Машина вырабатывающая электричество: Велосипедный педальный генератор большой мощности

Содержание

Велосипедный педальный генератор большой мощности

Как вырабатывать электричество крутя педали? Один киловатт-час стоит 5 центов. Для получения такого количества энергии необходимо вращать педали 10 часов. Нет никакого смысла говорить о промышленных масштабах производства электроэнергии с помощью педальных генераторов. Тем не менее такой способ получения электрического тока требуется достаточно часто, потому что с помощью мускульной силы мы можем вырабатывать электричество где угодно без потребления топлива, днём и ночью. Оборудование дешёвое и практически не требует технического обслуживания.

В основном они требуются в двух случаях:

  1. Для подзарядки батарей для мобильных устройств во время путешествий на велосипеде.
  2. Для выработки как можно большего количества электроэнергии на стационарных педальных генераторах.

Педальные велогенераторы предназначены для получения электричества в отдалённых районах, где неудобно использовать солнечные батареи неудобны.

Генератор для велосипеда может вырабатывать до 300 Вт электроенерги (в среднем 40-150 Вт в зависимости от велосипедиста).

В интернете дано много рекомендаций, как своими руками сделать велосипедный генератор, работающий за счёт вращения педалей. Самодельные генераторы не лучший выбор, так как они содержат много редких ненужных деталей или требуют много работы по адаптации генератора к велосипеду, страдают от проблем с трением, проскальзыванием ремня и быстрого износа.

С ростом популярности электрических велосипедов купить педальный втулочный электрогенератор стало проще. Сейчас хороший выбор вело-мотор-генераторов китайского производства, которые уже можно купить менее чем за 100 евро. В них магниты перенесены на ротор, а медная обмотка неподвижна. Достаточно неплохие динамо-машины.

Как правильно выбрать велогенератор.
  • Мотор устанавливается на неподвижный велосипед — это задний втулочный мотор (переднее колесо неподвижного велосипеда не вращается).
  • Для хорошей производительности в моторе должны использоваться современные редкоземельные постоянные магниты, велогенератор должен быть бесщёточной конструкции.
  • Для получения хорошего эффекта инерции, он должен быть тяжёлым и представлять собой электрическое велосипедное колесо.
  • Для уменьшения механических потерь мотор должен быть прямоприводным/не использовать передач на шестерёнках.
  • Чтобы человек мог справится с педалированием в течении длительного времени, мотор должен давать мощность не менее 200 Вт. Чем больше — тем лучше (снижаются потери, возрастает масса).
  • Напряжение мотора должно превышать заданное выходное напряжение, чтобы оно не падало ниже критического значения, даже во время педалирования не на полную мощность.

На рисунке вверху показано внутреннее устройство мотор-колеса, исполненного в виде втулочного генератора на 24 В, 500Вт производства Golden Motor / Jiangsu, заряжающего аккумулятор 12 В.

Установка генератора на велосипед.
  1. Найдите велосипед — любую рухлядь, но с работающими передней осью, педалями, цепью, седлом и желательно задним переключателем.
  2. Замените заднее колесо на втулочный мотор.
  3. Установите велосипед на опору так, чтобы заднее колесо могло свободно вращаться. Также можно подвесить зад велосипеда, чтобы он совсем не касался земли, взять подставку из металлических кронштейнов, установленных на деревянное основание.

Вернуть велосипед в его исходное состояние можно очень быстро — нужно лишь снять с опоры и поставить колесо назад.

Электрическая схема подзарядки аккумуляторов с помощью педального генератора.

Мотор-генератор расположен слева схемы, выходящее напряжении (+/-12 В) — справа. К выходу можно подсоединить любую нагрузку: лампочки, люминесцентные лампы, светодиодное осветительное оборудование, радио, портативное зарядное устройство для мобильного телефона, телевизор, спутниковый ресивер, инвертор. Все подключённые устройства должны быть рассчитаны на 12 В.

Разберём схему более детально. Велосипедный генератор производит 3-трёхфазный переменный ток, который перед использованием необходимо преобразовать в постоянный. Трёхфазный выпрямитель можно сделать из шести диодов или приобрести в готовом виде (используется в ветроэнергетике). Он выглядит как обычный мостовой выпрямитель, только снабжён пятью клеммами вместо четырёх. Выпрямитель должен быть рассчитан не меньше чем на 100 В и 35 А. Каждый из диодов должен выдерживать такое же напряжение, но только половину тока (20 А). Для выпрямителя требуется некоторое охлаждение — поэтому прикрепите его к большой металлической детали.

Выходная мощность выпрямителя не может напрямую подаваться на лампочку или телевизор, так как при педалировании не вырабатывается стабильное напряжение. Оно будет колебаться между нулём и максимумом и может повредить оборудование. Данная проблема решается подсоединением аккумулятора параллельно к выходу выпрямителя, который будет поглощать лишнюю мощность вырабатываемую генератором и заполнять промежутки времени, когда генератор не вырабатывает достаточно мощности или даже останавливается на короткое время. Аккумулятор не обязательно должен быть большим или каким-то особенным — подходит любой свинцово-кислотный аккумулятор.

Если он имеет большую ёмкость это тоже неплохо. Можно использовать старый аккумулятор компьютерного ИБП на 12 В 16 А·ч. Для домашнего применения рекомендуются герметичные аккумуляторы, не выделяющие газов.

На схеме есть и другие компоненты. Один из них это плавкий предохранитель, который нужен на случай короткого замыкания. Аккумулятор производит настолько сильный ток, что даже может воспламенится кабель. Рекомендуется кабель 2.5 мм

2 и плавкий предохранитель на 30 А. Также на схеме есть два измерительных прибора (нет на фотографии). Один вольтметр (со своим плавким предохранителем) и один амперметр. Несмотря на то что педальный генератор работает и без них, вольтметр крайне рекомендуется ради исправности аккумулятора. Лучше брать цифровой вольтметр. Как только на нём высветится 14 В (для систем на 12 В) нужно прекратить вращать педали. Никогда не превышайте 15 В. Напряжение также не должно падать ниже 10.5 В. Аналоговый амперметр (с нулевой отметкой в середине шкалы) не очень важен, но он показывает идёт ли закачка энергии в аккумулятор (в итоге ведущая к полной зарядке аккумулятора) или потребление (ведущее к разряду аккумулятора). В схеме не может использоваться цифровой амперметр, так как ток меняется слишком часто, что не позволяет стабильно считывать показания. Диапазон амперметра зависит от отводимого нагрузкой тока. Лучше всего купить с диапазоном +/- 20 А.

Взаимосвязь напряжения аккумулятора, напряжения генератора, размеров передней и задней звёздочек.

Напряжения аккумулятора и генератора, размер передней и задней звёздочек влияют на затрачиваемые человеком усилия и его каденс. При правильном подборе данных параметров на выбранной мощности система выдаёт требуемое выходное напряжение при адекватном каденсе (50 — 60 об/мин).

Возрастание напряжения аккумулятора (без изменения других параметров) -> Увеличение каденса и уменьшение затрачиваемых усилий для достижения такой же выходной мощности
Возрастание напряжения генератора (без изменения других параметров) -> Уменьшение каденса и увеличение затрачиваемых усилий для достижения такой же выходной мощности
Возрастание размера передней звёздочки (без изменения других параметров) -> Уменьшение каденса и увеличение затрачиваемых усилий для достижения такой же выходной мощности
Возрастание размера задней звёдочки (без изменения других параметров) -> Увеличение каденса и уменьшение затрачиваемых усилий для достижения такой же выходной мощности

Чтобы проверить эту зависимость на практике необходимо установить напряжение генератора выше, чем напряжение аккумулятора, а также попробовать использовать разные передачи (потребуется велосипед с исправным переключателем).

По мере зарядки аккумулятора каденс возрастает и только своевременная смена звездочек переключателем позволяет поддерживать стабильный каденс. Наличие передач также необходимо для индивидуальной настройки педального генератора под каждого отдельно взятого человека.

Технические характеристики системы на базе Golden Motor / Jiangsu: генератор на 24 В, аккумулятор на 12 В, передняя звезда на 42 зуба, задняя звезда на 14 зубьев (18 зубьев, если напряжение аккумулятора ниже 11 В).

Почему автомобильные генераторы вырабатывают переменный ток?

Вот почему автомобили используют генераторы переменного тока, хотя все устройства на борту работают от постоянного электричества

Задумывались ли вы когда-нибудь о том, что питает все системы вашего автомобиля? За счет чего заводится мотор, горят лампочки на приборной панели, движутся стрелки и работают бортовые компьютеры? Откуда берется электричество на борту? Конечно, их вырабатывает генератор и аккумулирует химический накопитель энергии многоразового действия – электрический аккумулятор. Это знают все. Скорее всего, вы также в курсе, что аккумуляторная батарея вырабатывает постоянный ток, который используется в любом автомобиле для запитывания приборов. Однако во всей этой стройной теории, проверенной практикой, присутствует одно странное звено, не желающее поддаваться логике, – генератор вырабатывает ток переменный, тогда как все механизмы на борту машины потребляют ток постоянный. Это не кажется вам странным? Почему так происходит?

 

На самом деле это интересный вопрос, потому что в этой истории на первый взгляд нет никакого смысла. Если все потребители электричества в вашем автомобиле работают на 12 вольтах постоянного тока, почему автопроизводители больше не используют генераторы, которые производят постоянный ток? Ведь раньше так и делали. Почему необходимо сперва сгенерировать переменный ток, а затем преобразовывать его в постоянное электричество?

 

Задавшись такого рода вопросами, мы начали докапываться до истины. Ведь есть же в этом какая-то тайная причина.

И вот что мы выяснили.

 

Во-первых, давайте проясним, что мы подразумеваем под переменным и постоянным током. Автомобили используют постоянный ток, или прямой ток, как его еще называют. В названии скрыта суть феномена. Это тип электричества, который производится батареями, он течет в одном постоянном направлении. Этот же тип электричества производился генераторами, которые ставились на первые автомобили с начала 1900-х годов до 60-х годов прошлого века. На старушках ГАЗ М-20 «Победа» и ГАЗ-69 ставились именно генераторы постоянного тока.

 

Другой вид электричества – переменный ток – назван так из-за того, что он периодически обращает течение по направлению, а также изменяется по величине, сохраняя свое направление в электрической цепи неизменным. Доступ к этому типу электричества можно получить в любой розетке обычной квартиры по всему миру. Мы используем его для питания электроприборов в частных домах, зданиях, огни больших городов также дают свет благодаря переменному току, потому что его легче передавать на большие расстояния.

 

Большая часть электроники, в том числе почти вся в вашем автомобиле, использует постоянный ток, преобразуя переменный ток в постоянный для выполнения полезной работы. В бытовых приборах установлены так называемые блоки питания, в которых происходит конвертация одного вида энергии в другой. Побочным результатом работы преобразования является немного тепла на выходе. Чем сложнее бытовая утварь, к примеру компьютер или Smart TV, тем сложнее цепочка преобразований. В некоторых случаях переменный ток частично не изменяется, а лишь корректируется его частота. Поэтому очень важно при замене вышедшего из строя блока питания заменять его на оригинальный, требуемого типа. Иначе технике наступит очень быстрый конец.

 

Но что-то мы отошли от главных вопросов, поставленных на повестку дня сегодня.

 

Итак, зачем в автомобилях вырабатывать «неправильный» вид электричества?

В общем, ответ очень прост: таков принцип работы генератора переменного тока. Наиболее высокий КПД при переводе механической энергии вращения двигателя в электрическую энергию происходит именно по такому принципу. Но есть нюансы.

