ф., Сальвадо, И.М.М., Феррейра, М.Г.С., «Антикоррозионные свойства наноструктурированных золь-гелевых гибридных покрытий до AA2024-T3» Прибой. Пальто. Технол., 200, (2006), 3084.
CAS Google Scholar
Эпплман, Б., «Прогнозирование внешних морских характеристик покрытий из соляного тумана: два типа ошибок». J. Protect. Пальто. Накладки, 9, (1992), 134.
Google Scholar
Расмуссен, С.Н., «Защита от коррозии морских ветряных турбин», Чикаго, 2004 г.
Расмуссен, С.Н., «Защита от коррозии с покрытиями — улучшат ли результаты предварительные квалификационные испытания?», 2006 г.
Бирваген, Г., Таллман, Д., Ли, Дж., Хе, Л., Джеффкоат, К., «Исследования EIS покрытого металла при ускоренном экспонировании». Прог. Орг. Пальто., 46, (2003), 148.
CAS Google Scholar
Mansfeld, F., Tsai, C.H., «Определение разрушения покрытия с помощью EIS. I. Основные отношения ». Коррозия, 47, (1991), 958.
CAS Google Scholar
van Westing, E.П. М., Феррари, Г. М., Девитт, Дж. Х. У., «Определение характеристик покрытия с помощью измерений импеданса». Коррос. Наук, 34, (1993), 1511.
Google Scholar
ван Вестинг, Э. П. М., Феррари, Г. М., Дьюит, Дж. Х. У., «Определение характеристик покрытия с помощью измерений импеданса — II водопоглощение покрытий». Коррос. Наук, 36 (1994), 957.
Google Scholar
ван Вестинг, Э. П. М., Феррари, Г. М., де Вит, Дж. Х., «Определение характеристик покрытия с помощью измерений импеданса-IV. Защитные механизмы антикоррозионных пигментов ». Коррос. Наук, 36, (1994), 1323.
Google Scholar
ван Вестинг, Э. П. М., Феррари, Г. М., Гинен, Ф. М., Девит, Дж. Х. У., «Определение потери адгезии на месте». Прог. Орг. Пальто., 23, (1993), 89.
Google Scholar
Мансфельд, Ф., «Оценка явлений локализованной коррозии с помощью спектроскопии электрохимического импеданса (EIS) и электрохимического анализа шума (ENA)». J. Appl. Электрохим., 25, (1995), 187.
Google Scholar
Ху, Дж., Чжан, Дж., Чжан, Дж., Цао, К., «Новый метод определения коэффициентов диффузии коррозионных частиц в органических покрытиях с помощью EIS». J. Mater. Наук, 39, (2004), 4475.
CAS ОБЪЯВЛЕНИЯ Google Scholar
Hinderliter, B.R., Croll, S.G., Tallman, D.E., Su, Q., Bierwagen, G.P., «EIS-исследования металла с покрытием при ускоренном экспонировании». Электрохим. Acta, 51, (2006), 4505.
CAS Google Scholar
Ху, Дж. М., Чжан, Дж. К., Цао, К. Н., «Определение поглощения воды и диффузии ионов Cl- в эпоксидной грунтовке на алюминиевых сплавах в растворе NaCl с помощью спектроскопии электрохимического импеданса». Прог. Орг. Пальто., 46, (2003), 273.
CAS Google Scholar
Де Роса, Л., Монетта, Т., Беллуччи, Ф., «Поглощение влаги в органических покрытиях, контролируемое с помощью EIS». Матер. Sci. Форум, 289–292, (1998), 315.
Google Scholar
Чжан, Дж., Ху, Дж., Чжан, Дж., Цао, К., «Исследования поведения водного транспорта и моделей импеданса металлов с эпоксидным покрытием в растворах NaCl с помощью EIS». Прог. Орг. Пальто., 51, (2004), 145.
CAS Google Scholar
Дефлориан, Ф., Росси, С., «Исследование диффузии ионов через органические покрытия с помощью EIS». Электрохим. Acta, 51, (2006), 1736.
CAS Google Scholar
ISO 16733-2 . Международная организация по стандартизации (2007)
Скерри, Б.С., Иден, Д.А., «Электрохимические испытания для оценки защитных покрытий от коррозии». Прог. Орг. Пальто., 15, (1987), 269.
CAS Google Scholar
Chen, C.T., Skerry, B.S., «Оценка коррозионной стойкости окрашенной стали с помощью импеданса переменного тока и методов электрохимического шума». Коррозия, 47, (1991), 598.
CAS Google Scholar
Ле Ту, К., Бирваген, Г.П., Тузейн, С., «Измерения EIS и ENM для трех органических покрытий на алюминии». Прог. Орг. Пальто., 42, (2001), 179.
CAS Google Scholar
Миллс, Д., Маббут, С., «Исследование дефектов в органических антикоррозионных покрытиях с помощью электрохимического измерения шума». Прог. Орг. Пальто., 39, (2000), 41.
CAS Google Scholar
Миллс, Д., Маббут, С., Бирваген, Г., «Исследование механизма защиты пигментированных алкидных покрытий с использованием электрохимических и других методов». Прог. Орг. Пальто., 46, (2003), 163.
Google Scholar
Сяо, Х., Мансфельд, Ф., «Оценка разрушения покрытия с помощью спектроскопии электрохимического импеданса и электрохимического анализа шума». J. Electrochem. Soc., 141, (1994), 2332.
CAS Google Scholar
Mansfeld, F., Han, L.T., Lee, C.C., Chen, C., Zhang, G., Xiao, H., «Анализ данных электрохимического импеданса и шума для металлов с полимерным покрытием». Коррос. Sci., 39, (1997), 255.
CAS Google Scholar
Метикос-Хукович, М., Лончар, М., Зевник, Г., «Мониторинг шума электрохимического потенциала, создаваемого металлическими электродами с покрытием». Матер. Коррос., 40, (1989), 494.
CAS Google Scholar
Джеяпрабха, С., Муралидхаран, С., Венкатачари, Г., Рагхаван, М., «Применение электрохимических измерений шума в исследованиях коррозии: обзор». Коррос. Ред., 19, (2001), 301.
CAS Google Scholar
Кирнс, Дж. Р., Скалли, Дж. Р., Роберж, П. Р., Райхерт, Д. Л., Доусон, Дж. Л., Электрохимические измерения шума для коррозионных приложений . Американское общество испытаний и материалов, Вест Коншохокен (1996)
Ленг А., Штрекель Х., Стратманн М., «Отслаивание полимерных покрытий от стали. Часть 1. Калибровка зонда Кельвина и основного механизма расслоения ». Коррос. Sci., 41, (1999), 547.
CAS Google Scholar
Ленг, А., Штрекель, Х., Стратманн, М., «Отслоение полимерных покрытий от стали. Часть 2: Первый этап расслоения, влияние типа и концентрации катионов на расслоение, химический анализ границы раздела. Коррос. Наук, 41, (1999), 579.
CAS Google Scholar
Ленг, А., Штрекель, Х., Стратманн, М., «Отслоение полимерных покрытий от стали. Часть 3: Влияние парциального давления кислорода на реакцию расслоения и распределение тока на границе раздела металл / полимер.Коррос. Sci., 41, (1999), 599.
CAS Google Scholar
Фурбет У., Стратманн М., «Отслоение полимерных покрытий от электрогальванизированной стали — механистический подход. Часть 2: Расслоение от дефекта до стали ». Коррос. Наук, 43, (2001), 229.
CAS Google Scholar
Стратманн, М., Фезер, Р., Ленг, А., «Защита от коррозии с помощью органических пленок.Электрохим. Acta, 39, (1993), 1207.
Google Scholar
Редди Б., Сайкс Дж. М. «Деградация органических покрытий в коррозионной среде: исследование с помощью сканирующего зонда Кельвина и сканирующего акустического микроскопа». Прог. Орг. Пальто., 52, (2005), 280.
CAS Google Scholar
Редди, Б., Доэрти, М.Дж., Сайкс, Дж. М., «Разрушение органических покрытий в коррозионных средах, исследованное с помощью сканирующей акустической микроскопии Кельвина.Электрохим. Acta, 49, (2004), 2965.
CAS Google Scholar
Вапнер, К., Стратманн, М., Грундмайер, Г., «Инфракрасная спектроскопия in situ и измерения с помощью сканирующего зонда Кельвина переноса воды и ионов на границах раздела полимер / металл». Электрохим. Acta, 51, (2006), 3303.
CAS Google Scholar
Уикс, Д.А., Бах, Х., «Грядущая революция в области науки о покрытиях: высокопроизводительный скрининг рецептур.«Мир покрытий», 7, (2002), 38.
Google Scholar
Пилчер, Г.Р., «Встреча с вызовом радикальных изменений: исследования и разработки покрытий на пороге 21 века». J. Coat. Technol., 73, (2001), 135.
CAS Google Scholar
Киил, С., Вайнелл, К.Е., Педерсен, М.С., Дам-Йохансен, К., «Анализ самополирующихся красок с использованием вращающихся экспериментов и математического моделирования.”Ind. Eng. Chem. Res., 40, (2001), 3906.
CAS Google Scholar
Кил, С., Вайнелл, К.Е., Педерсен, М.С., Дам-Йохансен, К., «Математическое моделирование самополирующейся необрастающей краски, подверженной воздействию морской воды — исследование параметров». Chem. Англ. Res. Дев, 80, (2002), 45.
CAS Google Scholar
Kiil, S., Dam-Johansen, K., Weinell, C.E., Pedersen, M.С., Кодолар С.А. «Динамическое моделирование самополирующейся необрастающей краски, подверженной воздействию морской воды». J. Coat. Technol., 74, (2002), 89.
CAS Google Scholar
Киил, С., Вайнелл, С.Е., Педерсен, М.С., Дам-Йохансен, К., «Растворимые в морской воде пигменты и их возможное использование в самополирующихся красках для защиты от обрастания: инструмент для скрининга на основе моделирования». Прог. Орг. Пальто., 45, (2002), 423.
CAS Google Scholar
Йебра, Д.М., Киил, С., Дам-Йохансен, К., Вайнелл, С.Е., «Математическое моделирование поведения химически-активной противообрастающей краски без олова». AlChE J., 52, (2006), 1926.
CAS Google Scholar
Зисман В.А., «Успехи в химии, серия 43», Am. Chem. Soc., Вашингтон (1964).
Google Scholar
Селл, П.Дж., Нойман, А.В., «Поверхностное натяжение твердых тел.Энджью. Chem., 78, (1966), 321.
CAS Google Scholar
Фаукс, Ф.М., «Силы притяжения на стыках». Ind. Eng. Chem., 56, (1966), 40.
ADS Google Scholar
Kaelble, D.H., Uy, K.C., «Переосмысление взаимодействия органических жидкостей с поверхностью политетрафторэтилена». J. Adhes., 2, (1970), 50.
CAS Google Scholar
Оуэнс, Д.К., Вендт, Р.С., «Оценка поверхностной свободной энергии полимеров». J. Appl. Polym. Sci., 13, (1969), 1741.
