Калькулятор расчета свайного фундамента — онлайн расчет столбчатого фундамента
С помощью данного калькулятора можно произвести расчеты буронабивных свайно-ростверковых и столбчатых фундаментов. Расчет нагрузки на свайный фундамент.
Онлайн-калькулятор для расчета монолитного буронабивного ростверкового фундамента поможет рассчитать размеры фундамента, опалубки, диаметр и общую длину арматуры и объём расходуемого бетона. Перед началом проектирования здания с таким фундаментом обязательно проконсультируйтесь у специалистов, насколько оправдан такой выбор.
Расчеты данного калькулятора основываются на нормативах, приведенных в ГОСТ Р 52086-2003, СНиП 3.03.01-87 и СНиП 52-01-2003 «Бетонные и железобетонные конструкции».
Столбчатый и свайный фундамент – разновидности фундаментов, в которых используются столбы или сваи в качестве опор. Они погружаются в грунт на необходимую глубину, а их верхние части соединяются цельной железобетонной конструкцией (ростверком), которая не соприкасается с землёй.
Ростверковая конструкция имеет смысл там, где грунт не пригоден для обычного размещения фундамента (слабый грунт, пучинистый, либо промерзающий на значительную глубину). Поскольку сваи забиваются при любых климатических условиях, ростверковый фундамент особенно актуален для регионов с низкими температурами и суровым климатом. Другие преимущества ростверковой технологии – высокая скорость возведения и низкая потребность в земляных работах. Достаточно пробурить отверстия и выполнить установку уже готовых свай.
Многие параметры ростверкового фундамента могут варьироваться. Это форма и материалы свай, способы действия на грунт, способы установки, форма ростверка. Каждый случай ростверкового фундамента должен учитывать расчётные нагрузки, климатические условия, специфику грунта и другие особенности местности и будущего сооружения. Чтобы уточнить все эти моменты, нужно провести необходимые замеры и расчёты, при необходимости – пригласить специалистов.
Экономия на первоначальных расчётах может обернуться серьезными последствиями в будущем. Чтобы этого избежать, в первую очередь рекомендуем внимательно изучить данный калькулятор. В нем вы сможете определить будущие расходы и на примере стандартной конструкции определиться с составляющими планируемого фундамента.Заполняя поля калькулятора, сверьтесь с дополнительной информацией, отображающейся при наведении на иконку вопроса .
Внизу страницы вы можете оставить отзыв, задать вопрос разработчикам или предложить идею по улучшению этого калькулятора.
Общая длина ростверка
Суммарный периметр фундамента, включая внутренние перегородки.
Площадь подошвы ростверка
Площадь нижней части ростверка, которая нуждается в гидроизоляции.
Площадь внешней боковой поверхности ростверка
Площадь боковых поверхностей наружной стороны фундамента, нуждающаяся в утеплении.
Объем бетона для ростверка и столбов
Общее количество бетона, которое понадобится для заливки фундамента заданных параметров. Фактическая потребность может оказаться выше из-за уплотнений при заливке, а объём фактически доставленного бетона может оказаться меньше заказанного. Поэтому рекомендуем заказывать бетон с 10-процентным запасом.
Вес бетона
Приблизительный вес бетона при средней плотности.
Нагрузка на почву от фундамента в местах основания столбов
При расчете берется во внимание полный вес конструкции.
Минимальный диаметр продольных стержней арматуры
Рассчитывается по нормативам СНиП. Учитывается относительное содержание продольной арматуры в сечении ленты ростверка.
Минимальное количество рядов арматуры ростверка
Для противодействия естественной деформации ленты ростверка под действием сил сжатия и растяжения, необходимо использовать продольные стержни в разных поясах ростверка (вверху и внизу ленты).
Общий вес арматуры
Вес стержней арматуры, вместе взятых.
Величина нахлеста арматуры
Для крепления стержней арматуры внахлёст, используйте данное значение.
Длина продольной арматуры
Общая длина арматуры включая нахлест.
Минимальное количество продольных стержней арматуры для столбов и свай
Необходимое количество продольных стержней арматуры для каждого столба или сваи.
Минимальный диаметр арматуры для столбов и свай
Минимально допустимый диаметр продольных стержней арматуры, обеспечивающих прочность столбов или свай.
Минимальный диаметр поперечной арматуры (хомутов)
Определяется, основываясь на нормативах СНиП.