 

Кратко принцип работы автомобильного генератора таков:

При включении зажигания на обмотку возбуждения подается напряжение через блок щеток и контактные кольца.

Инициируется появление магнитного поля.

Магнитное поле воздействует на обмотки статора, что приводит к появлению электрического переменного тока.

Далее переменный ток отправляется на выпрямительный блок, где происходит его преобразование в постоянный ток.

Завершающая стадия «готовки» правильного тока – регулятор напряжения.

 

После всего процесса часть электричества запитывает электропотребители, часть идет на подзарядку аккумулятора, некоторая часть уходит обратно на щетки альтернатора (так когда-то называли генератор переменного тока) для самовозбуждения генератора.

 

Выше был описан принцип работы современного генератора переменного тока, но так было не всегда. Ранние автомобили с двигателями внутреннего сгорания использовали магнето – простейшее приспособление для преобразования механической энергии в электрическую (переменного тока). Внешне, да и внутренне, эти машинки были даже схожи с более поздними генераторами, но использовались на очень простых автомобильных электрических системах без батарей. Все было просто и безотказно. Не зря некоторые сохранившиеся до наших времен 90-летние автомобили заводятся до сих пор.

 

Индукторы (второе название магнето) впервые были разработаны человеком с неподражаемым именем – Ипполит Пикси.

 

Смотрите также: Сколько стоит зарядить электромобиль?

 

На данный момент мы с вами выяснили, что тип вырабатываемого генераторами тока зависит от продуктивности перевода механической энергии в электрическую, но также немаловажную роль во всей этой истории сыграло снижение массы и габаритов устройства по сравнению с аналогичными по мощности устройствами-производителями постоянного тока. Разница в весе и габаритах оказалась почти в три раза! Но есть еще один секрет, почему автомобильные генераторы сегодня вырабатывают переменный ток. Вкратце это более передовой эволюционный путь развития генераторов постоянного тока, которых, признаться честно, по сути, и не существовало в чистом виде.

 

Историческая справка:

Более того, генераторы постоянного тока на самом деле также производили переменный ток, когда якорь (подвижная часть) вращался внутри статора (внешний «корпус», который имеет постоянное магнитное поле). Разве что частота тока была иной и «сгладить» ее в постоянный ток можно было проще – при помощи коммутатора.

Коммутатором тогда называлось механическое приспособление с вращающимся цилиндром, поделенным на сегменты с щетками для создания электрического контакта.

 

Система работала, но была неидеальна. В ней было множество механических частей, контактные щетки быстро изнашивались, и общая надежность системы была так себе. Тем не менее это был лучший способ получить постоянный ток, который был нужен вам для зарядки аккумулятора и системы запуска автомобиля.

 

Так было до конца 1950-х годов, когда начала появляться твердотельная электроника, ставшая решением проблемы преобразования переменного тока в постоянный посредством кремниевых диодных выпрямителей.

Эти выпрямители тока (иногда называемые диодным мостом) показали себя с гораздо лучшей стороны в качестве преобразователей переменного тока в постоянный, что, в свою очередь, позволило использовать более простые, а значит, более надежные генераторы переменного тока в автомобилях.

 

Первым зарубежным автопроизводителем, который развил эту идею и вывел ее на рынок легковых автомобилей, был Chrysler, имевший опыт работы с выпрямителями и электронными регуляторами напряжения благодаря исследовательской работе, спонсируемой Министерством обороны США. В Википедии отмечается, что американская разработка «…повторяла разработку авторов из СССР», первая конструкция генератора переменного тока была представлена в Советском Союзе за шесть лет до этого. Единственным, но важным улучшением американцев стало применение кремниевых выпрямительных диодов вместо селеновых.

 

Смотрите также: Разряд автомобильного аккумулятора: причины и как его избежать

 

В СССР же, хоть и опоздали на 7 лет с введением в серию генераторов переменного тока на легковые автомобили, опередили весь мир в самой разработке новых типов генераторов. Еще в 1955 году на Горьковском автозаводе было выпущено 2.000 машин с альтернаторами вместо магнето.

 

«Одними из ведущих разработчиков, благодаря которым в СССР и на европейском континенте появилась первая серийная конструкция генераторов переменного тока, были Ю. А. Купеев (НИИ автоприборов) и В. И. Василевский (КЗАТЭ г. Самара)», – говорится на страницах Википедии.

 

Итог. Почему генераторы на авто вырабатывают переменный ток?

Ну, а мы завершаем наш рассказ. Первым легковым автомобилем, в базовой комплектации которого устанавливался генератор новой конструкции, стал Plymouth 1960 года выпуска. Некоторыми из наиболее очевидных преимуществ генератора было то, что на низкой скорости или на холостом ходу он по-прежнему производил достаточно тока, чтобы заряжать аккумулятор, что большинство генераторов того времени были не в состоянии сделать.

 

Оказалось, что альтернаторы, после того как был налажен массовый выпуск, производить дешевле, чем генераторы старой конструкции, они надежнеевыносливее и производят больше электричества на разных скоростях вращения коленчатого вала. Они сделали настолько большой шаг вперед, что все их плюсы запросто перекрывали единственный минус – они не могли производить постоянный ток. Позиция закрепилась после того, как инженерами был разработан дешевый и надежный твердотельный выпрямитель.

 

Видите? В конце концов, в этом есть смысл!

Динамо машина (Велогенератор). Виды и особенности. Работа

Генератором электрической энергии называется устройство, преобразующее химическую, механическую или тепловую энергию в электрический ток. Таким генератором, использующимся на велосипедах для питания задних фонарей и передней фары, является динамо-машина.

Разновидности

Рассмотрим существующие виды велосипедных динамо-машин заводского исполнения.

Бутылочная

Этот вид велосипедного генератора наиболее доступный и простой. Однако его мощность не самая большая из всех видов. Приводной ролик генератора вращается за счет касания к протектору шины колеса во время движения.

Втулочная динамо-машина

Динамо-втулка по своему устройству является осевой динамо-машиной. Исполнения таких моделей могут быть различного вида. Стоимость втулочного генератора довольно высока. Установка более сложная, по сравнению с бутылочным вариантом.

При приобретении необходимо проверить число спиц и метод фиксации установочного колеса. К достоинствам втулочного генератора относится его защищенность от влаги, в отличие от бутылочного генератора, приводной ролик которого в сырую погоду проскальзывает по покрышке велосипеда. Устройство заключено внутри втулки колеса, и работа происходит от его вращения.

К недостаткам такого устройства относится то, что выключить работу втулочного генератора не получится.

Цепная

Цепной вариант велосипедного генератора встречается достаточно редко. Однако есть несколько разных исполнений этого вида. Устройство может оснащаться USB портом для зарядки мобильных гаджетов.

Недостатком такой конструкции является малый срок службы, так как при эксплуатации происходит воздействие металлической велосипедной цепи на пластиковые элементы генератора.

Бесконтактная

Это оригинальная динамо-машина с бесконтактным принципом действия. Колесо велосипеда играет роль ротора. На колесо фиксируется специальный обруч, на котором закреплены 28 магнитов. Они расположены поочередно, с разными полюсами.

Статором является индукционная катушка, в которой вырабатывается электрический ток. В эту систему включена аккумуляторная батарея для накопления энергии. По заверениям производителя для обеспечения нормального светового потока достаточно двигаться со скоростью 15 км в час.

Достоинствами этой конструкции является:
  • Отсутствие трущихся элементов.
  • Бесшумная эксплуатация.
  • Неограниченный срок эксплуатации (кроме батареи аккумуляторов).

Недостатком бесконтактной модели является малая емкость аккумуляторов. Ее хватает всего на несколько минут. Однако многие умельцы легко исправляют этот недостаток различными способами, в том числе заменой батареи на более мощную.

Другие конструкции

В настоящее время очень популярны различные интересные устройства, которые изготовлены в Китае. Иногда видишь такие устройства, которые раньше нигде не производили. Даже их принцип действия не всегда понятен, однако они работают.

Такое китайское устройство можно смело назвать велогенератором будущего. Динамо-машина из поднебесной выглядит по аналогии фантастических фильмов. Судя по внешнему виду, для ее функционирования нет необходимости в контакте с шиной колеса или цепью. Также нет никаких магнитов.

Принцип ее работы не совсем понятен. Возможно, это является технологическим секретом завода изготовителя.

Конструктивные особенности и работа

Наиболее популярной моделью динамо-машины на велосипедах является ее бутылочная конструкция, за ней идет динамо-втулка. Остальные виды используются значительно реже. Поэтому рассмотрим самые распространенные модели.

Динамо-бутылка

Динамо-машина бутылочного вида работает на боковой части передней шины велосипеда. Выполнена в виде небольшого генератора электрической энергии, и служит для работы заднего фонаря и передней фары велосипеда, а также зарядки электронных мобильных устройств.

Такой мини-генератор может монтироваться как на переднее колесо, так и на заднее. В первом случае устройство может совмещаться со встроенным фонарем. Для отключения генератора предусмотрен специальный откидной механизм, фиксирующий корпус генератора в том положении, когда нет соприкосновения с шиной колеса велосипеда.

Название этого устройства происходит от внешнего сходства формы с бутылкой. Бутылочный велогенератор имеет и другое название – боковое динамо. Приводной резиновый или металлический ролик приводится во вращение на боковой стороне шины колеса. При движении велосипеда шина придает вращательное движение ролику велогенератора, который вырабатывает электрический ток.

Достоинства
  • Отключенный привод генератора не оказывает сопротивления движению велосипеда. При включенном генераторе велосипедисту приходится прикладывать больше силы для движения. Динамо-втулка в отличие от бутылочного велогенератора, всегда оказывает сопротивление вращению колеса, хотя значение этого сопротивления незначительно. Если бутылочный велогенератор включен, но фонари и фара не подключены к питанию, то сопротивление движению велосипеда меньше.
  • Легкая и простая установка. Такое устройство легко установить на любой велосипед, в отличие от втулочного генератора, для установки которого необходима сборка всего динамо-колеса со спицами.
  • Небольшая стоимость. Такие модели обычно стоят дешевле других видов велосипедных генераторов, хотя бывают и исключения из этого правила.
Недостатки
  • Сложная настройка. Требуется тщательная настройка и регулировка соприкосновения с покрышкой колеса под определенным углом, давлением в шине, высотой. Если велосипед упадет, либо ослабнут фиксирующие винты, генератор может быть поврежден. Неправильно отрегулированное устройство генератора будет издавать много шума, создавать чрезмерное сопротивление, проскальзывать по колесу. Если винты крепления слишком ослабнут, то механизм может сдвинуться с места и попасть в спицы колеса, что приведет к поломке спиц и выходу колеса велосипеда из строя. Некоторые велогенераторы оснащены специальными петлями, предохраняющими их попадание в спицы.
  • Для переключения требуется физическое усилие. Чтобы привести в действие генератор, необходимо переместить его корпус до соприкосновения с колесом. Втулочные генераторы могут включаться автоматически или с помощью электроники. Для этого не нужно прикладывать усилия.
  • Повышенный шум. При эксплуатации слышен шум в виде жужжания, в то время как динамо-втулки не создают шума.
  • Износ шины колеса. Для эксплуатации генератора требуется соприкосновение с шиной, в результате происходит трение и износ покрышки. Если сравнить с динамо-втулкой, то там трение с покрышкой отсутствует.
  • Сопротивление движению. Бутылочная динамо-машина оказывает значительно больше сопротивление движению велосипеда, чем втулочная модель. Однако при правильной настройке сопротивление незначительное, а в отключенном виде отсутствует.
  • Проскальзывание. При сырой дождливой погоде приводной ролик бутылочного генератора будет скользить по шине колеса, что уменьшает выработку электрического тока и снижает яркость света фары и заднего фонаря. Втулочные генераторы не требуют для работы хорошего сцепления с покрышкой, и не зависят от погоды и других неблагоприятных условий.
Динамо-втулка

Втулочная конструкция велогенератора разработана в Англии, а производится различными фирмами во многих странах. Мощность такой конструкции может достигать 3 ватт при напряжении 6 вольт. Технологии их изготовления постоянно совершенствуются, размеры конструкции становятся меньше и мощнее. Современные фары для велосипеда стали излучать более эффективный свет, так как применяются светодиоды и галогенные лампы.