CAS Google Scholar
Янг, Т., «Очерк сцепления жидкостей». Пер. Рой. SoC., 95, (1805), 65.
Google Scholar
Фаукс, Ф.М., «Физиохимические аспекты полимерных поверхностей», Plenum Press, Нью-Йорк, (1983).
Google Scholar
Болджер, Дж. К., «Аспекты адгезии полимерных покрытий», Plenum Press, Нью-Йорк, (1983).
Google Scholar
Сере, П.Р., Армас, А.Р., Элснер, К.И., Ди Сарли, А. Р., «Влияние состояния поверхности на адгезию и коррозионную стойкость систем искусственной морской воды из углеродистой стали и хлорированного каучука». Коррос. Наук, 38, (1996), 853.
CAS Google Scholar
Фальман, М., Джасти, С., Эпштейн, А.Дж., «Защита железа / стали от коррозии с помощью полианилина на основе эмеральдина: исследование с помощью рентгеновской фотоэлектронной спектроскопии». Synth. Met., 85, (1997), 1323.
CAS Google Scholar
Глейзер, Дж., «Однослойные исследования некоторых клеев на основе этоксилиновой смолы и родственных соединений». J. Polym. Наук, 13, (1954), 355.
CAS ОБЪЯВЛЕНИЯ Google Scholar
Наказава М., Соморджай Г.А., «Адсорбция замещенных бензолов на поликристаллическом золоте и на поверхностях из оксидов цинка и железа». Прил. Прибой. Наук, 68, (1993), 517.
ADS CAS Google Scholar
Наказава, М., Соморджай, Г., «Исследование адсорбции выбранных органических молекул для моделирования адгезии эпоксидных смол: термическая десорбция глицидиловых и феноксисоединений из золота, оксида железа и оксида цинка.”Appl. Прибой. Наук, 68, (1993), 539.
ADS CAS Google Scholar
Наказава М., Соморджай Г., «Коадсорбция воды и отдельных ароматических молекул для моделирования адгезии эпоксидных смол на гидратированных поверхностях оксидов цинка и железа». Прил. Прибой. Наук, 84, (1994), 309.
Google Scholar
Накадзава, М., «Механизм адгезии эпоксидной смолы к стальной поверхности.”Технический отчет Nippon Steel 63, стр. 16 (1994)
Хейр, К., «Руководство по надлежащей покраске стальных конструкций». Совет по окраске стальных конструкций, Питтсбург, (1995).
Google Scholar
Momber, AW, Greverath, WD, «Стандарты подготовки поверхности для стальных подложек — критический обзор». J. Protect. Пальто. Подкладки , 48 (2004)
Момбер, А.В., Коллер, С., Диттмерс, Х.Дж., «Влияние методов подготовки поверхности на адгезию органических покрытий к стальным основам.” J. Protect. Пальто. Облицовки , 44 (2004)
Кнапп, Дж. К., Тейлор, Т. А., «Анализ шероховатости поверхности с помощью гидроабразивной резки и прочность сцепления». Прибой. Пальто. Технол., 86, (1996), 22.
Google Scholar
Момбер, А.В., Коллер, С., «Как методы подготовки поверхности влияют на расслоение балластных цистерн». J. Protect. Пальто. Накладки, 25 (2008), 43.
Google Scholar
Сатьянарайна, М.Н., Ясин, М., «Роль промоторов в улучшении адгезии органических покрытий к субстрату». Прог. Орг. Пальто., 26, (1995), 275.
Google Scholar
Шрибер, Х.П., Цинь, Р.Й., Сенгупта, А., «Эффективность силановых усилителей адгезии в характеристиках полиуретановых клеев». J. Adhes., 68, (1998), 31.
Google Scholar
Pettrie, EM, Справочник по клеям и герметикам . McGraw-Hill (2000)
Кулумби, Н., Гивалос, Л.Г., Пантазопулу, П., «Влияние кварцевого наполнителя на поведение эпоксидных покрытий». J. Mater. Англ. Perform., 12, (2003), 135.
CAS Google Scholar
Алмейда, Э., Сантос, Д., Уручурту, Дж., «Коррозионные свойства покрытий на водной основе для конструкционной стали». Прог. Орг. Пальто., 37 (1999), 131.
CAS Google Scholar
Топчуоглу, О., Алтинкая, С.А., Балкосе, Д., «Характеристика пленок краски на водной основе акриловой краски и измерение их паропроницаемости». Прог. Орг. Пальто., 56, (2006), 269.
CAS Google Scholar
Гальяно, Ф., Ландольт, Д., «Оценка свойств защиты от коррозии добавок для эпоксидных покрытий на основе водного брома на стали.”Prog. Орг. Пальто., 44, (2002), 217.
CAS Google Scholar
Киил, С., «Сушка латексных пленок и покрытий: пересмотр основных механизмов». Прог. Орг. Пальто., 57, (2006), 236.
CAS Google Scholar
Шварц, Дж., «Важность низкого динамического поверхностного натяжения в покрытиях на водной основе». J. Coat. Technol., 64, (1992), 65.
CAS. Google Scholar
Брук, А.Д., «Экологически чистые краски. Их технические (Im) возможности ». Прог. Орг. Пальто., 22, (1993), 55.
CAS Google Scholar
Гашке, М., Дреер, Б., «Обзор технологии нанесения жидких эпоксидных покрытий без растворителей». J. Coat. Technol., 48, (1976), 46.
CAS Google Scholar
Дэниэлс, Э.С., Кляйн, А., «Развитие когезионной прочности в полимерных пленках из латексов: влияние взаимной диффузии полимерных цепей и сшивания».”Prog. Орг. Пальто., 19, (1991), 359.
CAS Google Scholar
Оичи, М., Такамий, К., Киёхара, О., Наканиши, Т., «Влияние добавления арамидно-силиконового блок-сополимера на фазовую структуру и прочность отвержденных эпоксидных смол, модифицированных силиконом. ” Полимер, 39, (1998), 725.
Google Scholar
Бхатнагар, М.С., «Эпоксидные смолы с 1980 года по настоящее время.”Технологии полимеров и пластов, 32, (1993), 53.
CAS Google Scholar
Салем, Л.С., «Эпоксидные смолы для стали». J. Protect. Пальто. Прокладки , 77 (1996)
Левита, Г., Де Петрис, С., Маркетти, А., Лазцери, А., «Плотность сшивки и трещиностойкость эпоксидных смол». J. Mater. Наук, 6, (1991), 2348.
ADS Google Scholar
Вецера М., Млезива Дж. «Влияние молекулярной структуры на химическое сопротивление эпоксидных смол без растворителей и высокотвердых эпоксидных смол». Прог. Орг. Пальто., 26, (1995), 251.
CAS Google Scholar
Ди Бенедетто, М., «Многофункциональные эпоксидные смолы достигли возраста». J. Coat. Technol., 52, (1980), 65.
CAS Google Scholar
Атта, А.М., Мансур, Р., Абду, М.И., Сайед, А.М., «Эпоксидные смолы на основе канифольных кислот: синтез и характеристика». Polym. Adv. Technol., 15, (2004), 514.
CAS. Google Scholar
Вегманн А., «Новая эмульсия эпоксидной смолы на водной основе». J. Coat. Technol., 65, (1993), 27.
CAS Google Scholar
Мискович-Станкович, В.Б., Дражич, Д.М., Теодорович, М.J., «Проникновение электролита через эпоксидные покрытия, электроосажденные на стали». Коррос. Sci., 37, (1995), 241.
CAS Google Scholar
Мискович-Станкович, В.Б., Зотович, Дж.Б., Качаревич-Попович, З., Максимович, М.Д., «Коррозионное поведение эпоксидных покрытий, электроосажденных на стали, электрохимически модифицированной сплавом Zn-Ni». Электрохим. Acta, 44, (1999), 4269.
CAS Google Scholar
Алмейда, Э., Сантос, Д., Фрагата, Ф., де ла Фуэнте, Д., Морсильо, М., «Антикоррозийная окраска для широкого спектра морских сред: экологичность по сравнению с традиционными системами окраски». Прог. Орг. Пальто., 57, (2006), 11.
CAS Google Scholar
Карретти, Э., Дей, Л., «Физико-химические характеристики акриловых полимерных смол, покрывающих пористые материалы, представляющие художественный интерес». Прог. Орг. Пальто., 49, (2004), 282.
CAS Google Scholar
Ахмад, С., Ашраф, С.М., Хассан, С.Н., Хаснат, А., «Синтез, характеристика и оценка рабочих характеристик твердых антикоррозионных покрытий, полученных из диглицидилового эфира акрилатов и метакрилатов бисфенола А». J. Appl. Polym. Sci., 95, (2005), 494.
CAS Google Scholar
Самуэльссон, Дж., Санделл, П.Э., Йоханссон, М., «Синтез и полимеризация радиационно-отверждаемой сверхразветвленной смолы на основе эпоксидных функциональных жирных кислот». Прог. Орг. Пальто., 59, (2004), 193.
CAS Google Scholar
Лиде, Д.Р., «Справочник CRC по химике и физике», Тейлор и Фрэнсис, Бока-Ратон, (2007).
Google Scholar
Ахмад, С., Гупта, А.П., Шармин, Э., Алам, М., Пандей, С.К., «Синтез, характеристика и разработка высокоэффективных эпоксидных красок, модифицированных силоксаном». Прог. Орг. Пальто., 54, (2005), 248.
CAS Google Scholar
Мангер, К.Г., «Химия цинкосиликатных покрытий». Предотвращение коррозии и контроль, 41, (1994), 140.
CAS Google Scholar
Socha, R.P., Pommier, N., Fransaer, J., «Влияние условий осаждения на образование тонких пленок силиката кремния». Прибой. Пальто. Technol., 201, (2007), 5960.
CAS. Google Scholar
Парашара, Г., Шриваставаб, Д., Кумар, П., «Этилсиликатные связующие для высокоэффективных покрытий». Прог. Орг. Пальто., 42, (2001), 1.
Google Scholar
Aigbodion, A.I., Okieimen, F.E., Obazee, E.О., Бакаре, И.О., «Использование малеинизированного масла из семян каучука и его алкидной смолы в качестве связующих в водоразбавляемых покрытиях». Прог. Орг. Пальто., 46, (2003), 28.
CAS Google Scholar
Уикс, З.У., Джонс, Ф.Н., Папас, П.С., Уикс, Д.А., Органические покрытия: наука и технологии . Wiley (1999)
van Gorkum, R., Bouwman, E., «Окислительная сушка алкидной краски, катализируемая комплексами металлов». Coord.Chem. Ред., 249 (2005), 1709.
Google Scholar
Ховарт, Г.А., «Полиуретаны, полиуретановые дисперсии и полиуретаны: прошлое, настоящее и будущее». Прибой. Пальто. Int., 86, (2003), 111.
CAS Google Scholar
Chattopadhyay, D.K., Raju, K.V .S. Н., «Конструктивное проектирование полиуретановых покрытий для высокоэффективных применений». Прог. Polym.Наук, 32, (2007), 352.
CAS Google Scholar
Аллен К.В., Хатчинсон А.Р., Паглюка А., «Исследование отверждения герметиков, используемых в строительстве». Int. J. Adhes. Adhes., 14, (1994), 117.