Максимальный шаг поперечной арматуры (хомутов)
Рассчитывается таким образом, чтобы при заливке бетона арматурный каркас не был смещён или деформирован.
Общий вес хомутов
Суммарный вес хомутов, которые потребуются при строительстве всего фундамента.
Минимальная толщина доски при опорах через каждый метр
Необходимая толщина досок опалубки при заданных параметрах фундамента и заданном шаге опор. Рассчитывается исходя из ГОСТ Р 52086-2003.
Количество досок для опалубки
Число досок стандартной длиной 6 метров, которые потребуются для возведения всей опалубки.
Периметр опалубки
Общая протяженность опалубки с учетом внутренних перегородок.
Объем и примерный вес досок для опалубки
Такой объем досок потребуется для возведения опалубки. Вес досок рассчитывается из среднего значения плотности и влажности хвойных пород дерева.
Онлайн калькулятор для расчета фундамента буронабивные сваи с лентой ростверка
Несмотря на то, что грамотный расчет любого фундамента может сделать исключительно опытный специалист, для примерных расчетов можно воспользоваться онлайн сервисами, с помощью которых получится оценить рентабельность того или иного типа основания для дома…
Несмотря на то, что грамотный расчет любого фундамента может сделать исключительно опытный специалист, для примерных расчетов можно воспользоваться онлайн сервисами, с помощью которых получится оценить рентабельность того или иного типа основания для дома…
При возведении любого здания или сооружения, от небоскреба, до забора или хозблока, первым по порядку и важности следует устройство фундамента. Для строительства на сложных грунтах хорошо себя зарекомендовали свайные фундаменты. Произвести правильный расчет свайного фундамента могут только специалисты, так как приходится учитывать все нюансы основания для конкретного здания и типа грунтов. Все остальные способы дадут только приблизительный результат.
Есть определенные правила расчета свайных фундаментов и все их надо учитывать
Типы свайных фундаментов
Свайные фундаменты имеют несколько преимуществ перед обычными ленточными или плитными, такие как:
- Снижение расхода материалов.
- Возможность устройства на сильнопучинистых грунтах.
- Возможность монтажа на участках с большим уклоном.
- Высокая скорость монтажа в случае применения винтовых свай. Фундамент под обычный загородный дом монтируется за 1-2 дня, нет необходимости ждать полного набора прочности бетоном в течение 28 суток.
Сваи применяются 3 видов:
- Забивные.
- Буронабивные. Как один из вариантов буронабивных свай монтируют так называемые сваи ТИСЭ, с уширением внизу. Такая конструктивная особенность снижает нагрузку на грунт и позволяет фундаменту эффективно противостоять силам выталкивания, возникающим при морозном пучении грунтов.
- Винтовые.
Забивные элементы в частном строительстве применяются крайне редко, т.к. требуют привлечения тяжелой строительной техники.
Разновидности свайных фундаментов
Лента ростверка подвешена (ТИСЭ)
Основные отличие от предыдущего варианта
Основные входные данные
Из входных данных для ленты ростверка исчезли пункты со значением глубины ленты, т.к. при исполнении ТИСЭ лента подвешена и глубина тут уже не нужна, и добавился пункт «Выход свай» к входным данным свай.
Утепление
В утеплении появилась возможность утеплить ленту ростверка не только снаружи, но и внутри. Естественно это опциональные пункты. Если вы отказываетесь от утепления на этапе фундамента и добавляете его на этапе отделки фасада, то обращаем ваше внимание, что внутреннего утепления на этапе фасада нет.
Расчет фундамента
Расчет любого типа основания начинается с определения типа грунта и уровня грунтовых вод. Для этого лучше всего обратиться в специализированную организацию. Вариант «как у соседа» в данном случае неприменим, т.к. эти параметры могут различаться даже в пятне застройки. Исходя из рекомендаций специалистов, выбирается тип основания.
Приведенные методики расчета примерны и не учитывают некоторые факторы, которые могут оказать влияние на сооружаемый фундамент.
Это может быть интересно!
В статье по следующей ссылке читайте про панели для фундамента.
Расчет свайного фундамента
Для расчета свайного фундамента, как и любого другого следует вычислить нагрузки на основание F. Для этого складывают вес стен, перекрытий, кровли, снеговую нагрузку и нагрузку на пол. Первые 3 параметра можно вычислить самостоятельно, либо с помощью специальных строительных калькуляторов. Снеговая нагрузка зависит от региона, в котором расположено строение и определяется по СНиП 2. 01.07-85 «Нагрузки и воздействия», нагрузка на пол принимается равной 180кг/м2 общей площади сооружения.