Динамо-втулки при работе не создают шума, но их масса больше, чем у других моделей. Трущиеся части во втулочном варианте устройства отсутствуют. Они функционируют за счет магнита, имеющего множество полюсов, и выполненного в виде кольца. Он находится в корпусе втулки и вращается вокруг неподвижного якоря с катушкой, зафиксированной на оси. Сопротивление вращению такой конструкции очень незначительное.

Динамо-втулки вырабатывают переменный ток. На малых скоростях вырабатывается больше электричества, по сравнению с бутылочной моделью, за счет низкой частоты тока. Существуют схемы выпрямителей для динамо-машины. Они выполнены по простой схеме моста из четырех диодов.

Динамо-машина втулка вырабатывает низкое напряжение, поэтому при применении кремниевых диодов потери составляют значительную величину – 1,4 вольта. С германиевыми диодами потери снижаются, и составляют всего 0,4 вольта.

Принцип работы динамо-машины

Динамо-машина вырабатывает электрический ток с помощью эффекта электромагнитной индукции. Ротор вращается в магнитном поле, в результате чего в обмотке возникает электрический ток. Концы обмотки ротора подключены к коллектору, выполненному в виде колец. Через них с помощью прижимающихся щеток электрический ток поступает в сеть.

Ток в обмотке имеет максимальное значение, если ротор находится перпендикулярно по отношению к магнитным линиям.  Чем больше угол поворота обмотки, тем ток меньше. Вращение обмотки в магнитном поле изменяет направление тока за один оборот два раза. Поэтому ток называют переменным.

Подобный генератор для постоянного тока изготавливается на этом же принципе. Разница в некоторых деталях. Концы обмотки соединяют не с кольцами, а с полукольцами, которые изолированы друг от друга. При вращении обмотки щетка контактирует поочередно с каждым полукольцом. Поэтому ток, поступающий на щетки, будет иметь только одно направление и будет постоянным.

Похожие темы:

Что такое электростатический генератор Тестатика

Что такое электростатический генератор Тестатика

Генератор Тестатика – это устройство для генерации свободной энергии. Устройство было изобретено в Швейцарии в середине 20 века. В основу его положен принцип работы генератора Вимшурста, в конструкции которого используются элементы из меди и алюминия.

В конце двадцатого столетия лидер духовной общины Methernita, Пауль Бауманн, разработал весьма необычный генератор электрической энергии, который был назван «Тестатика».

Генератор функционировал благодаря высокому напряжению, вырабатываемому модифицированной машиной Уимшурста, и служил для преобразования статического электричества, получаемого прямо из окружающего машину воздуха, — в постоянное напряжение и ток.

И хотя концепция создания машины изначально основывалась на идее применения в ее конструкции как можно более простых и доступных элементов, генераторы данного типа, с дисками диаметром от 50 до 200 см, номинальной мощностью до 30 кВт, успешно обеспечивают все нужды общины в электричестве уже на протяжении более чем трех десятилетий.

Вместо лейденских банок, подобных тем что можно встретить в конструкциях обычных электрофорных машин Уимшурста, здесь используются цилиндрические конденсаторы значительно меньшей емкости, но с гораздо большей площадью наружной поверхности.

У некоторых моделей Тестатики в роли цилиндрических конденсаторов выступают доработанные воздушные фильтры от автомобилей, обладающие необходимой обширностью площади наружной поверхности, а также характерными неровностями, которые нужны для эффективного сбора статического электричества из окружающего воздуха.

Высокое напряжение подается от дисков, через неподвижные электроды, — на внутренние обкладки пары цилиндрических конденсаторов, разнесенных далеко друг от друга с тем, чтобы исключить прямое взаимодействие их внешних обкладок.

Неподвижные электроды, получающие заряд от сегментов дисков машины, не контактируют с данными сегментами напрямую. Здесь используются бесконтактные электроды большой площади с шершавой поверхностью, делающие достаточным лишь индуктивное взаимодействие с сегментами.

Очевидно, от дисков — в цепь неподвижных электродов не течет сколь-нибудь значимого тока, как в генераторе Уимшурста, а решающее значение имеет только наводимый на них и на внутренние обкладки цилиндрических конденсаторов электрический заряд. Это говорит о том, что ток нагрузки образуется в другой цепи, — в цепи, непосредственно присоединенной к наружным обкладкам пары конденсаторов, в которую и включается нагрузка.

Кроме цепи присоединяемой внешней нагрузки, связанной только с наружными обкладками цилиндрических конденсаторов, в конструкции машины присутствуют постоянно включенные индуктивные элементы с подковообразными сердечниками, соединенные с дополнительными конденсаторами в замкнутой приводной цепи машины.

Приводящие электроды расположены в четырех местах сверху и снизу как в обычной электрофорной машине Уимшурста, чтобы даже без нагрузки поддерживать вращение дисков. Эти электроды связаны с приводящей цепью, которая питается от тех же боковых электродов, что и большие цилиндрические конденсаторы.

Когда нагрузка больше — диски вращаются быстрее, когда нагрузка меньше — медленнее. Это говорит о том, что чем быстрее утилизируются заряды с внешних обкладок больших конденсаторов — тем меньше их остается на боковых электродах, и тем меньшее тормозящее (электростатическое отталкивание) действие они оказывают на диски. При этом приводная цепь, обладающая сравнительно более высокой добротностью, действия нагрузки не испытывает и продолжает вращать диски.

Есть мнение, что в некоторых машинах Тестатика присутствует двигатель, приводящий диски во вращение, однако при детальном рассмотрении ни на одной из доступных в сети фотографий невозможно обнаружить двигатель. И это понятно, ведь обратимость электрофорной машины — известный, не вызывающий сомнений, научный факт.

Ранее ЭлектроВести писали, что пока Китай готовится перезапустить после трехлетнего моратория свою заглохшую ядерную программу, ученые из лаборатории округа Хэфэй вместо грубого расщепления атомов занимаются ядерным синтезом, мечтая «поместить Солнце в коробку».

По материалам: electrik.info.

8.1. Первые электрические машины — Энергетика: история, настоящее и будущее

8.1. Первые электрические машины

К концу первой половины XIX века были доказаны взаимосвязь между различными явлениями природы и взаимопревращение различных форм движения материи: установлена связь тепловой и механической, электрической и тепловой, электрической и химической, электрической и магнитной форм энергии.

Начало практическому использованию электричества положили те области применения, которые не требовали значительных затрат электроэнергии, – телеграфия, телефония, военное дело (воспламенение пороховых зарядов, электрическое взрывание мин), дистанционное управление и др. В процессе создания различных устройств при этом использовании электричества важно было решить ряд практических и теоретических проблем: совершенствовать источники тока, создавать разнообразные приборы и приспособления, в том числе автоматические, изготовлять изолированные проводники, исследовать свойства различных материалов, разрабатывать методы измерений, устанавливать единицы измерения величин. Все это привело к разработке схем и методов, получивших применение в современной телемеханике и телеуправлении.

Практически расширение области применения электричества тормозило отсутствие хорошего, экономичного источника электрического тока. Примерно до 1870 г. наиболее распространенными источниками электрического тока были электрохимические (гальванические) элементы и аккумуляторы (в 1854 г. немецкий врач В.И. Зинстеден открыл способ аккумулирования, а в 1859 г. француз Г. Планте построил свинцовый аккумулятор). Проблема экономичного источника электрической энергии была решена только созданием совершенной конструкции электромашинного генератора, в развитии которого можно отметить три основных этапа. Первый этап (1831–1851) характеризуется созданием магнитоэлектрических машин.

Как отмечалось ранее, опыты Эрстеда по отклонению магнитной стрелки током стали той искрой прометеева огня, которую исследователи и изобретатели превратили в громадное пламя…

Открытие Фарадеем в 1831 году явления электромагнитной индукции указало новый способ получения электрического тока. Уже вскоре после этого открытия ученые и изобретатели стали стремиться к тому, чтобы применить данное явление к получению электричества при помощи энергии движения.

Магнитоэлектрическая машина основана на том, что электрический ток может быть вызван без всякой батареи одним передвижением магнита относительно замкнутых проводников.

Первый изобретатель электрического генератора, основанного на явлении электромагнитной индукции, пожелал остаться неизвестным. Произошло это так. Вскоре после опубликования доклада Фарадея в Королевском обществе, в котором было изложено открытие явления электромагнитной индукции, ученый нашел в своем почтовом ящике письмо, подписанное латинскими буквами Р. М., и приложенный к нему чертёж. Оно содержало описание первого в мире синхронного генератора с возбуждением от постоянных магнитов. Внимательно разобравшись в этом проекте, Фарадей направил письмо и чертёж в тот же журнал, в котором был напечатан его доклад. Он надеялся, что неизвестный автор, следя за журналом, увидит опубликованным свой проект и сопровождавшее его письмо Фарадея, исключительно высоко оценивающее это изобретение. Действительно, спустя почти полгода Р.М. прислал в редакцию журнала дополнительные разъяснения и описание предложенной им конструкции электрогенератора, но и на этот раз пожелал остаться неизвестным. Имя истинного создателя первого электромагнитного генератора так и осталось скрытым под инициалами Р.М. Человечество до сих пор, несмотря на тщательные розыски историков электротехники, не знает, кому же оно обязано одним из важнейших изобретений.

Машина Р.М. была первым генератором переменного тока и не имела устройства для выпрямления тока. С помощью этого генератора удалось разложить воду (поскольку ток был переменным, то при электролизе получилась смесь водорода и кислорода – гремучий газ). Необходимо было создать машину, в которой можно было бы получать ток, постоянный по величине и направлению.

Почти одновременно с неизвестным автором конструированием генераторов занимались в Париже братья Пиксии и профессор физики Лондонского университета, член Королевского общества В. Риччи. Созданные ими машины имели специальное устройство для выпрямления переменного тока в постоянный – так называемый коллектор. Первая магнитоэлектрическая машина братьев Пиксии (рис. 8.1) была построена в 1832 году. Она явилась предшественницей всех динамо-машин в широком смысле слова, т.е. всех машин, служащих для превращения энергии движения в электрическую энергию. Ее следует считать родоначальницей целого поколения разнообразных машин, предназначенных для получения электрического тока. Мимо неподвижных катушек Е и Е ‘, снабженных сердечниками, движутся посредством кривошипа и зубчатой передачи лежащие против них полюсы подковообразного магнита А, В, вследствие чего в катушках вызываются токи переменного направления. В генераторе братьев Пиксии нужно было вращать тяжелые постоянные магниты, что затрудняло пользование им. Со временем поняли, что целесообразнее сделать неподвижными постоянные магниты, а вращать более легкие катушки между полюсами магнитов. Магнитоэлектрические генераторы такого типа оказались значительно удобнее и именно в такой конструктивной форме впервые вошли в практику.