CAS. Google Scholar
Куган, Р.Г., «Пост-сшивание переносимых водой уретанов». Прог. Орг. Coat., 32, (1997), 51.
CAS. ОБЪЯВЛЕНИЯ Google Scholar
Hurst, N.W., Jones, T.A., «Обзор продуктов, полученных из угля с подогревом, древесины и ПВХ». Огонь и материалы, 9, (1985), 1.
CAS Google Scholar
Гласс, Г.К., Редди, Б., Буэнфельд, Н.Р., «Ингибирование коррозии в концентрате, обусловленное его способностью нейтрализовать кислоту». Коррос. Наук, 42, (2000), 1587.
CAS Google Scholar
Скерри, Б.С., Чен, C.T., Рэй, C.J., «Объемная концентрация пигмента и ее влияние на свойства коррозионной стойкости органических пленок краски». J. Coat. Technol., 46, (1992), 77.
Google Scholar
Ян Л.Х., Лю Ф.К., Хан Э.Х. «Влияние P / B на свойства антикоррозионных покрытий с различным размером частиц». Прог. Орг. Пальто., 53, (2005), 91.
CAS Google Scholar
Бирваген, Г.П., «Критическая объемная концентрация пигмента (ХПВХ) как точка перехода в свойствах покрытий». J. Coat. Technol., 64, (1992), 71.
CAS Google Scholar
Асбек В.К., ван Лоо М., «Критические объемные отношения пигмента». Ind. Eng. Chem. Res., 41, (1949), 1470.
CAS Google Scholar
Bierwagen, G.P., Rich, D.К., «Критическая объемная концентрация пигмента в латексных покрытиях». Прог. Орг. Пальто., 11, (1983), 339.
CAS Google Scholar
Браунсхаузен, Р.В., Балтрус, Р.А., Деболт, Л., «Обзор методов определения ХПВХ». J. Coat. Technol., 64, (1992), 51.
CAS Google Scholar
Стиг, Ф.Б., «Метод определения плотности для определения ХПВХ плоских латексных красок.”J. Coat. Technol., 55, (1983), 111.
CAS Google Scholar
Хеслер К.К. (1978) «Практическая методика определения ХПВХ систем латексных красок, содержащих диоксид титана». J. Coat. Technol. 50:57.
CAS Google Scholar
дель Рио, Г., Рудин, А., «Размер частиц латекса и ХПВХ». Прог. Орг. Пальто., 28, (1996), 259.
CAS Google Scholar
Шаллер, Э.Дж., «Критическая объемная концентрация пигмента в красках на основе эмульсии». J. Paint Technol., 40, (1968), 433.
CAS Google Scholar
Хорассани, М., Пурмахдиан, С., Афшар-Тероми, Ф., Нурхани, А., «Оценка критической объемной концентрации в системах латексных красок с использованием газопроницаемости». Иранский полимерный журнал, 14, (2005), 1000.
CAS Google Scholar
Лю Б., Ли Ю., Линь Х., Цао К., «Влияние ПВХ на диффузионное поведение воды через алкидные покрытия». Коррос. Sci., 44, (2002), 2657.
CAS Google Scholar
Родригес, М.Т., Грейсена, Дж. Дж., Кудама, А. Х., Суай, Дж. Дж., «Влияние объемной концентрации пигмента (ПВХ) на свойства эпоксидного покрытия, часть I: термические и механические свойства». Прог. Орг. Пальто., 50, (2004), 62.
CAS Google Scholar
Родригес, M.T., Gracenea, J.J., Saura, J.J., Suay, J.J., «Влияние объемной концентрации пигмента (PVC) на свойства эпоксидного покрытия. Часть II. Антикоррозионные и экономические свойства ». Прог. Орг. Пальто., 50, (2004), 68.
CAS Google Scholar
Хейр, К., «Защитные покрытия: основы химии и состава», издательство Technology Publishing, Питтсбург, (1994).
Google Scholar
Картер, Э., «Последние разработки в покрытиях из слюдяного оксида железа (MIO)». J. Oil Color Chem. Assoc., 69, (1986), 100.
CAS Google Scholar
Викторек С., «Слюдяной оксид железа в защитных покрытиях». J. Oil Color Chem. Assoc., 66, (1983), 164.
CAS Google Scholar
Картер, Э., «Синтетический слюдяной оксид железа: новый антикоррозионный пигмент.”J. Ассоциация химиков масел и красителей, 73, (1990), 7.
CAS Google Scholar
Викторек, С. «Ориентация частиц слюдистого оксида железа в органических покрытиях, наносимых на края». J. Oil Color Chem. Assoc., 69, (1986), 172.
CAS Google Scholar
Guidice, C., Benitez, J.C., «Оптимизация антикоррозионных свойств грунтовок, содержащих оксид железа пластинчатых мышей.”Антикоррозионные методы и материалы, 47, (2000), 226.
Google Scholar
Хендри, К.М., «Расчетная проницаемость слюдяных покрытий из оксида железа». J. Coat. Technol., 62, (1990), 33.
CAS. Google Scholar
Kalenda, P., Kalendova, A., Stengl, V., Antos, P., Subrt, J., Kvaca, Z., Bakardjieva, S., «Свойства слюды с поверхностной обработкой в антикоррозионных свойствах». Покрытия.”Prog. Орг. Пальто., 49, (2004), 137.
CAS Google Scholar
Ахмед, Н.М., Селим, М.М., «Улучшение свойств твердых растворов красного оксида железа-оксида алюминия, антикоррозионных пигментов». Технология пигментов и смол, 34, (2005), 256.
CAS Google Scholar
Гольдшмидт, А., Стрейтбергер, Х., «Основы технологии нанесения покрытий», Vincentz Network, Ганновер, (2003).
Google Scholar
Кнудсен, О.О., Бардал, Э, Стейнсмо, У. «Влияние барьерных пигментов на катодное расслоение. Часть 1: Алюминий и пигменты для стекла ». J. Corros. Sci. Англ. , 2 (1999)
Кнудсен О.О., Стейнсмо У. «Влияние барьерных пигментов на катодное расслоение. Часть 2: Механизм действия алюминиевых пигментов ». J. Corros. Sci. Англ. , 2 (1999)
Pourbaix, M., «Атлас электрохимических равновесий в водных растворах», Pergamon Press, Лондон (1966).
Google Scholar
Leidheiser, H., Wang, W., Ingetoft, L., «Механизм катодного отслаивания органических покрытий от металлической поверхности». Прог. Орг. Пальто., 11, (1983), 19.
CAS Google Scholar
Календова А. Влияние размера и формы частиц металлического цинка на свойства антикоррозионных покрытий.”Prog. Орг. Пальто., 46, (2003), 324.
CAS Google Scholar
Ломандер, С., «Влияние формы и фактора формы частиц пигмента на способность к упаковке в слоях покрытия». Nordic Pulp and Paper Journal, 15, (2000), 300.
CAS Google Scholar
Джудиче, К.А., Бенитес, Дж. К., Перейра, А. М., «Влияние типа наполнителя на характеристики модифицированных пластинчатых цинковых грунтовок.”JCT Research, 1, (2004), 291.
CAS Google Scholar
Календова А. Механизм действия цинкового порошка в антикоррозионных покрытиях. Антикоррозионные методы и материалы, 49, (2002), 173.
CAS Google Scholar
Круба, Л., Стакер, П., Шустер, Т., «Меньше металла, больше защиты». European Coatings Journal, 10, (2005), 38.
Google Scholar
Weinell, CE, Møller, P, «Ускоренное тестирование; Более быстрая разработка антикоррозионных покрытий ». 14-й Конгресс Северной Европы по коррозии , Копенгаген, 2007
Абу Аяна, Ю. М., Эль-Сави, С. М., Салах, С. Х., «Цинк-ферритовый пигмент для защиты от коррозии». Антикоррозионные методы и материалы, 44, (1997), 381.
CAS Google Scholar
Хейр, К., Кунас, Дж.С., «Восстановленный ПВХ и дизайн грунтовок для металлов.”J. Coat. Технол., 72, (2000), 21.
CAS Google Scholar
Marchebois, H., Touzain, S., Joiret, S., Bernard, J., Savall, C., «Коррозия порошковых покрытий, богатых цинком, в морской воде: влияние проводящих пигментов». Прог. Орг. Пальто., 45, (2002), 415.
CAS Google Scholar
Marchebois, H., Savall, C., Bernard, J., Touzain, S., «Электрохимическое поведение порошковых покрытий с высоким содержанием цинка в искусственной морской воде.Электрохим. Acta, 49, (2004), 2945.
CAS Google Scholar
Маршбуа, Х., Кеддам, М., Саваль, К., Бернар, Дж., Тузейн, С., «Определение характеристик порошковых покрытий, богатых цинком, в искусственной морской воде — анализ гальванического действия методом EIS. ” Электрохим. Acta, 49, (2004), 1719.
CAS Google Scholar
Meroufel, A., Touzain, S., «EIS-характеристика новых порошковых покрытий с высоким содержанием цинка.”Prog. Орг. Coat., (2007), 197.
CAS. Google Scholar
Felloni, F., Fratesi, R., Quandrini, E., Roventi, G., «Электроосаждение цинк-никелевых сплавов из хлоридного раствора». J. Appl. Electrochem., (1987), 574.
CAS Google Scholar
Lay, D.E., Eckles, W.E., «Основы цинка / кобальта». Plat. Прибой. Finish., (1990), 10.
CAS Google Scholar
Моркс, М.Ф., «Обработка стали фосфатом магния». Матер. Lett., (2004), 3316.
CAS Google Scholar
Трейси, Г.Н., Уилкокс, Г.Д., Ричардсон, М. О. У., «Поведение пассивированной молибдатом стали с цинковым покрытием, подвергающейся воздействию агрессивных хлоридных сред». J. Appl. Электрохимия., 29, (1999), 647.
CAS Google Scholar
Сугама Т., Бройер, Р., «Усовершенствованные конверсионные покрытия из фосфата цинка, модифицированного поли (арциловой) кислотой: использование катионов кобальта и никеля». Прибой. Пальто. Technol., 50, (1992), 89.
CAS. Google Scholar
Мардер А.Р., «Металлургия оцинкованной стали». Прог. Матер. Наук, 45, (2000), 191.
CAS Google Scholar
Барат, Й.Б., Качаревич-Попович, З., Мискович-Станкович, В.Б., ‘Максимович, В. Б., «Коррозионное поведение эпоксидных покрытий, электроосажденных на оцинкованной стали и стали, модифицированной сплавами Zn-Ni». Прог. Орг. Пальто., (2000), 127.
Google Scholar
Барат, Дж. Б., Мискович-Станкович, В. Б., «Защитные свойства эпоксидных покрытий, электроосажденных на стали, электрохимически модифицированные сплавами Zn-Ni». Прог. Орг. Пальто., 49, (2004), 183.
Google Scholar
Цыбульская Л.С., Гаевская Т.В., Бык Т.В., Клавсут Г.Н. Нанесение, структура и свойства гальванического цинкового покрытия, легированного кобальтом. Русь. J. Appl. Chem., 74, (2001), 1678.
CAS Google Scholar
Бошков Н., Петров К., Райчевский Г., «Коррозионное поведение и защитная способность многослойных гальванических покрытий из сплавов Zn и Zn-Mn в сульфатсодержащей среде». Прибой. Пальто. Технол., 200, (2006), 5595.
Google Scholar
Мунц, Р., Вольф, Г.К., Гусман, Л., Адами, М., «Цинк / марганцевые многослойные покрытия для защиты от коррозии». Тонкие твердые пленки, 459, (2004), 297.
ADS Google Scholar
дель Амо, Б., Велева, Л., Ди Сарли, А. Р., Элснер, К. И., «Характеристики стальных систем с покрытием, подверженных воздействию различных сред. Часть I. Окрашенная оцинкованная сталь.”Prog. Орг. Пальто., 50, (2004), 179.
Google Scholar
Каутек, В., Сахре, М., Патч, В., «Эффекты переходных металлов в защите от коррозии покрытий из цинкового сплава с гальваническим покрытием». Электрохим. Acta, 39, (1994), 1151.
CAS Google Scholar
Парсонс, П. и др., «Покрытия поверхности», Chapman & Hall, Лондон (1993).
Google Scholar
Арья, К., Васи, П. Р. У., «Влияние соотношения между катодом и анодом и разделительного расстояния на токи гальванической коррозии стали в бетоне, содержащем хлориды». Исследование цемента и бетона, 25, (1995), 989.
CAS Google Scholar
Дея, М.С., Бластейн, Г., Романьоли, Р., дель Амо, Б., «Влияние типа аниона на антикоррозионное поведение неорганических фосфатов». Прибой. Пальто. Технол., 150, (2002), 133.
CAS Google Scholar
Махдавиан М., Аттар М.М. (2005) «Исследование эффективности фосфата цинка при различных объемных концентрациях пигмента с помощью спектроскопии электрохимического импеданса». Электрохим. Acta 50: 4645.
Google Scholar
дель Амо, Б., Романьоли, Р., Ветере, В.Ф., Эрнандес, Л.С., (1998) «Исследование антикоррозионных свойств фосфата цинка в виниловых красках.”Prog. Орг. Пальто. 33: 28.
Google Scholar
Клэй М.Ф., Кокс Дж. Х. «Хроматные и фосфатные пигменты в антикоррозионных грунтовках». J. Oil Color Chem. Доц., (1973), 56:13.
CAS Google Scholar
Биттнер А., «Усовершенствованные фосфатные антикоррозионные пигменты для совместимых грунтовок». J. Coat. Technol., 61, (1989), 111.
CAS. MathSciNet Google Scholar
Fragata, F., Dopico, J., «Антикоррозийное поведение фосфата цинка в алкидных и эпоксидных связующих». J. Oil Color Chem. Assoc., 74, (1991), 92.
CAS Google Scholar
Хейр, К., «Ингибирующие грунтовки для пассивирования стали». J. Protect. Пальто. Накладки, 7, (1990), 61.
Google Scholar
Leidheiser, H., «Механизм ингибирования коррозии с особым вниманием к ингибиторам в органических покрытиях.”J. Coat. Technol., 53, (1981), 29.
CAS Google Scholar
Махдавиан М., Аттар М.М., «Оценка эффективности фосфата цинка и хмомата цинка с помощью методов переменного и постоянного тока». Прог. Орг. Пальто., 53, (2005), 191.
CAS Google Scholar
Романьоли, Р., дель Амо, Б., Ветере, В., Велева, Л., (2000) «Высокоэффективные антикоррозионные эпоксидные краски, пигментированные фосфатом цинка и молибдена.Серфинг. Пальто. Int. 1 27.
Google Scholar
Календова А., Бродинова Дж. (2003) «Шпинелевые и рутиловые пигменты, содержащие Mg, Ca, Zn и другие катионы для антикоррозионных покрытий». Антикоррозионные методы и материалы, 50, 352.
CAS Google Scholar
Виппола, М., Ахманиеми, С., Керанен, Дж., Вуористо, П., Леписто, Т., Мантила, Т., Олссон, Э., (2002) «Покрытие из оксида алюминия, герметизированное фосфатом алюминия: характеристика микроструктуры». Матер. Sci. 1.
Google Scholar
Адриан, Дж., Биттнер, А., Гавол, М., «Новые антикоррозионные пигменты на основе фосфатов». Фарбе + Лак , 87 833 (1981)
Календа, П., (1993) «Антикоррозионные пигменты и производные системы покрытий на их основе». Красители и пигменты, 23, 215.
CAS Google Scholar
EC 1907. Европейский Союз (2006)
Календова, А., Календа, П., Веселы, Д., (2006) «Сравнение эффективности неорганических неметаллических пигментов с цинковым порошком в антикоррозионных красках». Прог. Орг. Пальто, 57, 1.
CAS Google Scholar
Bierwagen, G., Battocchi, D., Simões, A., Stamness, A., Tallman, D., (2007) «Использование различных электрохимических методов для определения характеристик грунтовок с высоким содержанием магния для сплавов». .”Prog. Орг. Пальто, 59, 172.
CAS Google Scholar
Bastos, A.C., Ferreira, M. G. S., Simões, A.M., (2005) «Сравнительные электрохимические исследования хромата цинка и фосфата цинка как ингибиторов коррозии цинка». Прог. Орг. Пальто, 52 339.
CAS Google Scholar
Ся, Л., МакКерри, Р.Л., (1998) «Химия покрытия с конверсией хромата на алюминиевом сплаве AA2024-T3, исследованная методом вибрационной спектроскопии.”J. Electrochem. Soc, 145, 3083.
CAS Google Scholar
Чжао, Дж., Франкель, Г., МакКерри, Р.Л., (1998) «Защита от коррозии необработанного AA-2024-T3 в растворе хлорида с помощью покрытия с конверсией хромата, отслеживаемого с помощью спектроскопии комбинационного рассеяния». J. Electrochem. Soc, 2258.
CAS Google Scholar
Хьюз, А.Е., Тейлор, Р.Дж., Хинтон, Б. Р. У., (1997) «Хроматные конверсионные покрытия на сплаве 2024 года.Серфинг. Интерфейс Анальный, 25, 223.
CAS Google Scholar
Кацман, Х.А., Малуф, Г.М., (1979) «Антикоррозионные хроматные покрытия на алюминии». Applications of Surface Science, 416.
CAS. Google Scholar
Кларк, У.Дж., Рэмси, Дж.Д., МакКерри, Р.Л., Франкель, Г.С., (2002) «Подход к изучению воздействия хромата на алюминиевый сплав 2024-T3 с помощью гальванической коррозии.”J. Electrochem. Soc, 149, B179.
CAS Google Scholar
Моффат Т.П., Латанисион Р.М. (1992) «Исследование пассивного состояния хрома с помощью электрохимической и рентгеновской фотоэлектронной спектроскопии». J. Electrochem. Soc, 139, 1896.
Google Scholar
Кендиг, М., Давенпорт, А.Дж., Айзекс, Х.С., (1993) «Механизм ингибирования коррозии с помощью покрытий с конверсией хромата на основе абсорбции рентгеновских лучей вблизи краевой спектроскопии (XANES).Коррос. Наук, 34, 41.
CAS Google Scholar
Сансери, С., Пьяцца, С., Ди Куарто, Ф., (1990) «Спектроскопические исследования пассивных пленок на хроме с помощью фототока». J. Electrochem. Soc, 137, 2411.
CAS Google Scholar
Ким, Дж., Чо, Э., Квон, Х. (2001) «Фотоэлектрохимический анализ пассивной пленки, образованной на Cr в растворе Bugger pH8,5.Электрохим. Акта, 47, 415.
CAS Google Scholar
Морис В., Янг В.П., Маркус П. (1994) «Исследование пассивной пленки, образованной на поверхности монокристалла Cr (110), методом РФЭС и СТМ». J. Electrochem. Soc., 141, 3016.
ADS CAS Google Scholar
Мэйн, Дж. Э. О., Риджуэй, П., (1974) «Химический анализ оксидной пленки, присутствующей на железе и стали.”Br. Коррос. J., 3, 177.
Google Scholar
Маккафферти, Э., Бернетт, М.К., Мердей, Дж.С., (1988) «Исследование образования пассивной пленки на железе в растворах хроматов с помощью XPS». Коррос. Sci., 28, 559.
CAS Google Scholar
Meisel, W., Mohs, E., Guttman, H.J., Gutlich, P., (1983) «Исследование ESCA и Мессбауэра оксидного слоя, образованного на стали в воде, содержащей ионы хрома и хлора.Коррос. Наук, 23, 465.
CAS Google Scholar
Szklarska-Smialowska, Z., Staehle, R.W., (1974) «Эллипсометрическое исследование образования пленок на железе в растворах хроматов». J. Electrochem. Soc., 121, 1146.
CAS Google Scholar
Онучукву А.И. (1984) «Механизм ингибирования коррозии углеродистой стали в нейтральной среде ионами хромата и никеля.Коррос. Наук, 24, 833.
CAS Google Scholar
Виртанен, С., Бухлер, М., (2003) «Электрохимическое поведение поверхностных пленок, образующихся на Fe в растворе хромата». Коррос. Sci, 45, 1405.
CAS Google Scholar
Айзекс, Х.С., Виртанен, С., Райан, М.П., Шмуки, П., Облонский, Л.Дж., (2002) «Включение Cr в пассивную пленку на Fe из растворов хроматов.Электрохим. Акта, 47, 3127.
CAS Google Scholar
Габриэлли, К., Кеддам, М., Минуфле-Лоран, Ф., Огл, К., Перро, Х. (2003) «Исследование хроматирования цинка, часть II. Электрохимические методы импеданса ». Электрохим. Акта, 48, 1483.
CAS Google Scholar
Календова А., Веселы Д., Календа П. (2006) «Исследование влияния пигментов и наполнителей на свойства антикоррозионных красок.”Технология пигментов и смол, 35, 83.
CAS Google Scholar
Календова А., (2000) «Подщелачивающее и нейтрализующее действие антикоррозионных пигментов, содержащих катионы Zn, Mg, Ca и Sr». Прог. Орг. Пальто., 38, 199.
CAS Google Scholar
Календова А., Веселый Д. (2007) «Игольчатые антикоррозионные пигменты на основе ферритов цинка, кальция и магния.”Антикоррозионные методы и материалы, 54, 3.
CAS Google Scholar
Календа, П., Календова, А., Моснер, П., Поледно, М., (2002) «Эффективность антикоррозионных пигментов на основе модифицированного фосфата». Макромол. Symp., 187, 397.
CAS Google Scholar
Бауэр, Д.Р., (1994) «Химические критерии для долговечных автомобильных верхних покрытий». J. Coat. Технол, 66, 57.
CAS Google Scholar
Авар, Л., Бонке, Х., Хесс, Э. (1991) «Аналитические исследования светостабилизаторов в двухслойных автомобильных покрытиях». J. Coat. Технол, 63, 53.
Google Scholar
Валет, А., «Светостабилизаторы для красок», Винсент Верлаг, Ганновер, (1997).