Стремясь повысить мощность электрических машин, изобретатели увеличивали число магнитов и катушек. Сильный толчок к построению более мощных магнитоэлектрических генераторов дали дуговые лампы с регуляторами, получившие применение на маяках в связи с развитием морского транспорта. В 1854 году в Париже была открыта первая фабрика «Compagnie L’Alliance» по изготовлению крупных магнитоэлектрических машин (рис. 8.2). В генераторе

«Альянс» на чугунной станине были укреплены в несколько рядов подковообразные постоянные магниты, расположенные по окружности и радиально по отношению к валу. Различные варианты таких генераторов имели разное число рядов магнитов (3,5,7). В промежутках между рядами магнитов устанавливались на валу кольца с большим числом катушек-якорей. На валу был укреплен коллектор с изолированными друг от друга и от вала машины металлическими пластинами. Коллекторными щетками служили специальные ролики. В машине было предусмотрено устройство для смещения роликов в зависимости от нагрузки.

 

Рис. 8.1. Первая магнитоэлектрическая машина братьев Пиксии

Рис. 8.2. Генератор «Альянс»

 

 

В генераторе «Альянс» можно было изменять соединение обмоток катушек, в результате чего менялась э.д.с. в цепи. Поэтому генератор мог давать или большой ток низкого напряжения и служить, например, для целей гальванопластики и электролиза, или ток меньшей силы, но более высокого напряжения (40–250 В) для питания дуговых ламп.

постоянных магнитов электромагнитами, возбуждаемыми током от магнитоэлектрической машины, высказал в 1851 году В. Зинстеден. Так начался второй этап развития электрогенераторов, занявший сравнительно небольшой отрезок времени.

 

Рис. 8.3. Магнитоэлектрическая машина Сименса

 

Рис. 8.4. Первая динамо-машина постоянного тока Сименса

В 1856 г. важнейшее усовершенствование в конструкцию магнитоэлектрической машины, а именно в конструкцию движущихся магнитных катушек и их железных сердечников, внес Вернер Сименс. Такие катушки с железом внутри называются якорем. Сименс придал якорю более удобную форму в виде «двойного Т». Якорь вращается между полюсами плотно обхватывающих его магнитов, причем количество магнитов может быть легко увеличено при соответствующем увеличении длины якоря. Якорь Сименса позволил в дальнейшем усовершенствовать конструкцию магнитоэлектрической машины (рис. 8.3). В конце того же года Сименс обратил внимание на то, что железо сердечника электромагнита сохраняет следы магнетизма и после выключения тока. Этот остаточный магнетизм оказался достаточным для начала процесса самовозбуждения. Отпала необходимость в отдельном генераторе для питания обмотки электромагнита. Таким образом, Вернер Сименс установил принцип создания и построил первую динамоэлектрическую машину постоянного тока (рис. 8.4) для взрывания мин, которую и продемонстрировал в конце 1866 г. перед несколькими выдающимися физиками. 17 января 1867 г. Сименс выступил в Берлинской академии наук с докладом «О превращении рабочей силы в электрический ток без применения постоянных магнитов». Этот доклад заканчивался словами: «…современной технике даны средства дешевым и удобным способом вызывать электрические токи неограниченной силы повсюду, где имеется рабочая сила. Этот факт будет иметь большое значение во многих ее отраслях».

Большим шагом вперед в развитии электрических генераторов было открытие принципа самовозбуждения, который получил широкую известность после 1867 года. Именно после 1867 года, когда почти одновременно в разных странах были построены генераторы с самовозбуждением, начался третий этап в развитии электрического генератора.

Бельгиец Теофил Грамм в 1869 г. создал генератор, получивший широкое применение в промышленности. В своей динамо-машине Грамм использовал принцип самовозбуждения, а также усовершенствовал якорь Сименса, придав ему форму кольца. Он обвил железное кольцо непрерывной проволокой, концы которой соединил вместе, и таким образом получил спираль. Обороты спирали в каждой половине кольца соединены последовательно, но обе половины обмотки кольца соединены противоположно друг другу. Токи с обеих сторон направляются к верхней точке кольца, образуя положительный полюс. Подобным же образом в нижней точке, откуда берут свое направление токи, будет находиться отрицательный полюс. Кольцевая машина Грамма (рис. 8.5) явилась первой практической динамо-машиной с барабанным якорем. Такая весьма сложная конструкция якоря с незначительными усовершенствованиями используется и в настоящее время. Барабанный якорь позволяет достичь кругового пути прохождения максимального количества линий сил, возбуждающих ток в обмотке электромагнитов. Грамм дал несколько конструкций своей машины. В одной из первых его машин кольцевой якорь был укреплен на горизонтальном валу. Он вращался между охватывавшими его полюсными наконечниками двух электромагнитов. Якорь приводился во вращение через приводный шкив. Обмотка электромагнита была включена последовательно с обмоткой. Генератор Грамма давал постоянный ток, который отводился с помощью металлических щеток, скользивших по поверхности коллектора.

Вернер Сименс (1816–1892) – немецкий электротехник и предприниматель, член Берлинской академии наук, основатель и главный владелец электротехнических концернов «Сименс и Гальске», «Сименс и Шуккерт» и др. В 1834 году Вернер Сименс с отличием окончил Любекскую гимназию и, успешно выдержав экзамены, поступил в Артиллерийское инженерное училище в Мальденбурге. Счастливым чувствовал себя молодой В. Сименс, когда его командировали на три года в Берлин для получения технического образования в Объединенной инженерноартиллерийской школе. Это полностью отвечало его склонностям к учебе. Здесь под руководством опытных учителей, преподававших также в Берлинском университете, он начал изучать математику, физику, химию и, конечно, баллистику – основу артиллерии. Это дало ему возможность удовлетворить жажду знаний и проявить изобретательский талант, получив фундаментальное образование в военном учебном заведении. В 1841 году Вернер Сименс получил патент на способ гальванического серебрения и золочения. Это было первое изобретение Сименса в области электротехники. Он занимался изобретательством и научными опытами по применению взрывчатой хлопчатой бумаги. Уже в 1845 году Вернер становится одним из наиболее заметных молодых ученых в недавно образованном Физическом обществе. В это время он делает ряд изобретений по телеграфной части, а также изобретает стрелочный телеграф, поскольку оптический телеграф в то время воспринимался как не соответствующий уровню технического развития. В 1846 году Сименс вошел в состав комиссии Политехнического общества Берлина по введению электрических телеграфов в Пруссии. В это время он изобрел специальную машину для покрывания медной проволоки гуттаперчей; машина эта вошла во всеобщее употребление при производстве изолированных проводников для подземных и подводных телеграфных кабелей.17 января 1867 г. в Берлинской академии наук Вернер Сименс изложил теорию, являющуюся исходным моментом всей современной электротехники, и представил совершенную конструкцию генератора постоянного тока с самовозбуждением. Он же предложил ртутную единицу сопротивления, впоследствии преобразованную в Ом, а единице электрической проводимости было присвоено наименование сименс.Сименс много сделал для развития немецкой и европейской электротехники. Он был инициатором образования Берлинского электротехнического союза (1879), основателем и председателем Общества патентов в Берлине, меценатом в области науки и культуры. На своих предприятиях он проводил обдуманную социальную политику. Удивительные слова принадлежат ему: «Мои капиталы будут жечь мне руки подобно раскаленному железу, если я не поделюсь с теми, кто помог мне получить этот доход, причитающейся им долей». Сименс был новатором во всем, чего касался его гений. В конце жизни Сименс написал: «Я считаю свою жизнь удавшейся, так как она была заполнена усилиями, которые почти всегда были успешными, и работой, приносящей пользу людям».

Рис. 8.5. Кольцевая машина Грамма

Машина Грамма в сравнении с магнитоэлектрической машиной такого же веса развивала в шесть раз большую мощность. Этот генератор быстро вытеснил генераторы других типов и получил очень широкое распространение. В начале 70-х годов XIX века был уже хорошо известен принцип обратимости и машина Грамма использовалась как в режиме генератора, так и в режиме двигателя.

В течение 70–80-х годов XIX века машина постоянного тока приобрела все основные черты современной машины. Дальнейшие усовершенствования не затрагивали основных принципов и конструктивных узлов машины, а были направлены на повышение качества, улучшение использования активных материалов и усовершенствование изоляции, повышение качества щеток и пр.

Очень важное усовершенствование заключалось в значительном снижении скорости вращения якоря. Высокая скорость вращения была необходима для получения достаточной электродвижущей силы. Но такой же результат может быть получен и путем увеличения диаметра кольца. При этом электромагнит был помещен внутрь кольца. Такая многополюсная динамо-машина была установлена на центральной электрической станции и питала до 2000 осветительных электроламп накаливания постоянного тока.

В процессе эволюции конструкции динамомашины было подмечено, что для некоторых целей, а главным образом для питания дуговых осветительных ламп, можно пользоваться невыпрямленным током переменного направления. При этом конструкция машины значительно упрощается, так как коллектор становится лишним и заменяется двумя кольцами.

Первой побудительной причиной развития динамо-машин переменного тока (так называемых «альтернаторов») послужило изобретение Яблочковым его «электрической свечи».

На рис. 8.6 представлен альтернатор Ганца, конструкция которого состоит из насаженного на вал лучеобразного индуктора Е, против каждого из десяти лучей (полюсов) которого расположено 10 катушек якоря, закрепленных на внутренней поверхности кольцеобразной железной рамы. При вращении индуктора в обмотках катушек возникают токи, постоянно меняющие направления. Обмотки же этих катушек соединены так, что при каждом положении индуктора в них одновременно возникают токи одного направления.

Рис. 8.6. Альтернатор Ганца

Вскоре берлинская фирма Сименса предложила свою конструкцию динамо-машины переменного тока (рис.8.7), конструкция которой интересна тем, что в индукторах не имеется железных сердечников, а для возбуждения используется дополнительная маленькая машина постоянного тока. Такая динамо-машина позволяла получать переменный ток значительно более высоких напряжений для питания нескольких независимых электрических цепей со многими последовательно включенными дуговыми лампами.

Второй побудительной причиной широкого распространения динамо-машин переменного тока явилась легкость трансформации переменного тока. Эта замечательная способность преобразования (трансформации) переменного тока была впервые использована Голардом в 1883 г. и усовершенствована Ганцем.

Рис. 8.7. Динамо-машина переменного тока Сименса

Первые динамо-машины были предназначены в основном для питания различных осветительных устройств. Однако широкое промышленное применение системы электрического освещения получили с совершенствованием конструкции и технологии строительства мощных центральных городских электрических станций и систем распределения электрической энергии.

Для приведения в действие динамо-машин в первое время применялись три вида двигателей: паровые, газовые и гидравлические.

Паровые двигатели состояли из парового котла, паропроводной трубы и собственно паровой машины. Из-за специфических условий сооружения генераторных станций (ограниченное помещение и относительная близость жилых зданий) преимущественное распространение получили водотрубные котлы, в которых испаряющаяся вода помещается во многих узких сообщающихся между собой трубках, охватываемых пламенем. Паровые двигатели, используемые в качестве привода динамо-машин, должны были отвечать определенным требованиям. В частности, динамо-машина требует от парового двигателя очень равномерного хода

не только относительно числа оборотов в минуту, но и в отношении скорости вращения в течение отдельных оборотов. Если эта равномерность не достигается, то напряжение на выходе динамо-машины колеблется в значительном диапазоне, к чему очень чувствительны осветительные лампы накаливания: они мигают, например, когда по шкиву проходит слишком толстый шов на ремне или когда ремень слишком слабо натянут (рис. 8.8). Подобные случайности заставили машиностроителей и электротехников полностью отказаться от ненадежных ремней. Однако сделать это было нелегко еще и потому, что у паровых машин и динамо-машин была различная угловая скорость вращения валов – соответственно 200 и 1000 оборотов в минуту. Чтобы уравнять угловую скорость шкивы машин приходилось делать различного диаметра, что обуславливало необходимость соединения их ремнем. Первые быстроходные паровые машины, соединенные с динамо-машиной без помощи ремня, были построены на заводах Вестингауза. Сущность устройства заключается в применении паровых цилиндров с кривошипно-шатунным механизмом, приводимым в движение паром. При этом весь механизм заключен в оболочку, так что из движущихся частей наружу выдаются лишь оба конца вала (рис. 8.9).