Google Scholar
Охс, Х., Фогельсанг, Дж., Мейер, Г., (2003) «Повышенная шероховатость поверхности органических покрытий из-за УФ-деградации: неизвестная поверхность артефактов EIS». Прог. Орг. Пальто, 46, 182.
CAS Google Scholar
Funke, W., (1985) «К единому взгляду на механизмы, способные устранить дефекты окраски, вызванные металлической коррозией». Ind. Eng. Chem. Pro. Res. Дев, 24, 343.
CAS Google Scholar
Funke, W., (1981) «Вздутие пленок краски и филлиформная коррозия». Прог. Орг. Пальто, 9, 29.
CAS Google Scholar
Нгуен, Т., Берд, Э., Бенц, Д. (1995) «Количественное определение воды на границе органическая пленка / гидроксилированный субстрат». J. Adhes., 48, 169.
CAS Google Scholar
Нгуен, Т., Берд, Э., Бенц, Д., Лин, К., (1996) «Измерение воды на месте на границе органическое покрытие / субстрат.”Prog. Орг. Пальто., 27, 181.
CAS Google Scholar
Leidheiser, H., (1983) «На пути к лучшему пониманию коррозии под органическими покрытиями». Коррозия, 39, 189.
CAS Google Scholar
Funke, W., Haagen, H., (1978) «Эмпирический или научный подход к оценке антикоррозионных свойств органических покрытий». Ind. Eng.Chem. Pro. Res. Дев, 17, 50.
CAS Google Scholar
Линосье, И., Гайяр, М., Романд, М., (1999) «Спектроскопический метод исследования переноса воды по границе раздела фаз и гидролитической стабильности систем полимер / подложка». J. Adhes, 70, 221.
CAS Google Scholar
Steel, G.D., (1994) «Нитевидная коррозия архитектурного алюминия — обзор.”Антикоррозионные методы и материалы, 41 8.
Google Scholar
Slabauhg, W.H., Hutchins, L.L., Dejager, W., Hoover, S.E., (1972) «Нитевидная коррозия алюминия». J. Paint Technol., 44, 76.
Google Scholar
Олсен, Х., Нисанчоглу, К. (1998) «Нитевидная коррозия алюминиевого листа. I. Коррозионные свойства окрашенной стали ». Коррос. Наук, 40, 1179.
Google Scholar
Баутиста А., (1996) «Нитевидная коррозия металлов с полимерным покрытием». Прог. Орг. Пальто., 28, 49.
CAS Google Scholar
Ruggeri, R.T., Beck, T.R., (1983) «Анализ массопереноса при нитевидной коррозии». Коррозия, 39, 452.
CAS Google Scholar
Нгуен Т., Хаббард Т. Б., Поммерсхайм Дж. М. (1996) «Единая модель разрушения органических покрытий на стали в нейтральном электролите». J. Coat. Технол., 68, 45.
CAS Google Scholar
Дефлориан Ф., Росси С. (2003) «Роль диффузии ионов в скорости катодного расслаивания фосфатированной стали с полиэфирным покрытием». J. Adhes. Sci. Технол., 17, 291.
CAS Google Scholar
Дики, Р.А., (1986) «Химические исследования границы раздела органическое покрытие / сталь после воздействия агрессивных сред». Серия симпозиумов ACS, 322, 136.
CAS Статья Google Scholar
Мейн, JEO, «Механизм ингибирования коррозии железа и стали с помощью краски». Оф. Копать. , 127 (1952)
Лион, С.Б., Филипп, Л., Цуусоглу, Э., (2006) «Прямые измерения ионной диффузии в защитных органических покрытиях.«Сделки Института обработки металлов», 23.
КАС. Google Scholar
Флойд, Флорида, Гросеклоуз, Р.Г., Фрей, С.М., «Механическая модель защиты от коррозии с помощью краски». Двухгодичная конференция — Ассоциация химиков масел и красителей: эффективное использование поверхностных покрытий , p. 70, 1983
Parks, J., Leidheiser, H., (1986) «Ионная миграция через органические покрытия и ее последствия для коррозии.”Ind. Eng. Chem. Pro. Res. Дев., 25, 1.
CAS Google Scholar
Келер, Э.Л., (1984) «Механизм катодного разъединения защитных органических покрытий — вытеснение воды при повышенном pH». Коррозия, 5.
CAS Google Scholar
Ватт, Дж. Ф., Касл, Дж. Э., (1984) «Применение фотоэлектронной спектроскопии для изучения адгезии полимеров к металлам.Часть 2.» J. Mater. Sci., 2259.
CAS ОБЪЯВЛЕНИЯ Google Scholar
Leidheiser, H., Granata, R.D., (1988) «Перенос ионов через защитные полимерные покрытия, находящиеся в водной фазе». J. Res. Дев., 582.
CAS Google Scholar
Риттер, Дж. Дж., (1982) «Эллипсометрические исследования катодного расслоения органических покрытий на стали и железе.”J. Coat. Технол., 54, 51.
CAS Google Scholar
Grundmeier, G., Stratmann, M., (2005) «Механизмы адгезии и деадгезии на границах раздела полимер / металл: понимание механизма, основанное на исследованиях скрытых границ раздела на месте» Анну. Rev. Mater. Наук, 35, 571.
CAS ОБЪЯВЛЕНИЯ Google Scholar
Murase, M., Watts, J.F., (1998) «Исследование XPS расслоения покрытия на стали, обработанной хроматом без ополаскивания.”J. Mater. Наук, 8, 1007.
CAS Google Scholar
Ватт, Дж. Ф., Касл, Дж. Э., (1983) «Применение фотоэлектронной спектроскопии для изучения адгезии полимеров к металлам. Часть 1. » J. Mater. Наук, 18, 2987.
CAS ОБЪЯВЛЕНИЯ Google Scholar
Хаммонд, Дж. С., Голубка, Дж. У., Дики, Р. А., (1979) «Поверхностный анализ межфазной химии в потере адгезии краски, вызванной коррозией.”J. Coat. Технол., 51, 45.
CAS Google Scholar
Ватт, Дж. Ф., «Механические аспекты катодного расслоения органических покрытий». J. Adhes., (1989), 73.
CAS. Google Scholar
Хамаде, Р.Ф., Диллард, Д.А., (2003) «Катодное ослабление адгезионных связей между эластомером и металлом: ускоренное тестирование и моделирование». J. Adhes. Sci. Technol., 17, 1235.
CAS Google Scholar
Геттингс, М., Бейкер, Ф.С., Кинлох, А.Дж., (1977) «Использование оже- и рентгеновской фотоэлектронной спектроскопии для изучения очага разрушения структурных клеевых соединений». J. Appl. Polym. Sci., 21, 2375.
CAS Google Scholar
Поммерсхайм, Дж. М., Нгуен, Т., Чжан, З., Хаббард, Дж. Б., (1994) «Деградация органических покрытий на стали: математические модели и прогнозы.”Prog. Орг. Пальто., 25, 23.
CAS Google Scholar
Дарвин, А.Б., Скантлбери, Дж. Д., «Поведение эпоксидных порошковых покрытий на малоуглеродистой стали в щелочных условиях». J. Corros. Sci. Англ. , 2 (1999)
Соммер, А.Дж., Лейдхейзер, Х. (1987) «Влияние гидроксидов щелочных металлов на растворение конверсионного покрытия из фосфата цинка на стали и способность к катодному расслоению.”Коррозия, 43, 661.
CAS Google Scholar
Смит А.Г., Дики Р.А. (1978) «Механизмы разрушения адгезии праймеров». Ind. Eng. Chem. Pro. Res. Дев., 17, 42.
CAS Google Scholar
Эрнандес, М.А., Гальяно, Ф., Ландольт, Д., (2004) «Механизм контроля катодного расслоения цинка и алюминия». Коррос. Sci., 46, 2281.
CAS Google Scholar
Furbeth, W., Stratmann, M., (1995) «Исследование отслоения полимерных пленок от оцинкованной стали с помощью сканирующего зонда Кельвина». Fresenius J. Anal. Chem., 353, 337.
Google Scholar
Пуля Т.Р., Рудрам А.Т.С. (1961) «Покрытие и субстрат». J. Oil Color Chem. Assoc, 44, 787.
Google Scholar
Брант, Н.А., (1964) «Вздутие слоев краски как эффект набухания под действием воды.”J. Oil Color Chem. Assoc., 47, 31.
CAS Google Scholar
ван Лаар, Дж. А. (1961) «Вздутие окрашенной стали». Производство лакокрасочных материалов, 51, 31.
CAS Google Scholar
de la Fuente, D., Bohm, M., Houyoux, C., Rohwerder, M., Morcillo, M., (2007) «Установление критических уровней растворимых солей для живописи». Прог. Орг. Пальто., 58, 23.
Google Scholar
ISO 15235 . Международная организация по стандартизации, Женева (2007)
Крстажич, Н.В., Гргур, Б.Н., Йованович, С.М., Войнович, М.В., (1997) «Защита низкоуглеродистой стали с помощью полипиррольных покрытий в кислых сульфатных растворах». Электрохим. Акта, 42, 1685.
CAS Google Scholar
Тан, К.К., Блэквуд, Д.Дж., (2003) «Защита от коррозии с помощью многослойных проводящих полимерных покрытий». Коррос. Наук, 45, 545.
CAS Google Scholar
Весселинг Б. (1994) «Пассивация металлов покрытием полианилином — изменение коррозионного потенциала и морфологические изменения». Дополнительные материалы, 3, 226.
Google Scholar
Ахмад, Н., МакДиармид, А.Г., (1996) «Ингибирование коррозии сталей с использованием проводящих полимеров». Синтетические металлы, 78, 103.
CAS Google Scholar
Кинлен, П.Дж., Сильверман, округ Колумбия, Джеффрис, К.Р., (1997) «Защита от коррозии с использованием составов полианилиновых покрытий». Синтетические металлы, 85, 1327.
CAS Google Scholar
Тансуг, Г., Тукен, Т., Озилмаз, А.Т., Эрбиль, М., Язычи, К., (2007) «Защита мягкой стали с помощью полипиррола с эпоксидным покрытием и полианилина в 3,5% NaCl». Current Applied Physics, 7, 440.
ADS. Google Scholar
Таллман Д.Е., Спинкс Г., Доминис А., Уоллес Г.Г. (2002) «Электроактивные проводящие полимеры для контроля коррозии». J. Solid State Electrochem., 6, 73.
CAS Google Scholar
Спинкс, Г., Доминис, А., Уоллес, Г.Г., Таллман, Д.Е., (2002) «Электроактивные проводящие полимеры для контроля коррозии — Часть 2. Черные металлы». J. Solid State Electrochem. 6, 85.
CAS Google Scholar
Келлер, М.В., Соттос, Н.Р., (2006) «Механические свойства микрокапсул, используемых в самовосстанавливающемся полимере». Экспериментальная механика, 46, 725.