Рис. 8.8. Паровой двигатель и динамо-машина, соединенные ремнем

Рис. 8.9. Быстроходная паро-динамическая машина Вестингауза

Рис. 8.10. Газомотор Кертинга

 

Кроме паровых машин, для вращения динамо-машин в тех местах, где имелся газопровод, применялись газомоторы. Преимущество газомоторов заключалось в том, что они требуют сравнительно мало места и могут быть приведены в действие за нескольких минут. Самое широкое распространение получили газомоторы Отто, которых к концу 1894 г. для получения электрического освещения было установлено около 3000. Газомоторный завод в Дейтце (Германия) занимался специально разработкой газового двигателя для целей электрического освещения. Такой двигатель обеспечивал достаточно равномерное вращение и, соответственно, совершенно ровный свет. На заводах в Кергтиндорфе близ Ганновера известная в то время фирма братьев Кертинг организовала массовое производство газомоторов для целей электрического освещения (рис. 8.10).

Наиболее экономичными с точки зрения стоимости производства электроэнергии являются гидравлические двигатели, использующие энергию падающей воды. В качестве водяных двигателей применялись гидротурбины как с вертикальной, так и с горизонтальной осью. Динамо-машина с приводом от гидротурбины (рис. 8.11) была построена фирмой «Эсслинген» для завода Терни в Италии. Вода подавалась на лопатки гидротурбин с высоты 280 м при давлении в 18 атмосфер. Благодаря возможности пользования несколькими турбинами в работу вводилось столько динамо-машин, сколько было необходимо в данный момент времени.

Рис. 8.11. Динамо-машина с приводом от гидротурбины

Лаборатория физики Электрофорная машина Электростатический генератор статическое электричество Тесла

Описание/контроль: 100% новый & высокое качество Цвет: как показано на рисунке Размер:около. 285 * 200 * 330 мм Диаметр диска: около. 240 мм Функция: Две пластины поддерживаются в двух жесткими стойками и обусловлен пояса в противоположном направлении. Тяжелые, высокое сопротивление пластика с секторами алюминиевого листа. Две банки Лейден (конденсаторы) сделал форму corning стекла и алюминиевой фольги. Все тело монтируется на деревянной основе красиво полированный. Оборудование для преподавания физики. Тонкость работы и стабильность работы. Прочный в использовании. Используется для эксперимента.

Принцип: Принцип работы основан на двух вращающихся дисков изготовлены из изоляционного материала. Каждый диск имеет несколько металлических сегментов, прилагается к нему, называемых секторами. В секторах пройти друг друга, они вызывают дисбаланс заряда друг на друга. Этот дисбаланс слить на сбор электродов.

Строительство: В ряде секторов металлической фольги наклеиваются на акриловые диска. Два набора кистей монтируются на заряд коллекционеров — один на передней, а другой на задние дисковые. Когда диски вращаются, щетки накапливает электростатический заряд металлической фольги, которая передается и хранится в конденсатор лейденская банка. Когда достигается очень высокого напряжения, электростатических разбивка происходит и искры между электродами видел и слышал.

Установка: Установите разрыв между двумя электродами около 1-2 дюймов. Поверните ручку медленно сначала и увеличить вращение. Как только напряжение конденсатора достаточно, чтобы преодолеть электростатическое разбивка на электродах, разряда будет проходить и искры видел или слышал. После завершения эксперимента, выполнять через электроды, а затем через оба конденсаторы с использованием металла «Y» обрабатывать.

Пакет: 1 * Электростатический генератор

Тип товара: Лабораторное оборудование для нагрева

Тригенерация — принципы работы, применение | Тригенерационные установки с доставкой по России

Что такое тригенерация

Комбинированное производство тепловой и электрической энергий внутри одного комплекса (мини ТЭЦ, КГУ) называется когенерацией (от англ. co + generation, совместная генерация).  Когенерация недостаточно эффективна в случаях когда помимо тепловой энергии также требуется холод. В этом случае целесообразно перейти к тригенерации.

Тригенерация (Trigeneration, CCHP — combined cooling, heat and power) — это процесс совместной выработки электричества, тепла и холода. Тригенерационный комплекс – это комбинация когенерационной установки (вырабатывающей электрическую и тепловую энергию), с абсорбционной холодильной машиной, вырабатывающей холод за счет потребления произведенной тепловой и незначительного количества электрической энергии.

Тригенерация позволяет эффективно утилизировать тепло зимой для отопления и летом для кондиционирования помещений и технологических нужд. Генерирующая установка может использоваться круглый год, причем в летний период (когда потребность в тепле уменьшается) не снижается коэффициент полезного действия энергетической установки.

Для тригенерационного комплекса необходима абсорбционная бромистолитиевая холодильная машина (АБХМ). Абсорбционная холодильная машина потребляет бросовую тепловую энергию, а не дорогостоящее электричество, для реализации холодильного цикла.

Сейчас тригенерация используется на заводах и различных предприятиях (торговых центрах, на хладо- и молочных комбинатах, пивоваренных заводах и пр.). Также тригенерационные установки применяются в нефтехимии, металлургии, химической промышленности и в некоторых других отраслях.

 

Схема системы тригенерации

Принципиальная схема тригенерации в летнем режиме

В летний период, когда у Заказчика имеется потребность в охлажденной воде (например, для систем кондиционирования воздуха), горячая вода от системы охлаждения ГПУ/ГТУ поступает в генератор АБХМ, где происходит I-я ступень утилизации тепла.

В генератор также поступают выхлопные газы АБХМ, где осуществляется II-я ступень утилизации теплоты, за счет чего и вырабатывается холод с максимально высокой эффективностью.

Схема тригенерации в летнем режиме

 

Принципиальная схема тригенерации в зимнем режиме

В зимний период Заказчик как правило нуждается в горячей воде. В этом случае горячая вода от системы охлаждения ГПУ/ГТУ идет напрямую к потребителю без участия АБХМ.

 

Принцип работы тригенерации

Нагрев АБХМ происходит горячей водой или паром и может проходить в одну или две ступени.

  • При нагреве горячей водой с 1МВт тепловой энергии можно выработать 800 КВт холода.
  • При нагреве паром с 1МВт тепловой энергии можно выработать 1400 КВт холода.

Говоря другими словами, холодильный коэффициент работы (отношение холодопроизводительности к потребляемой мощности) водяных машин – до 8,2; паровых машин – до 1,4.

Для оптимальной эффективности тригенерационную систему необходимо эксплуатировать на максимуме холодильной мощности.

 

Сферы применения

Тригенерация подходит для всех объектов, имеющих централизованную схему отопления, вентиляции и кондиционирования:

  • энергетика;
  • центры обработки данных;
  • офисные центры;
  • металлургия;
  • технопарки;
  • бизнес-центры;
  • химическая промышленность;
  • торгово-развлекательные центры;
  • гостиницы;
  • пищевая промышленность;
  • аэропорты;
  • санатории;
  • бумажная промышленность;
  • холодильные склады;
  • рестораны;
  • сельское хозяйство;
  • предприятия — производители продуктов питания;
  • базы хранения продовольствия;
  • теплицы;
  • супермаркеты;
  • молокозаводы;
  • телекоммуникация;
  • социальные объекты;
  • рыбозаводы.

 

Пример установки

Тригенерационый энергокомплекс аэропорта Пулково, г. Санкт-Петербург

Компания ЭСТ имеет опыт комплексных решений с применением абсорбционных бромисто-литиевых холодильных машин Shuangliang Eco-Energy для систем тепло- и хладоснабжения уникальных объектов. Среди них самый большой в России тригенерационый энергокомплекс аэропорта Пулково (Санкт-Петербург).

Энергокомплекс обеспечивает терминал и дополнительных потребителей электроэнергией, тепловой энергией (ГВС, отопление и вентиляция) и холодом для нужд систем кондиционирования воздуха.

Зимой горячая вода от 2 турбин поступает в систему отопления, а летом утилизуется тремя АБХМ Shuangliang Eco-Energy. Таким образом все оборудование энергокомплекса круглогодично используется с максимальной эффективностью, экономя ресурсы и повышая сроки окупаемости проекта для Заказчика. По объекту есть положительные отзывы Заказчика.

 

Тригенерация: научная работа ЭСТ

Поскольку компания ЭСТ является лидером по внедрению тригенерационых комплексов, она делится опытом на научных мероприятиях. К примеру, в 2018 году руководители компаний «Энергосберегающие технологии» и Shuangliang Eco-Energy провели в Санкт-Петербурге совместный семинар «Тригенерация: энергосбережение и новые возможности бизнеса». В ходе семинара специалисты ЭСТ и Shuangliang рассказали о применении абсорбционных бромистолитиевых холодильных машин (АБХМ) в тригенерационных комплексах. Слушатели познакомились с практическими примерами тригенерационных решений в России и в мире, получили ответы на технические и коммерческие вопросы.

Семинар «Тригенерация: энергосбережение и новые возможности бизнеса» в г. Санкт-Петербург

Электроэнергетическое оборудование тренажерного зала

Если вы читаете это, значит, вы первопроходец. Вы хотите сделать мир лучше для будущих поколений. Вы знаете, что не существует волшебных пуль, которые мгновенно все изменят к лучшему. Вы понимаете, что каждый маленький прогресс — это хорошо, и нужно с чего-то начинать.

Вы также понимаете, что производство электричества с помощью человеческой силы само по себе не приносит денег. Это разумный способ познакомить людей со всем, что касается эко-фитнеса, и обучить их, например, здоровому питанию из менее обработанной пищи, эффективному использованию ресурсов учреждения и созданию сообщества с помощью постоянных упражнений.Если бы у вас был выбор между тратить энергию и не тратить ее зря, что бы вы выбрали?

Теперь вы можете открыть Green Gym без необходимости заново изобретать бизнес-модель или изобретать новые технологии. Оборудование сейчас есть, и оно доступно по цене. Green Microgym, основанный в 2008 году, известен как мировой лидер в области эко-фитнеса и является образцом фитнеса будущего.

Стоимость производства и покупки оборудования одинакова

До конца 2014 года, хотя существовала технология модернизации тренажерного оборудования для возврата электроэнергии в сеть, это было неэффективно с точки зрения затрат.Вам придется покупать обычное оборудование, а затем модернизировать его. Это то, чем я занимаюсь с 2009 года. В моем спортзале это сработало, но возможности для расширения не было. Но теперь SportsArt Fitness представил линейку привязанных к сетке, подключаемых к стене фитнес-оборудования по конкурентоспособной цене с другими тренажерами спортивного качества. Цены на их тренажеры соответствуют высокому классу спортивного оборудования, но они не завышены из-за их качества или из-за того, что они имеют возможность привязки к сети.Причины, по которым они могут это сделать: 1. Они достаточно большие (100 миллионов долларов + годовой объем продаж), чтобы иметь возможность производить большие партии оборудования, и 2. Они просто вынимают старую электронику и вставляют новую. Цена на материалы и комплектующие для них не изменилась. Им просто нужно было спроектировать новое оборудование.

Инфраструктура уже есть (спортзалы уже есть)

Лучше, чем Solar / Wind, где вам нужно ДОБАВИТЬ или найти недвижимость.