CAS. Google Scholar
Sauvant-Moynot, V, Duval, S, Gonzalez, S, Vallet, J, Grenier J, EP 15
Cook RL, US Pat. 6,933,046, 2005
Кендиг, М., Кинлен, П. (2007) «Демонстрация гальванически стимулированного высвобождения ингибитора коррозии». J. Electrochem. Soc., 154, C195.
CAS Google Scholar
Бернштейн Б., (2006) «Оценка технологии самовосстановления полимеров для служебных помещений.«Журнал« Электроизоляция », 22 15.
Google Scholar
Йошида, М., Лаханн, Дж., (2008) «Умные наноматериалы». АСУ НАНО, 2, 1101.
PubMed CAS Google Scholar
Антикоррозийная краска
Jaydutt Tailor получил степень магистра в области гражданского строительства в 2012 году в Лондонском университете. Он возглавляет и возглавляет команду GharPedia. Он старший.Менеджер (строительство и строительство) в SDCPL. Он является старшим редактором и основным членом редакционной группы GharPedia. Он опытен и увлечен управлением группой творческих людей, технологиями, а также новым дизайном и разработками в GharPedia. Он также занимается структурным проектированием некоторых крупных проектов SDCPL. У него есть дополнительная склонность к фотографии, чтению и путешествиям. С ним легко связаться — LinkedIn, Twitter, Quora.
Коррозия — серьезная проблема, влияющая на срок службы любого элемента дома, сделанного из стали или железа.Поскольку краски предназначены для защиты металлических поверхностей, широко распространено мнение, а также неверное понимание того, что все краски на масляной основе являются антикоррозийными. Это неправильная версия. Все краски на масляной основе не являются антикоррозийными. Это просто декоративные краски, которые частично защищают металлическую поверхность от климатической коррозии, но не выдерживают сильной коррозии, вызванной различными промышленными химикатами и газами.
Коррозионно-стойкие покрытия защищают металлические компоненты от разрушения из-за влаги, солевого тумана, окисления или воздействия различных экологических или промышленных химикатов.Антикоррозионные краски препятствуют или препятствуют коррозии, уменьшая прямой доступ воздуха и воды к металлу. Антикоррозийное покрытие обеспечивает дополнительную защиту металлических поверхностей и действует как барьер, препятствующий контакту между химическими соединениями или коррозионными материалами. Доступен широкий выбор антикоррозионных покрытий. Эти типы антикоррозионных покрытий в основном наносятся на изделия из железа или стали.
Состав:Антикоррозийная краска представляет собой композицию устойчивых к коррозии пигментов, таких как хромат цинка, хромат свинца, оксид цинка, цинковая пыль, хромат цинка или красный свинец.Льняное масло используется в качестве связующего в антикоррозионной краске.
Также прочтите: Простые шаги по нанесению краски Distemper Paint
Свойства антикоррозийной краски:Антикоррозийные краски должны обладать быстросохнущими и затвердевающими свойствами. Он обладает хорошей стойкостью к истиранию, хорошей защитой от ржавчины, водостойкостью и хорошей ударопрочностью. Это дешевая и долговечная защита от коррозии.
Использует:Антикоррозийные краски наносятся на металлические поверхности.Также наносится на поверхности из черных металлов, чугуна и стали. Антикоррозийные краски используются для защиты стальных конструкций от кислотных паров и неблагоприятных погодных условий. Он защищает металлические компоненты от разрушения из-за влаги, солевого тумана, окисления или воздействия различных погодных условий и промышленных химикатов. В домах они используются для окраски стальных стропильных ферм или МС. перила для лестничных клеток, дверные коробки, балконы, решетки на окнах, комплексные ворота и т. д.
Нанесение антикоррозийной краски:- Краски перед использованием тщательно перемешать. Его можно наносить кистью, валиком или распылителем.
- Антикоррозийные краски не готовы к использованию. Перед нанесением необходимо добавить растворители (уайт-спирит или другой бензол). Если не добавлять разбавитель в краску, есть вероятность появления различных дефектов на окрашенных стенах.
Некоторые из типичных продуктов нескольких компаний перечислены ниже.
SR NO. | НАИМЕНОВАНИЕ ПРОИЗВОДСТВА | НАИМЕНОВАНИЕ ПРОДУКТА | РЕКОМЕНДУЕМАЯ ОБЛАСТЬ |
01. | Precise (Индия) | Антикоррозийная краска | Металлическая поверхность, стальная поверхность, чугунная поверхность, сборные конструкции |
02. | Witmans Industries Pvt. ООО | Антикоррозийная краска | Металлическая поверхность, стальная поверхность, чугунная поверхность |
03. | Нео Покрытие | Антикоррозийная краска | Металлическая поверхность, стальная поверхность, чугунная поверхность |
Jaydutt Tailor получил степень магистра в области гражданского строительства в 2012 году в Лондонском университете. Он возглавляет и возглавляет команду GharPedia.Он является старшим менеджером (гражданские и структурные) в SDCPL. Он является старшим редактором и основным членом редакционной группы GharPedia. Он опытен и увлечен управлением группой творческих людей, технологиями, а также новым дизайном и разработками в GharPedia. Он также занимается структурным проектированием некоторых крупных проектов SDCPL. У него есть дополнительная склонность к фотографии, чтению и путешествиям. С ним легко связаться — LinkedIn, Twitter, Quora.
Продемонстрируйте свои лучшие разработки
Сообщение навигации
Еще из тем
Используйте фильтры ниже для поиска определенных тем
Антикоррозионная краска — Cor Pro
Антикоррозийная краска должна быть совместима с материалом основания, его составом и условиями окружающей среды в полевых условиях.
Cor-Pro Systems знает, что коррозия — серьезная проблема, которая наносит огромный ущерб различным отраслям промышленности. Миссия компании — правильно определять коррозионные агенты и предлагать соответствующие решения без дополнительных затрат.
Компания направляет значительную часть своих ресурсов на дальнейшее совершенствование своих знаний, методологии и применения антикоррозионных красок, помогающих смягчить негативные последствия коррозии.
Прочтите об антикоррозионной краске Cor-Pro, критериях выбора конкретного покрытия и приготовлениях, необходимых для создания эффективного защитного барьера, и найдите лучшую систему защиты от коррозии.
Антикоррозийная краска и эксплуатационные материалы
Антикоррозийная краска идеально подходит для защиты твердых металлических поверхностей и, в некоторых случаях, различных неметаллов.Инженеры-коррозионисты постоянно разрабатывают различные типы антикоррозионных красок для различных условий эксплуатации.
Воздействие окружающей среды оказывает большое влияние на эффективность и пригодность антикоррозийной краски.
Ниже приводится список факторов, которые инженеры по коррозии учитывают для эффективной разработки подходящей антикоррозионной краски.
- Коррозионные загрязнители (внутри и снаружи)
- Конденсация, влажность, воздействие брызг
- Химический состав почвы (наличие кислот, щелочей и реактивных солей), влажность и электрическое сопротивление
- Воздействие на пресную и соленую воду (частичное, полное, переменное погружение)
- Реакционная способность типа продукта при транспортировке, транспортировке или переработке и связанная с этим опасность утечек.
- Близость к высоковольтным линиям, катодной или анодной защите, станциям заземления или железнодорожным станциям, которые могут вызывать паразитные токи
- Диапазон и пиковые уровни температуры (туман, снегопад, шторм, радиация и УФ-облучение)
- Воздействие УФ-излучения, растворители и солнечный свет
- Воздействие щелочных и кислых веществ, сточных вод и кислотных дождей
- Прогнозируемый срок эксплуатации проекта, при наличии
- Условия на объекте, которые могут повлиять на процесс подготовки поверхности, грунтования, нанесения покрытия и отверждения
Антикоррозионная краска: разные виды применения
Металлические покрытия
Металлические покрытия обеспечивают прочный барьер против большинства типов коррозионных веществ.Однако даже незначительные дефекты на поверхности могут вызвать локальный коррозионный отказ. Металлические покрытия в качестве антикоррозийной краски обычно используются также в качестве декоративного покрытия.
Заявку можно подать через:
- Гальваника
- Горячее погружение
- Механическое покрытие
- Термоспрей
Неметаллические покрытия
Большинство неметаллических антикоррозионных красок обеспечивают защиту через изолирующий барьер, непроницаемый для влаги и электролитов, вызывающих коррозию.Эти неметаллические жидкие краски включают растворитель, пигмент и смолу.
Растворитель
Растворитель предназначен для диспергирования и растворения полимерного материала, обеспечивающего прочность лакокрасочного покрытия. Растворитель обеспечивает адекватную адгезию, простоту нанесения и общую эффективность.
Смола
Пленкообразующий компонент, обеспечивающий защиту от коррозии. Вот почему большинство лакокрасочных покрытий носит название используемой смолы.
Пигмент
Это второй твердый компонент антикоррозионного лакокрасочного покрытия. Это обеспечивает непрозрачность, необходимую для защиты органического вещества от воздействия солнечного света. Пигменты также служат для улучшения адгезии, устойчивости к атмосферным воздействиям, цвета и уменьшения проникновения влаги.
Смола и пигмент остаются на поверхности, когда растворитель испаряется, и, следовательно, определяют толщину пленки покрытия.
Классификация неметаллических антикоррозионных красок
Неметаллические лакокрасочные покрытия по механизму действия можно классифицировать как:
Барьерные покрытия
Этот тип антикоррозионного лакокрасочного покрытия образует физический и изолирующий барьер, который предотвращает контакт коррозионных элементов с основанием.Пример: эпоксидные покрытия из каменноугольной смолы.
Гальванические покрытия
Эти покрытия богаты цинком, который служит жертвенным покрытием для железной основы. Гальванические покрытия необходимо наносить непосредственно на основание.
Покрытия-ингибиторы
Покрытия-ингибиторы действуют путем выделения химического вещества пигментом. Затем это химическое вещество взаимодействует с электролитом и нарушает электрохимические реакции.Одним из примеров покрытий из ингибиторов, использующих этот механизм, являются пигменты хроматного типа.
Общие полимерные покрытия
Некоторые из обычных антикоррозионных красок, обычно используемых для защиты от коррозии, включают:
- Алкидные покрытия: На основе модифицированного натурального масла они эффективны в качестве грунтовки для атмосферных сред. Они не подходят для щелочных оснований, таких как бетон.
- Акриловые покрытия: Экологичные, на водной основе, подходящие для использования на открытом воздухе при значительном воздействии солнечного света.Их можно наносить как верхнее покрытие или как грунтовку, лучше всего при умеренных и высоких температурах.
- Амин эпоксидная смола: Высокая устойчивость к кислотам, щелочам и растворителям. Однако он довольно чувствителен к влаге, температуре и солнечному свету и поэтому используется для подземных покрытий.
- Покрытие на битумной основе: Обладает высокой влагостойкостью, но чувствительно к растворителям. Обычно используется для защиты поверхностей из алюминия и черных металлов.
- Эпоксидная смола каменноугольной смолы: Не обладает стойкостью к влаге и химическим веществам, со временем становится хрупкой.Подходит для нанесения на футеровку резервуаров, погружение в воду и промышленное ремонтное покрытие. Эпоксидная смола из каменноугольной смолы с армированием стекловолокном подходит для сред с высокими температурами.