Несмотря на то, что выходная мощность оборудования для фитнеса не может сравниться с яблоками и яблоками при солнечном свете или ветре из-за ограничений человеческих возможностей (и мотивации), важно помнить, что это тренажеры, и в нем уже есть миллионы тренажеров. использовать во всем мире. Для подготовки к этому источнику питания ничего не нужно делать, кроме как дождаться замены существующего оборудования. Нам не нужно покупать землю и строить большие сооружения, чтобы использовать эту энергию.Спортивные залы уже построены.

Нет затрат на установку (это оборудование работает по принципу «plug and play» )

Профессиональный электрик для установки этого оборудования нужен только в том случае, если зданию потребуются дополнительные цепи для обработки всей новой вырабатываемой электроэнергии. Например, спин-класс с 30 участниками сможет генерировать более 3 кВт. Но в большинстве случаев текущая коммерческая система электроснабжения в зданиях сможет справиться с дополнительной электроэнергией.

Оборудование соответствует требованиям UL и поставляется с гарантией

SportsArt имеет такую ​​же гарантию на это оборудование, как и на любое другое оборудование, и в каждом городе есть как минимум одна сервисная компания по обслуживанию тренажеров, которая сможет работать на их тренажерах, как и на любое другое оборудование. Если детали нуждаются в замене, независимо от того, находятся они на гарантии или нет, достаточно просто позвонить в местную сервисную компанию или в SportsArt.

Каждый созданный ватт экономит 1 ватт охлаждения, существенно удваивая эффективность

Существующее оборудование превращает человеческую энергию в тепло, которое затем необходимо охлаждать с помощью кондиционирования воздуха.(1 ватт выделяемого тепла = 1 ватт охлаждения).

Наиболее частое возражение против жизнеспособности этого оборудования заключается в том, что оно не вырабатывает ТАКОГО количества электроэнергии, поэтому даже думать об этом — пустая трата времени. Надеюсь, что приведенные выше факты сняли это возражение. Но важно отметить, что современные тренажеры с автономным питанием, которые используются в большинстве тренажерных залов по всему миру, по-прежнему должны что-то делать со всей дополнительной энергией, создаваемой их пользователями. Текущее решение состоит в том, чтобы направить эту энергию в резисторы, которые нагреваются внутри машин для рассеивания энергии.В домашнем или небольшом тренажерном зале это тепло незначительно и не приведет к заметным изменениям в комнате. Однако в больших спортзалах, где большую часть дня используются десятки тренажеров, это дополнительное тепло накапливается и должно охлаждаться системой охлаждения здания. Таким образом, пользователь создает дополнительную энергию, а затем система охлаждения использует дополнительную энергию, чтобы в комнате не становилось слишком жарко. Это существенно удваивает потери энергии от «автономных» тренажеров. Однако подключенное к сети оборудование отправляет эту электроэнергию обратно в здание, не создавая дополнительного тепла.Таким образом, вместо того, чтобы тратить 100 Вт энергии на охлаждение для каждой машины, вы экономите эти 100 Вт — чистое улучшение на 200 Вт.

Электрогенератор | инструмент | Британника

Электрогенератор , также называемый динамо , любая машина, которая преобразует механическую энергию в электричество для передачи и распределения по линиям электропередачи бытовым, коммерческим и промышленным потребителям. Генераторы также производят электроэнергию, необходимую для автомобилей, самолетов, кораблей и поездов.

Механическая мощность для электрического генератора обычно получается от вращающегося вала и равна крутящему моменту вала, умноженному на вращательную или угловую скорость. Механическая энергия может поступать из ряда источников: гидротурбины на плотинах или водопадах; Ветряные турбины; паровые турбины, использующие пар, вырабатываемый за счет тепла сгорания ископаемого топлива или ядерного деления; газовые турбины, сжигающие газ непосредственно в турбине; или бензиновые и дизельные двигатели. Конструкция и скорость генератора могут значительно различаться в зависимости от характеристик механического первичного двигателя.

Почти все генераторы, используемые для электроснабжения сетей, вырабатывают переменный ток, полярность которого меняется на фиксированную частоту (обычно 50 или 60 циклов или двойное изменение полярности в секунду). Поскольку несколько генераторов подключены к электросети, они должны работать на одной и той же частоте для одновременной генерации. Поэтому они известны как синхронные генераторы или, в некоторых случаях, генераторы переменного тока.

Генераторы синхронные

Основная причина выбора переменного тока для электрических сетей заключается в том, что его постоянное изменение во времени позволяет использовать трансформаторы.Эти устройства преобразуют электрическую энергию при любом напряжении и токе, которые она генерирует, в высокое напряжение и низкий ток для передачи на большие расстояния, а затем преобразуют ее в низкое напряжение, подходящее для каждого отдельного потребителя (обычно 120 или 240 вольт для бытовых нужд). Конкретная используемая форма переменного тока представляет собой синусоидальную волну, которая имеет форму, показанную на рисунке 1. Это было выбрано, потому что это единственная повторяющаяся форма, для которой две волны, смещенные друг от друга во времени, могут быть добавлены или вычтены и имеют такая же форма возникает в результате.В идеале все напряжения и токи должны иметь синусоидальную форму. Синхронный генератор предназначен для получения этой формы с максимальной точностью. Это станет очевидным, когда ниже будут описаны основные компоненты и характеристики такого генератора.

Синусоидальная волна.

Британская энциклопедия, Inc. Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас

Ротор

Элементарный синхронный генератор показан в разрезе на рисунке 2.Центральный вал ротора соединен с механическим первичным двигателем. Магнитное поле создается проводниками или катушками, намотанными в пазы, вырезанные на поверхности цилиндрического железного ротора. Этот набор катушек, соединенных последовательно, известен как обмотка возбуждения. Положение катушек возбуждения таково, что направленная наружу или радиальная составляющая магнитного поля, создаваемого в воздушном зазоре к статору, приблизительно синусоидально распределяется по периферии ротора. На рисунке 2 плотность поля в воздушном зазоре максимальна снаружи вверху, максимальна внутрь внизу и равна нулю с двух сторон, что соответствует синусоидальному распределению.

Элементарный синхронный генератор.

Британская энциклопедия, Inc.

Статор простейшего генератора на рисунке 2 состоит из цилиндрического кольца из железа, обеспечивающего легкий путь для магнитного потока. В этом случае статор содержит только одну катушку, две стороны которой размещены в пазах в утюге, а концы соединены вместе изогнутыми проводниками по периферии статора. Катушка обычно состоит из нескольких витков.

Когда ротор вращается, в обмотке статора индуцируется напряжение.В любой момент величина напряжения пропорциональна скорости, с которой магнитное поле, окруженное катушкой, изменяется со временем, то есть скорости, с которой магнитное поле проходит через две стороны катушки. Таким образом, напряжение будет максимальным в одном направлении, когда ротор повернут на 90 ° от положения, показанного на рисунке 2, и будет максимальным в противоположном направлении на 180 ° позже. Форма волны напряжения будет примерно синусоидальной формы, показанной на рисунке 1.

Конструкция ротора генератора на рисунке 2 имеет два полюса: один для магнитного потока, направленного наружу, и соответствующий полюс для потока, направленного внутрь.Одна полная синусоида индуцируется в обмотке статора за каждый оборот ротора. Таким образом, частота электрического выходного сигнала, измеренная в герцах (циклах в секунду), равна скорости вращения ротора в оборотах в секунду. Чтобы обеспечить подачу электроэнергии с частотой 60 Гц, например, первичный двигатель и скорость ротора должны быть 60 оборотов в секунду или 3600 оборотов в минуту. Это удобная скорость для многих паровых и газовых турбин. Для очень больших турбин такая скорость может быть чрезмерной из-за механического напряжения.В этом случае ротор генератора спроектирован с четырьмя полюсами, разнесенными с интервалом 90 °. Напряжение, индуцированное в катушке статора, которая охватывает аналогичный угол 90 °, будет состоять из двух полных синусоидальных волн на оборот. Таким образом, требуемая частота вращения ротора для частоты 60 Гц составляет 1800 оборотов в минуту. Для более низких скоростей, например, используемых в большинстве водяных турбин, можно использовать большее количество пар полюсов. Возможные значения частоты вращения ротора в оборотах в минуту равны 120 f / p , где f — частота, а p — количество полюсов.

Электрогенератор | инструмент | Британника

Электрогенератор , также называемый динамо , любая машина, которая преобразует механическую энергию в электричество для передачи и распределения по линиям электропередачи бытовым, коммерческим и промышленным потребителям. Генераторы также производят электроэнергию, необходимую для автомобилей, самолетов, кораблей и поездов.

Механическая мощность для электрического генератора обычно получается от вращающегося вала и равна крутящему моменту вала, умноженному на вращательную или угловую скорость.Механическая энергия может поступать из ряда источников: гидротурбины на плотинах или водопадах; Ветряные турбины; паровые турбины, использующие пар, вырабатываемый за счет тепла сгорания ископаемого топлива или ядерного деления; газовые турбины, сжигающие газ непосредственно в турбине; или бензиновые и дизельные двигатели. Конструкция и скорость генератора могут значительно различаться в зависимости от характеристик механического первичного двигателя.

Почти все генераторы, используемые для электроснабжения сетей, вырабатывают переменный ток, полярность которого меняется на фиксированную частоту (обычно 50 или 60 циклов или двойное изменение полярности в секунду).Поскольку несколько генераторов подключены к электросети, они должны работать на одной и той же частоте для одновременной генерации. Поэтому они известны как синхронные генераторы или, в некоторых случаях, генераторы переменного тока.

Генераторы синхронные

Основная причина выбора переменного тока для электрических сетей заключается в том, что его постоянное изменение во времени позволяет использовать трансформаторы. Эти устройства преобразуют электрическую энергию при любом напряжении и токе, которые она генерирует, в высокое напряжение и низкий ток для передачи на большие расстояния, а затем преобразуют ее в низкое напряжение, подходящее для каждого отдельного потребителя (обычно 120 или 240 вольт для бытовых нужд).Конкретная используемая форма переменного тока представляет собой синусоидальную волну, которая имеет форму, показанную на рисунке 1. Это было выбрано, потому что это единственная повторяющаяся форма, для которой две волны, смещенные друг от друга во времени, могут быть добавлены или вычтены и имеют такая же форма возникает в результате. В идеале все напряжения и токи должны иметь синусоидальную форму. Синхронный генератор предназначен для получения этой формы с максимальной точностью. Это станет очевидным, когда ниже будут описаны основные компоненты и характеристики такого генератора.

Синусоидальная волна.

Британская энциклопедия, Inc. Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас

Ротор

Элементарный синхронный генератор показан в разрезе на рис. 2. Центральный вал ротора соединен с механическим первичным двигателем. Магнитное поле создается проводниками или катушками, намотанными в пазы, вырезанные на поверхности цилиндрического железного ротора. Этот набор катушек, соединенных последовательно, известен как обмотка возбуждения.Положение катушек возбуждения таково, что направленная наружу или радиальная составляющая магнитного поля, создаваемого в воздушном зазоре к статору, приблизительно синусоидально распределяется по периферии ротора. На рисунке 2 плотность поля в воздушном зазоре максимальна снаружи вверху, максимальна внутрь внизу и равна нулю с двух сторон, что соответствует синусоидальному распределению.

Элементарный синхронный генератор.

Британская энциклопедия, Inc.

Статор простейшего генератора на рисунке 2 состоит из цилиндрического кольца из железа, обеспечивающего легкий путь для магнитного потока.В этом случае статор содержит только одну катушку, две стороны которой размещены в пазах в утюге, а концы соединены вместе изогнутыми проводниками по периферии статора. Катушка обычно состоит из нескольких витков.

Когда ротор вращается, в обмотке статора индуцируется напряжение. В любой момент величина напряжения пропорциональна скорости, с которой магнитное поле, окруженное катушкой, изменяется со временем, то есть скорости, с которой магнитное поле проходит через две стороны катушки.Таким образом, напряжение будет максимальным в одном направлении, когда ротор повернут на 90 ° от положения, показанного на рисунке 2, и будет максимальным в противоположном направлении на 180 ° позже. Форма волны напряжения будет примерно синусоидальной формы, показанной на рисунке 1.

Конструкция ротора генератора на рисунке 2 имеет два полюса: один для магнитного потока, направленного наружу, и соответствующий полюс для потока, направленного внутрь. Одна полная синусоида индуцируется в обмотке статора за каждый оборот ротора.Таким образом, частота электрического выходного сигнала, измеренная в герцах (циклах в секунду), равна скорости вращения ротора в оборотах в секунду. Чтобы обеспечить подачу электроэнергии с частотой 60 Гц, например, первичный двигатель и скорость ротора должны быть 60 оборотов в секунду или 3600 оборотов в минуту. Это удобная скорость для многих паровых и газовых турбин. Для очень больших турбин такая скорость может быть чрезмерной из-за механического напряжения. В этом случае ротор генератора спроектирован с четырьмя полюсами, разнесенными с интервалом 90 °.Напряжение, индуцированное в катушке статора, которая охватывает аналогичный угол 90 °, будет состоять из двух полных синусоидальных волн на оборот. Таким образом, требуемая частота вращения ротора для частоты 60 Гц составляет 1800 оборотов в минуту. Для более низких скоростей, например, используемых в большинстве водяных турбин, можно использовать большее количество пар полюсов. Возможные значения частоты вращения ротора в оборотах в минуту равны 120 f / p , где f — частота, а p — количество полюсов.

Электрогенератор | инструмент | Британника

Электрогенератор , также называемый динамо , любая машина, которая преобразует механическую энергию в электричество для передачи и распределения по линиям электропередачи бытовым, коммерческим и промышленным потребителям. Генераторы также производят электроэнергию, необходимую для автомобилей, самолетов, кораблей и поездов.

Механическая мощность для электрического генератора обычно получается от вращающегося вала и равна крутящему моменту вала, умноженному на вращательную или угловую скорость.Механическая энергия может поступать из ряда источников: гидротурбины на плотинах или водопадах; Ветряные турбины; паровые турбины, использующие пар, вырабатываемый за счет тепла сгорания ископаемого топлива или ядерного деления; газовые турбины, сжигающие газ непосредственно в турбине; или бензиновые и дизельные двигатели. Конструкция и скорость генератора могут значительно различаться в зависимости от характеристик механического первичного двигателя.

Почти все генераторы, используемые для электроснабжения сетей, вырабатывают переменный ток, полярность которого меняется на фиксированную частоту (обычно 50 или 60 циклов или двойное изменение полярности в секунду).Поскольку несколько генераторов подключены к электросети, они должны работать на одной и той же частоте для одновременной генерации. Поэтому они известны как синхронные генераторы или, в некоторых случаях, генераторы переменного тока.

Генераторы синхронные

Основная причина выбора переменного тока для электрических сетей заключается в том, что его постоянное изменение во времени позволяет использовать трансформаторы. Эти устройства преобразуют электрическую энергию при любом напряжении и токе, которые она генерирует, в высокое напряжение и низкий ток для передачи на большие расстояния, а затем преобразуют ее в низкое напряжение, подходящее для каждого отдельного потребителя (обычно 120 или 240 вольт для бытовых нужд).Конкретная используемая форма переменного тока представляет собой синусоидальную волну, которая имеет форму, показанную на рисунке 1. Это было выбрано, потому что это единственная повторяющаяся форма, для которой две волны, смещенные друг от друга во времени, могут быть добавлены или вычтены и имеют такая же форма возникает в результате. В идеале все напряжения и токи должны иметь синусоидальную форму. Синхронный генератор предназначен для получения этой формы с максимальной точностью. Это станет очевидным, когда ниже будут описаны основные компоненты и характеристики такого генератора.

Синусоидальная волна.

Британская энциклопедия, Inc. Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас

Ротор

Элементарный синхронный генератор показан в разрезе на рис. 2. Центральный вал ротора соединен с механическим первичным двигателем. Магнитное поле создается проводниками или катушками, намотанными в пазы, вырезанные на поверхности цилиндрического железного ротора. Этот набор катушек, соединенных последовательно, известен как обмотка возбуждения.Положение катушек возбуждения таково, что направленная наружу или радиальная составляющая магнитного поля, создаваемого в воздушном зазоре к статору, приблизительно синусоидально распределяется по периферии ротора. На рисунке 2 плотность поля в воздушном зазоре максимальна снаружи вверху, максимальна внутрь внизу и равна нулю с двух сторон, что соответствует синусоидальному распределению.

Элементарный синхронный генератор.

Британская энциклопедия, Inc.

Статор простейшего генератора на рисунке 2 состоит из цилиндрического кольца из железа, обеспечивающего легкий путь для магнитного потока.В этом случае статор содержит только одну катушку, две стороны которой размещены в пазах в утюге, а концы соединены вместе изогнутыми проводниками по периферии статора. Катушка обычно состоит из нескольких витков.

Когда ротор вращается, в обмотке статора индуцируется напряжение. В любой момент величина напряжения пропорциональна скорости, с которой магнитное поле, окруженное катушкой, изменяется со временем, то есть скорости, с которой магнитное поле проходит через две стороны катушки.Таким образом, напряжение будет максимальным в одном направлении, когда ротор повернут на 90 ° от положения, показанного на рисунке 2, и будет максимальным в противоположном направлении на 180 ° позже. Форма волны напряжения будет примерно синусоидальной формы, показанной на рисунке 1.

Конструкция ротора генератора на рисунке 2 имеет два полюса: один для магнитного потока, направленного наружу, и соответствующий полюс для потока, направленного внутрь. Одна полная синусоида индуцируется в обмотке статора за каждый оборот ротора.Таким образом, частота электрического выходного сигнала, измеренная в герцах (циклах в секунду), равна скорости вращения ротора в оборотах в секунду. Чтобы обеспечить подачу электроэнергии с частотой 60 Гц, например, первичный двигатель и скорость ротора должны быть 60 оборотов в секунду или 3600 оборотов в минуту. Это удобная скорость для многих паровых и газовых турбин. Для очень больших турбин такая скорость может быть чрезмерной из-за механического напряжения. В этом случае ротор генератора спроектирован с четырьмя полюсами, разнесенными с интервалом 90 °.Напряжение, индуцированное в катушке статора, которая охватывает аналогичный угол 90 °, будет состоять из двух полных синусоидальных волн на оборот. Таким образом, требуемая частота вращения ротора для частоты 60 Гц составляет 1800 оборотов в минуту. Для более низких скоростей, например, используемых в большинстве водяных турбин, можно использовать большее количество пар полюсов. Возможные значения частоты вращения ротора в оборотах в минуту равны 120 f / p , где f — частота, а p — количество полюсов.

Электрогенератор | инструмент | Британника

Электрогенератор , также называемый динамо , любая машина, которая преобразует механическую энергию в электричество для передачи и распределения по линиям электропередачи бытовым, коммерческим и промышленным потребителям. Генераторы также производят электроэнергию, необходимую для автомобилей, самолетов, кораблей и поездов.

Механическая мощность для электрического генератора обычно получается от вращающегося вала и равна крутящему моменту вала, умноженному на вращательную или угловую скорость.Механическая энергия может поступать из ряда источников: гидротурбины на плотинах или водопадах; Ветряные турбины; паровые турбины, использующие пар, вырабатываемый за счет тепла сгорания ископаемого топлива или ядерного деления; газовые турбины, сжигающие газ непосредственно в турбине; или бензиновые и дизельные двигатели. Конструкция и скорость генератора могут значительно различаться в зависимости от характеристик механического первичного двигателя.

Почти все генераторы, используемые для электроснабжения сетей, вырабатывают переменный ток, полярность которого меняется на фиксированную частоту (обычно 50 или 60 циклов или двойное изменение полярности в секунду).Поскольку несколько генераторов подключены к электросети, они должны работать на одной и той же частоте для одновременной генерации. Поэтому они известны как синхронные генераторы или, в некоторых случаях, генераторы переменного тока.

Генераторы синхронные

Основная причина выбора переменного тока для электрических сетей заключается в том, что его постоянное изменение во времени позволяет использовать трансформаторы. Эти устройства преобразуют электрическую энергию при любом напряжении и токе, которые она генерирует, в высокое напряжение и низкий ток для передачи на большие расстояния, а затем преобразуют ее в низкое напряжение, подходящее для каждого отдельного потребителя (обычно 120 или 240 вольт для бытовых нужд).Конкретная используемая форма переменного тока представляет собой синусоидальную волну, которая имеет форму, показанную на рисунке 1. Это было выбрано, потому что это единственная повторяющаяся форма, для которой две волны, смещенные друг от друга во времени, могут быть добавлены или вычтены и имеют такая же форма возникает в результате. В идеале все напряжения и токи должны иметь синусоидальную форму. Синхронный генератор предназначен для получения этой формы с максимальной точностью. Это станет очевидным, когда ниже будут описаны основные компоненты и характеристики такого генератора.

Синусоидальная волна.

Британская энциклопедия, Inc. Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишитесь сейчас

Ротор

Элементарный синхронный генератор показан в разрезе на рис. 2. Центральный вал ротора соединен с механическим первичным двигателем. Магнитное поле создается проводниками или катушками, намотанными в пазы, вырезанные на поверхности цилиндрического железного ротора. Этот набор катушек, соединенных последовательно, известен как обмотка возбуждения.Положение катушек возбуждения таково, что направленная наружу или радиальная составляющая магнитного поля, создаваемого в воздушном зазоре к статору, приблизительно синусоидально распределяется по периферии ротора. На рисунке 2 плотность поля в воздушном зазоре максимальна снаружи вверху, максимальна внутрь внизу и равна нулю с двух сторон, что соответствует синусоидальному распределению.

Элементарный синхронный генератор.

Британская энциклопедия, Inc.

Статор простейшего генератора на рисунке 2 состоит из цилиндрического кольца из железа, обеспечивающего легкий путь для магнитного потока.В этом случае статор содержит только одну катушку, две стороны которой размещены в пазах в утюге, а концы соединены вместе изогнутыми проводниками по периферии статора. Катушка обычно состоит из нескольких витков.

Когда ротор вращается, в обмотке статора индуцируется напряжение. В любой момент величина напряжения пропорциональна скорости, с которой магнитное поле, окруженное катушкой, изменяется со временем, то есть скорости, с которой магнитное поле проходит через две стороны катушки.Таким образом, напряжение будет максимальным в одном направлении, когда ротор повернут на 90 ° от положения, показанного на рисунке 2, и будет максимальным в противоположном направлении на 180 ° позже. Форма волны напряжения будет примерно синусоидальной формы, показанной на рисунке 1.