- Эпоксидные каменноугольные смолы и уретаны: Идеально подходят для нанесения покрытий на трубопроводы большого диаметра в нефтяной промышленности.
- Экструдированные полиолефиновые системы: Обычно используется для труб диаметром до 24 дюймов. Улучшение адгезии и повышенная доступность полипропилена для применения в средах с широким диапазоном и высокими температурами делают систему популярной и эффективной, поскольку она может обеспечивать непрозрачные покрытия.
- Fusion-Bonded Epoxy: Идеально подходит для погружения и подземных работ в средах с умеренно высокими температурами.
- Влагоотверждаемый уретан: Идеально подходит для влажных сред. Его преимущество в том, что состав пигмента может быть изменен в соответствии с условиями эксплуатации.
- Полиамид Эпоксидная смола: Устойчив к воде и солевым растворам, но не подходит для других химикатов. Лучше всего подходит для подземных работ и погружений.
- Уретан и полиуретан: Подходит для сред с атмосферным воздействием и для подложек, которые функционируют в условиях непостоянного погружения.
Антикоррозионная краска от Cor-Pro Systems, Inc.
Cor-Pro предлагает подходящую антикоррозионную краску для любых условий эксплуатации. Защита от коррозии от Cor-Pro Systems даст вашему бизнесу:
- Увеличенный срок службы оборудования на 250%, а это означает большую экономию.
- Непрерывная работа, обеспечивающая бесперебойное ведение бизнеса, что приводит к прибыли.
- Более длительные интервалы технического обслуживания, что означает снижение затрат на техническое обслуживание.
- Снижение количества аварий, связанных с коррозией, что освобождает вашу компанию от юридических и экологических обязательств.
Непревзойденная преданность Cor-Pro своим клиентам позволила компании разработать эффективные системы защиты от коррозии. Эти области применения настраиваются нашими специалистами в зависимости от конкретной проблемы коррозии.
О компании Cor-Pro Systems
Cor-Pro недавно получила сертификаты OHSAS 18001: 2007 и ISO 9001: 2008 от Verisys Registrars.Эти сертификаты являются свидетельством постоянного стремления компании к совершенству.
Cor-Pro и его почти 30-летний опыт предоставления первоклассных антикоррозионных красок и покрытий для различных отраслей промышленности значительно помогли экономике за счет снижения прямых и косвенных затрат, вызванных коррозией.
Компания уделяет достаточно времени исследованиям, разработкам и информационным кампаниям, чтобы еще больше повысить осведомленность о коррозии, ее побочных эффектах и эффективных способах ее предотвращения.
Получите высококачественную антикоррозионную краску через Cor-Pro Systems, Inc.
Если у вас есть вопросы о нашей антикоррозийной краске или вы хотите получить индивидуальное предложение для вашей конкретной потребности в защите от коррозии, свяжитесь с нами по телефону 713-896-1091 или отправьте нам электронное письмо по адресу quotes @ cor-pro. com .
Посетите нашу страницу обслуживания Velocity, чтобы узнать больше о наших доступных антикоррозионных красках и других системах защиты от коррозии.
Антикоррозионные краски и покрытия | Корпорация NEI
NANOMYTE
® Верхние покрытияNANOMYTE® TC-1001 »
Самовосстанавливающееся полимерное покрытие для металлов
Самовосстанавливающееся прозрачное покрытие на основе растворителей для стали и алюминия, которое обеспечивает легкий ремонт царапин.
NANOMYTE® TC-3001 »
Расширенная защита металла в экстремально коррозионных условияхПокрытие на основе растворителей для стали и алюминия с проникающей формулой, которая инкапсулирует металл при нанесении непосредственно на поверхность, устраняя необходимость в пескоструйной очистке.
NANOMYTE® TC-4001 »
Нанокомпозитное барьерное покрытие для превосходной защиты от коррозии
Тонкое твердое барьерное покрытие на основе растворителей для стали и алюминия, которое сцепляется с голыми, предварительно обработанными или окрашенными металлическими поверхностями и обеспечивает превосходную защиту от коррозии.
НАНОМИТ® ТС-4001-УВП »
Нанокомпозитное барьерное покрытие с УФ-защитой
TC-4001-UVP — однокомпонентный состав, разработанный для защиты металлов и других поверхностей от разрушения, сохранения их структурной целостности и внешнего вида. Твердое, прочное покрытие наносится непосредственно на поверхность, образуя плотный барьер, предотвращающий проникновение влаги и коррозию. TC-4001 прочно приклеивается к голому, предварительно обработанному и окрашенному металлу, а также к другим поверхностям, таким как пластмассы и композиты.Покрытие легко наносится погружением, распылением или кистью толщиной от микрон до мил.
Подробнее: Технология UVP ♦ Краткое описание UVP
NANOMYTE® TC-5001 »
Антикоррозийное покрытие для оцинкованной и оцинкованной стали
Тонкое твердое барьерное покрытие на основе растворителей, которое сцепляется с оцинкованной или оцинкованной сталью, с высокой укрывистостью и отличными циклическими характеристиками.
НАНОМИТ® ТС-5001-УВП »
Антикоррозийное покрытие для оцинкованной и оцинкованной стали с УФ-защитой
TC-5001-UVP — однокомпонентный состав, разработанный для защиты оцинкованной и оцинкованной стали от коррозии и разрушения.Продукт представляет собой твердое, плотное нанокомпозитное покрытие, обеспечивающее барьерную защиту поверхности сплава. Покрытие устойчиво к царапинам и сколам и прочно прилегает к основе. Состав обладает повышенной атмосферостойкостью и разработан с учетом требований клиентов к толщине пленки и условиям отверждения.
Подробнее: Технология UVP ♦ Краткое описание UVP
Антикоррозийные покрытия | AnCatt
Лучшая в мире антикоррозионная краска: Компания AnCatt успешно разработала отмеченную национальными наградами платформу для антикоррозионного покрытия для тяжелых условий эксплуатации, не содержащую тяжелых металлов (зеленую), с беспрецедентными характеристиками и устойчивостью.
Технология покрытияAnCatt использовалась в сотнях независимых испытаний на коррозию и была проверена и отмечена ведущими научными и промышленными организациями, такими как Американское химическое общество, Национальный саммит инноваций, Альянсы RICE, Национальный научный фонд, НАСА, США. Государственный департамент, USAID и NIKE.
Покрытие состоит из грунтовки на основе уникальной проводящей полимерной нанодисперсии (CPND), верхнего слоя и дополнительного промежуточного слоя. Полимер обволакивает поверхность металла и превращает верхний слой в тонкий, но плотный слой оксида металла.Эта система действует как эффективный барьер, защищающий металлы от коррозии, без использования пигментов тяжелых металлов, таких как хромат, свинец или цинк. Технология покрытия AnCatt значительно превосходит существующие продукты антикоррозионного покрытия на рынке, в 3-6 раз долговечнее, а также является первой в истории высокоэффективной антикоррозийной технологией, не содержащей тяжелых металлов (экологически чистой), что делает ее следующей. -генерация технологии антикоррозионных покрытий.
Характеристики покрытия
- Сверхмощная антикоррозионная защита: выдерживает более 13 000 часов в соляном тумане (ASTM B 117) без ржавчины или образования пузырей.На тестовых панелях не было видимых изменений внешнего вида: отсутствие трещин, отслаивания или отслаивания
- Экологически чистый: грунтовка не содержит пигментов тяжелых металлов, таких как цинк, хромат или свинец
- Сильная адгезия: Адгезия при растяжении (прочность на отрыв) образцов составляла 700-800 фунтов на квадратный дюйм после 1100 часов циклического атмосферного воздействия. Тесты на адгезию ленты на образцах получили идеальную оценку 5А для каждой повторности после 8300 часов воздействия соляного тумана
- Устойчивость к царапинам и проколам / самовосстановление
- Защищает многие металлы, кроме железа / стали.Например: цинк, алюминий, магний, медь, серебро, титан и т. Д.
- Поверхностная толерантность
- Двухкомпонентный алифатический уретан используется в качестве смолы верхнего покрытия, которая обеспечивает:
- Исключительное сохранение блеска
- Отличная стойкость к истиранию
- Отличная химическая стойкость
- Тонкий и легкий: менее 1/2 текущей толщины покрытия
- Низкие затраты на сырье
- Простота изготовления: производится на традиционном оборудовании
- Легко наносится: применяется с имеющимся оборудованием для нанесения краски
Результаты анализов
Наши ускоренные испытания на коррозию были проведены известной независимой лабораторией KTA, расположенной в США. Верхний ряд сравнительных фотографий — это лицевая сторона стальных (crs) панелей, покрытых покрытием AnCatt CPND; нижний ряд — тыльная сторона панелей, покрытых акриловыми покрытиями КТА. 5000 часов — это максимальный час испытаний в соответствии с международным стандартом испытаний в солевом тумане (ASTM B 117). По прошествии 5000 часов испытаний покрытие AnCatt все еще оставалось неповрежденным, что было признано отраслевыми экспертами лучшим результатом из когда-либо существовавших.После 8 372 часов испытаний покрытие все еще может обеспечивать отличную адгезию при отрыве и отличные результаты адгезии ленты. Обратите внимание на то, что покрытие изолировало себя от дальнейшего расширения ржавчины по линиям разметки. Мы подождали 13000 часов, и, что удивительно, ржавчина и образование пузырей остались на высшем уровне 10. Пожалуйста, посетите страницу испытаний на коррозию или полный лабораторный отчет для получения более подробной информации.
Отраслевые СМИ:
- “Экологичная платформа для антикоррозионного покрытия AnCatt может обеспечить беспрецедентную защиту от коррозии для всех видов металлов.”
— Журнал CoatingsPro
№ “Показаны независимые тесты на коррозию. Это успешная технология антикоррозионного покрытия на основе проводящих полимеров и первое нехроматное покрытие, которое превосходит покрытия из шестивалентного хромата. Это также первая технология антикоррозионного покрытия для тяжелых условий эксплуатации, не содержащая тяжелых металлов ».
— Журнал PCI
«Защитное покрытие, достигающее новых высот в устойчивости и производительности.”
— Журнал «Мир промышленных покрытий»
«AnCatt Coating обещает произвести революцию на рынке антикоррозионных покрытий».
— Химический информатор
Использование
Наша система покрытия выдерживает суровые условия для защиты конструкционной стали, трубопроводов, резервуаров, мостов, морских платформ, ветряных электростанций, атомных электростанций, корпусов судов, портов, надстроек, палуб, самолетов, автомобилей, сельскохозяйственного оборудования и т. Д.В настоящее время наш целевой рынок включает в себя энергетику, нефть и газ, энергетику, горнодобывающую промышленность, машиностроение, автомобилестроение и авиакосмическую промышленность.
Наша грунтовка служит отличной заменой существующих покрытий на основе тяжелых металлов без содержания тяжелых металлов с еще более сильными антикоррозийными свойствами. Наша текущая рецептура — это виниловые грунтовки и эпоксидные грунтовки. Другие продукты все еще в стадии разработки. У нас также есть система с низким содержанием летучих органических соединений и водоразбавляемая антикоррозионная система.
Антикоррозийный рынок
Во всем мире триллионов долларов ежегодно теряются из-за коррозии.Фактически, недавние исследования оценивают прямые затраты на коррозию в Соединенных Штатах почти в 300 миллиардов долларов в год.
Шестивалентный хромат является хорошо известным канцерогеном и очень токсичен для окружающей среды. Правительственные постановления ужесточают его использование во всем мире. О токсическом эффекте стало известно благодаря голливудскому блокбастеру 2000 года «Эрин Брокович» (с Джулией Робертс в главной роли). В этом теперь уже ставшем классикой фильме изображен реальный случай загрязнения питьевой воды шестивалентным хроматом, результатом которого стало крупнейшее судебное разбирательство в США.История С.
Благодаря своим превосходным антикоррозийным свойствам, грунтовки, содержащие хромат, по-прежнему производятся большинством крупных компаний по производству красок, поскольку их характеристики еще не достигаются другими материалами. В настоящее время экологически безопасный рыночный стандарт цинка / оксидов цинка не может защитить легкие металлы, такие как алюминий и оцинкованную сталь, и они менее эффективны в жестких коррозионных средах. Кроме того, цена на цинк резко выросла за последние пару лет, и при текущих уровнях использования запасы цинка будут полностью истощены примерно к 2027 году.
Войдите в антикоррозийное покрытие AnCatt из проводящего полимера (на основе полианилина). Наша уникальная формула выдержала 13 000 часов испытаний в соляном тумане. Это покрытие является не только первым успешным антикоррозийным покрытием на основе полианилина после 35 лет интенсивных исследований в этой области во всем мире, но и лучше, чем любая технология антикоррозионного покрытия, представленная сегодня на рынке.
Коррозия стоит триллионы долларов во всем мире — примерно 3-4% ВВП страны. На основе двухлетнего исследования Федерального управления шоссейных дорог U.Затраты на коррозию S., опубликованные в 2002 году, прямые затраты на коррозию в США в 2001 году оценивались в 276 миллиардов долларов, а косвенные затраты были оценены примерно в такую же сумму. Органическое покрытие, наиболее широко используемый метод защиты от коррозии, составляет 88,3% от общих затрат на методы прямой защиты от коррозии, и в 2001 году только в США стоило 106 долларов США. Подробнее о влиянии коррозии в США, стоимости и разработках.
Воздействие на окружающую среду более стойкой антикоррозионной краски
Металл поднял человечество от бронзового века к железному веку и даже усилился в современную эпоху, от строительства зданий до мостов, шоссе, автомобилей, авиации, судоходства, трубопроводов, механизмов.Следовательно, коррозия металла или старение и смерть металла — одна из самых больших затрат нашей экономики, если она не является самой большой движущей силой затрат. Тем не менее, коррозия металла считается непреодолимой природной силой, единственный способ бороться с ней — это непрерывная перекраска и замена, что очень дорого для экономики и окружающей среды. Кроме того, современные технологии, использующие токсичные тяжелые металлы для борьбы с неудержимой и очень дорогой коррозией металлов, повышают токсичность, улучшают антикоррозионные свойства, с канцерогенными хроматами, являются наиболее эффективными.Технология AnCatt может остановить непреодолимую естественную силу коррозии и без использования токсичных тяжелых металлов приведет человечество в совершенно новую эпоху беспрецедентной устойчивости, ресурсов и возможностей. Таким образом, прорыв в антикоррозийных покрытиях AnCatt может решить некоторые из величайших проблем, с которыми сегодня сталкивается человечество: глобальное потепление, кризис бюджета инфраструктуры, отходы, сокращение природных ресурсов и загрязнение окружающей среды, особенно загрязнение тяжелыми металлами от металлических покрытий.Технология AnCatt может высвободить огромное количество ресурсов, которые в настоящее время тратятся впустую в бесконечной коррозионной битве, чтобы улучшить качество жизни и принести мир во всем мире, в том числе на металлических поверхностях. Бюджет последнего проекта перекраски моста Verrazano Narrow составил четверть миллиарда. Если краска прослужит в шесть раз дольше, прямая экономия на перекраске составит 4,5 миллиарда долларов в течение следующих 60 лет, если я буду считать только 3,2% годовых, не считая темпов роста. Или наша краска стоимостью в один миллион долларов может сэкономить 180 миллионов долларов на прямых расходах на перекраску мостов.Косвенные затраты на перекраску, такие как покраска моста, вызванные пробками, в десять (10 раз) превышают затраты на покраску самого моста. Конечно, огромная экономия приведет к огромному сокращению выбросов углерода, но, что более важно, она включает два наиболее интенсивных антропогенных источника выбросов CO2: производство стали и производство цемента, которые производят 3,5 и 2 гигатонны выбросов CO2 в год. 40% стали, производимой в год, используется для замены корродированной стали, которая производит 1,4 (3,5 * 0,4)) гигатонны выбросов CO2 в год. Если краска может сделать сталь в шесть раз дольше, это уменьшит примерно.Выбросы СО2 5 гиготонн в год, которых достаточно, чтобы остановить глобальное потепление. Кроме того, 90% разрушения бетона произошли из-за коррозии арматуры внутри, цемент является основным ингредиентом бетона. Использование краски AnCatt, не содержащей тяжелых металлов, также может снизить затраты на смягчение воздействия на окружающую среду, связанные с использованием тяжелых металлов в антикоррозийных красках, загрязняющих воду и почву во время нанесения краски, обслуживания и после окончания срока службы. Шестивалентный хромат — ядовитый враг №1 военной и авиационной промышленности.Свинец уже вызвал кризис воды, связанной со свинцом. Экологически совместимый цинк составляет более 85% рынка, но он по-прежнему является загрязнителем морской среды и неэффективен при ограниченном сроке службы. Антикоррозийная краска нового поколения AnCatt обеспечивает отличную адгезию к металлической поверхности с использованием химического связывания, а не физического соединения, поэтому можно избежать нынешнего дорогостоящего и токсичного процесса подготовки поверхности для увеличения площади поверхности с целью улучшения физического сцепления между краской и металлической поверхностью.Технология AnCatt устранила дорогостоящую подготовку поверхности, что позволило сократить время перекраски, стоимость и загрязнение почти вдвое. Краска AnCatt намного тоньше и без использования каких-либо тяжелых металлов, поэтому делает покрытие намного легче, что может помочь снизить вес инфраструктуры и сэкономить энергию, необходимую для движения защищенных металлических конструкций, таких как корабль. Краска AnCatt может защитить все виды металлов, поэтому уменьшает количество красок, которые необходимо поддерживать для защиты различных металлов.
Какие бывают виды антикоррозионных \ антикоррозионных покрытий?
Исследование, проведенное крупной отраслевой ассоциацией NACE (Национальная ассоциация инженеров по коррозии), показало, что ежегодные затраты на борьбу с коррозией в США составляют 279 миллиардов долларов.На тот момент, когда исследование было заказано Федеральным управлением шоссейных дорог, эта цифра составляла 2–3% ВВП США.
Исследователи определили, что до 30% этих затрат — около 83 миллиардов долларов — могут быть устранены, если будут реализованы установленные протоколы защиты от ржавчины и коррозии. С тех пор коррозия остается трудноразрешимой проблемой, но успехи в борьбе с ней были значительными.
Существует несколько различных промышленных покрытий с антикоррозийными свойствами.Многие из них также обладают другими эксплуатационными качествами, что делает их хорошими универсальными покрытиями для промышленности или коммерции.
Очень важно, чтобы тип покрытия соответствовал основанию и рабочей среде, на которую оно будет наноситься. Имея это в виду, на большинстве рабочих мест потребуется несколько разных типов покрытий. Правильное покрытие снижает коррозию, продлевает срок службы и упрощает техническое обслуживание в будущем. Нередко эти покрытия используются в качестве основы перед нанесением других покрытий для защиты поверхности.
Во многих случаях на одну подложку наносят несколько покрытий или покрытия специально разрабатываются для решения поставленной задачи. Однако есть некоторые широко известные антикоррозионные покрытия, подходящие для ряда распространенных ситуаций.
К лучшим антикоррозионным покрытиям относятся:
ФторполимерФторполимер — это смесь высокоэффективных смол в сочетании с фторполимерными смазочными материалами. В их состав входит превосходная твердая пленочная смазка, которая контролирует истирание за счет значительного уменьшения трения.Фторполимер полезен в средах с очень высокими и очень низкими температурами.
Хотя фторполимер выбран в основном из-за коррозионной стойкости, он также устойчив к коррозионным химическим веществам. Он также обладает некоторым электрическим сопротивлением. Такое сочетание характеристик делает его пригодным для крепежа и компонентов OEM, продлевая срок их службы.
ЭпоксиднаяЭпоксидное покрытие — одно из самых распространенных промышленных покрытий. Это часто обсуждают с точки зрения систем напольных покрытий из эпоксидной смолы.Однако его можно использовать повсюду на производстве. Различные составы эпоксидной смолы имеют радикально разные свойства проводимости и термостойкости.
Существует два основных типа эпоксидного покрытия:
1. Эпоксидное покрытие, высушенное на воздухеЭпоксидное покрытие воздушной сушки применяется исключительно для металлических поверхностей. Обладает высокой антикоррозийной и антихимической стойкостью. Одинарный слой обеспечивает защиту от коррозии при толщине 4-6 миллиметров. Обычно он используется в двух- и трехслойных системах на объектах нефтегазовой отрасли.
2. Экспоксидное покрытие термического отвержденияЭпоксидные покрытия с термическим отверждением обеспечивают лучшую защиту от коррозии в сложных промышленных условиях. Высокая молекулярная масса означает сосуществование исключительной ударопрочности и стойкости к истиранию. Это популярное покрытие в отраслях, где используются щелочные и щелочные растворы.
ФосфатФосфат — это вид конверсионного покрытия для стали и других металлов. Он имеет кристаллическую структуру, сформированную на подложках из черных металлов.Используется для предварительной обработки перед нанесением покрытия или окраски промышленных поверхностей. Помимо защиты от коррозии, он улучшает фрикционные свойства скользящих компонентов. С соответствующим масляным верхним слоем он может препятствовать образованию ржавчины на резьбовых компонентах.
Цинк неорганическийНеорганический цинк — идеальная форма защиты от коррозии для металлических поверхностей, подвергнутых струйной очистке. Он обеспечивает лучшую защиту от коррозии на рынке и эффективен против атмосферных воздействий, солевого воздействия и растворителей.В прибрежных установках широко используются покрытия из неорганического цинка. Мы обнаружили, что многие морские суда использовали эту форму защиты.
Неорганический цинк имеет то преимущество, что он совместим с широким ассортиментом финишных покрытий, которые могут дополнительно усилить его защиту от коррозии. Он работает с эпоксидными смолами, фенольными смолами, акрилом, силиконом и многими другими. Это следует учитывать для химических заводов и нефтеперерабатывающих заводов, а также для силосов и промышленных резервуаров.
Это всего лишь образец антикоррозионных покрытий, доступных на сегодняшний день.Любой план покраски должен начинаться с комплексной оценки участка с подробным описанием окружающей среды и ее опасностей.