Конструкция ротора генератора на рисунке 2 имеет два полюса: один для магнитного потока, направленного наружу, и соответствующий полюс для потока, направленного внутрь. Одна полная синусоида индуцируется в обмотке статора за каждый оборот ротора.Таким образом, частота электрического выходного сигнала, измеренная в герцах (циклах в секунду), равна скорости вращения ротора в оборотах в секунду. Чтобы обеспечить подачу электроэнергии с частотой 60 Гц, например, первичный двигатель и скорость ротора должны быть 60 оборотов в секунду или 3600 оборотов в минуту. Это удобная скорость для многих паровых и газовых турбин. Для очень больших турбин такая скорость может быть чрезмерной из-за механического напряжения. В этом случае ротор генератора спроектирован с четырьмя полюсами, разнесенными с интервалом 90 °.Напряжение, индуцированное в катушке статора, которая охватывает аналогичный угол 90 °, будет состоять из двух полных синусоидальных волн на оборот. Таким образом, требуемая частота вращения ротора для частоты 60 Гц составляет 1800 оборотов в минуту. Для более низких скоростей, например, используемых в большинстве водяных турбин, можно использовать большее количество пар полюсов. Возможные значения частоты вращения ротора в оборотах в минуту равны 120 f / p , где f — частота, а p — количество полюсов.

Power Generation • Факты и новости отрасли • Fluid Handling Pro

Электростанции — это промышленные объекты, вырабатывающие электроэнергию из первичных источников энергии, таких как уголь, природный газ, атомная энергия, солнечная энергия или энергия ветра. Большинство электростанций используют один или несколько генераторов, преобразующих механическую энергию в электрическую. Исключение составляют солнечные электростанции, в которых для выработки электроэнергии используются фотоэлементы (вместо турбины).

Типы электростанций

Все электростанции созданы с одной целью: максимально эффективно производить электроэнергию.Существует несколько типов электростанций, в основном в зависимости от используемых источников энергии. Внедрение более устойчивых форм энергии привело к увеличению количества усовершенствований и создания конкретных электростанций.

Тепловые электростанции

Тепловые электростанции делятся на две разные категории; те, которые вырабатывают электричество путем сжигания топлива, и те, которые создают электричество с помощью первичного двигателя:

  • Электростанции, работающие на ископаемом топливе: вырабатывают электроэнергию за счет сжигания ископаемого топлива, такого как уголь, природный газ или дизельное топливо.
  • Атомные электростанции: контролируемая ядерная реакция поддерживается для выработки электроэнергии.
Гидроэлектростанции

Гидроэлектростанции используют энергию падающей воды в реках и водохранилищах для вращения генератора и производства электроэнергии. Этот источник энергии имеет тенденцию быть более надежным (управляемым), чем другие возобновляемые ресурсы, особенно когда объект выходит из резервуара.

Солнечные электростанции

Солнечные электростанции основаны на преобразовании солнечного света в электричество либо напрямую с использованием фотоэлектрических элементов (PV), либо косвенно с использованием концентрированной солнечной энергии (CSP).Концентрированные солнечные энергетические системы используют линзы, зеркала и системы слежения для фокусировки большой площади солнечного света в небольшой луч.

Ветряные электростанции

Ветряные электростанции / Ветровые турбины преобразуют кинетическую энергию ветра в механическую энергию. Эта механическая мощность может использоваться для конкретных задач (например, измельчения зерна или перекачивания воды), или генератор может преобразовывать эту механическую энергию в электричество.

Как работают электростанции?

Электроэнергия запускается на электростанции.В большинстве случаев электростанция состоит из электрогенератора. Что-то должно вращать этот генератор — это может быть водяное колесо на плотине гидроэлектростанции, большой дизельный двигатель или газовая турбина. Но в большинстве случаев объектом, вращающим генератор, является паровая турбина. Пар может создаваться при сжигании угля, нефти или природного газа. Или пар может исходить из ядерного реактора.

Как электростанции вырабатывают электричество?

Электроэнергия — это вторичный источник энергии, что означает, что электричество получают путем преобразования других первичных источников энергии, таких как уголь, природный газ, ядерная энергия, солнечная энергия или энергия ветра.Электростанция — это место, в котором происходит преобразование энергии.

Электростанция генератор

Производство электроэнергии — это процесс производства электроэнергии из первичных источников энергии, таких как уголь, природный газ, атомная энергия, солнечная энергия или энергия ветра.

Генератор электростанции — это устройство, которое преобразует механическую энергию, полученную от внешнего источника, в электрическую энергию на выходе. Важно понимать, что генератор на самом деле не «создает» электрическую энергию.Он использует подводимую к нему механическую энергию, чтобы заставить движение электрических зарядов, присутствующих в проводе его обмоток, через внешнюю электрическую цепь.

Энергетика

Отрасль производства электроэнергии можно разделить на три области: производство электроэнергии, сети передачи и распределения, а также учет и продажа. Крупные энергетические компании, как правило, работают во всех трех областях, поскольку это более рентабельно, но более мелкие компании часто работают только в одной из этих областей.

Энергетическое оборудование

На каждой станции, будь то атомная или работающая на ископаемом топливе, имеется следующее основное оборудование для выработки электроэнергии:

  • Источник тепла: обеспечивает тепло для генерации пара. На атомной электростанции источником тепла является ядерный реактор, часто называемый активной зоной реактора.
  • Турбина / генератор: использует энергию пара для вращения турбины / генератора, вырабатывающего электричество.
  • Конденсатор: Конденсирует пар обратно в воду, чтобы его можно было вернуть к источнику тепла для повторного нагрева.
  • Насос: обеспечивает принудительную циркуляцию воды в системе.

Электростанция

Технология каждой электростанции имеет свои преимущества и недостатки. Например, атомные электростанции обеспечивают большие объемы надежной электроэнергии с низким уровнем выбросов парниковых газов. Электростанции, работающие на ископаемом топливе, поставляют стабильную и надежную энергию по запросу при наличии ресурсов. Гидроэлектростанции, солнечные и ветровые электростанции вырабатывают возобновляемую электроэнергию, тем самым обеспечивая электроэнергию без выбросов.

Статьи об электроэнергетике

Стремление к разработке продукции и поддержке клиентов в критически важных областях применения привело экспертов по решениям для уплотнения из компании James Walker к новому предложению за…

Подробнее

Поскольку мир работает над разработкой стратегий и технологий для меняющегося и все более декарбонизированного энергетического ландшафта, Emerson признает неотъемлемую роль потока…

Подробнее

Электростанции и парораспределительные системы зависят от прочного и надежного оборудования для регулирования расхода для безопасной работы.…

Подробнее

Hayward Tyler, мировой лидер в производстве насосов и двигателей с критически важными характеристиками для энергетического сектора, рада объявить о двух отдельных соглашениях с Ruhrpumpen, а…

Подробнее

Шаровые краны KLINGER KHI обеспечивают бесперебойную работу и отсутствие накипи…

Читать далее

В статье о приложении Val-Matic для электроэнергетики подробно описано, как шаровые краны на цапфе QuadroSphere® могут справляться с летучей золой в тяжелых условиях…

Читать далее

С помощью недавно построенного биогазового трубопровода ассоциация «Biogaspartner Bitburg» в будущем объединит поставки сырого биогаза для 48 биогазовых установок из…

Читать далее

Спрос на электроэнергию растет в условиях изменения климата и необходимости поиска лучших, возобновляемых и менее вредных ресурсов для производства электроэнергии.…

Читать далее

Leslie Controls, торговая марка CIRCOR International и всемирный производитель клапанов для электроэнергетики, промышленного, морского и нефтегазового рынков для…

Читать далее

Ядерная наука — это изучение атомных частиц и того, как они влияют и взаимодействуют со Вселенной….

Читать далее

▷ Машины с вечным двигателем, вырабатывающие постоянное электричество — настоящая правда

Один из наших членов прислал нам эту статью после прочтения нашего предложения в последнем информационном бюллетене.Проверьте это и произведите впечатление. Вы можете присылать нам все статьи по почте.

Введение

«Вечный двигатель — это машина, которая работает без потребления энергии или топлива, и в большинстве случаев считается, что она производит механическую энергию, которая затем может быть преобразована в электрическую энергию, известную как вечное электричество. . »

Всем известно, что ресурсы Земли ограничены и рано или поздно они истощатся.Никто не может отрицать этот факт. Более того, постоянно увеличивающееся население в сочетании с многочисленными отраслями промышленности, которые используют очень ограниченные природные ископаемые виды топлива для стимулирования собственного роста, под маской развития нации будущего, конечно, никогда не захотят сообщить нам эту ужасную правду. .

Но много веков назад, еще до того, как началась промышленная революция, мудрые люди уже предвидели то, что уготовано грядущим поколениям. Они уже думали о будущем и были полны решимости создать машины, которые не будут использовать какое-либо топливо или энергию для работы, но фактически будут производить энергию бесплатно, и то же самое на вечность! Так родилась идея вечного двигателя (ПММ).

Как эти машины должны работать без использования энергии?


Первое колесо с вечным двигателем было объяснено индийским автором по имени Бхаскара (ок. 1159 г.). У него был круглый ободок, в котором находились контейнеры с пробирками, в которых содержалась ртуть. Гипотетический принцип заключался в том, что при вращении колеса ртуть в трубках продолжает течь влево, создавая постоянное гравитационное притяжение, которое будет держать колесо в движении вечно.

Также известное как Persian Wheel, никому никогда не удавалось испытать эту штуку в реальной жизни.


После Бхаскары было много художников, авторов, инженеров и ученых (на самом деле они не были учеными, но большинство из них утверждали, что они одни!) Пытались построить разные виды вечных машин, основанных на разных механических принципах и инструментах. , но только немного преуспели, если не полностью (из-за того, что эти машины в конечном итоге останавливались, когда их компоненты начинали изнашиваться из-за трения, они предполагали лишь небольшой успех).

Тем не менее, они предоставили нам достаточно доказательств того, что машина, более близкая к идеальному PMM, действительно может быть сконструирована по мере развития технологии.

Можно ли вечно производить электричество?


Производство электроэнергии с помощью этих гипотетических машин было сложной задачей. Тем не менее, такие громкие имена, как Renault и BMW (с электромагнитными автомобилями), International Tesla Electric Company (ITEC) с генератором на постоянных магнитах (который не требует энергии для работы и способен производить 26000 кВт энергии каждый раз). год для бытовых целей) доказали, что мы приближаемся к созданию настоящего PMM, о котором наши великие историки могли только мечтать.

Как мы все знаем, электромагнитное излучение производит электромагнитную энергию (радиоволны, световые волны) и вызывает срабатывание электромагнитного поля. То, что мы называем постоянным магнитом, является результатом этого процесса, и как только магнитный материал заряжается внешним магнитным полем, он остается заряженным еще долго, даже после того, как действительное магнитное поле (которое заряжало его) было удалено.

После зарядки он сам становится основным источником магнитного поля и начинает взаимодействовать с другими намагничивающими материалами, превращая их также в постоянные магниты:

Вопрос: «Можно ли создать вечный двигатель с помощью аналогичного процесса?» Вечный двигатель в замкнутой системе нарушает первый закон термодинамики.Машины, которые производят работу и энергию без ввода энергии, противоречат закону сохранения энергии. Согласно законам термодинамики энергия не может быть просто создана или уничтожена. Следовательно, настоящий вечный двигатель может никогда не оказаться жизнеспособным, но его можно будет создать близкую замену.

Источник: Altenergymag

Заключение

Как справедливо предполагали наши великие историки, многие ученые даже сегодня пытаются построить машины, близкие к PMM, в стремлении производить постоянное электричество, которое может дать огромную экономию как в домашнем, так и в частном секторах.

Хотя факт остается фактом: идеальный PMM никогда не может быть построен, многие люди все еще неустанно пытались, потому что, если идеальный PMM не может быть построен, что-то еще более близкое к нему послужит цели для человечества.

Один из членов вашего сообщества рассказал вам о машинах, вырабатывающих электричество. Что вы думаете о его покушении?

.
Машина вырабатывающая электричество: Велосипедный педальный генератор большой мощности

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Scroll to top