Распределение снеговых нагрузок в зависимости от климатических зон
Затем определяется несущая способность сваи по формуле
P=
ϒcr*R0*S+uϒcf*fi*hi
, где
- R0
– нормативное сопротивление грунта под основанием сваи
- S
– площадь основания
- ϒcr
– коэффициент условий работы грунтов под основанием
- u
– периметр сечения
- ϒcf
– коэффициент условий работы грунта на боковой поверхности
- fi
– сопротивление грунта на боковой поверхности
- hi
– глубина погружения сваи ниже уровня земли.
Площадь основание S круглых свай вычисляется путем перемножения квадрата радиуса сваи на 3,14, периметр – умножением диаметра сечения на 3,14. Диаметр сваи выбирают, исходя из предполагаемого материала опалубки и параметров оборудования, обычно для частного строительства — 200-300 мм.
Глубина погружения выбирается произвольная, но не менее глубины промерзания грунта +0,5м, либо по глубине залегания несущего слоя грунта, так же следует учесть уровень грунтовых вод.
Нормативное сопротивление грунта R0, коэффициенты условий работы ϒcr и ϒcf определяется по таблицам из СНиП 2.02.03-85.
По таким таблицам специалисты определяют нормативное сопротивление грунта, но сначала нужно узнать тип грунта, для чего проводится анализ почвы
После вычисления несущей способности опорного элемента вычисляется их количество, для чего нагрузка на основание F умножается на коэффициент надежности, равный 1,2, и делится на несущую способность P. Если получилось нецелое число – значение округляется до целого в большую сторону.
В некоторых случаях может потребоваться установка дополнительных опор, например при сооружении в здании печи или монтаже тяжелого оборудования.
Далее сумму длин несущих стен делят на количество свай. Таким образом вычисляется шаг свайного поля. Для определения необходимого количества бетонного раствора складывается объем свай, который вычисляется перемножением площади сечения на высоту сваи. Высота сваи учитывается не до уровня земли, а до заданной верхней точки.
Для этих вычислений также можно воспользоваться калькулятором свайного фундамента, указав форму основания, подставив необходимые переменные и выбрав в специальных полях формы табличные значения из нормативных документов.
Интерфейс онлайн калькулятора свайных фундаментов
Расчет столбчатого фундамента
Столбчатым называют свайный фундамент, в котором сваи расположены на поверхности земли или заглублены не более чем на 0,5 м. Такой тип оснований может использовать только для строительства небольших легких сооружений, например гаража, хозяйственного блока маленькой бани или дачного домика по каркасной технологии или из бруса.
Расчет столбчатого фундамента производится также, так и свайного, однако при вычислении несущей способности столба не учитываются боковые нагрузки, таким образом, формула для расчетов получается следующая:
P= ϒcr*R0*S
Столбы могут изготавливаться монолитным способом, как и сваи либо изготавливаться из кирпича, шлакоблока или бетонных блоков. Во втором случае сечение получается квадратное или прямоугольное, и площадь вычисляется перемножением длин сторон. Это нужно учитывать при расчетах с помощью калькулятора столбчатого фундамента.
Интерфейс калькулятора столбчатого фундамента
Это может быть интересно!
В статье по следующей ссылке читайте про виды фундаментов.
Расчет фундамента на винтовых сваях
Для вычисления основания на винтовых сваях применяется та же методика, что и для буронабивных свай, однако расчеты упрощаются, т.к. винтовые сваи – типовое изделие, и несущую способность сваи не нужно вычислять самостоятельно, достаточно посмотреть значение в таблице и разделить нагрузку от сооружения на этот параметр. При расчетах за площадь основания сваи принимается площадь лопасти.
Чтобы определить, какую нагрузку должен выдерживать элемент фундамента, нужно рассчитать примерное количество свай. Для этого длина несущих стен делится на предполагаемый шаг монтажа опор, обычно 2-3 м. Затем, делением суммарной нагрузки сооружения на фундамент на количество опор, вычисляют нагрузку на 1 сваю. Необходимая площадь опоры определяется по формуле
S=F=1,2/R0
где F
– нагрузка на сваю,
1,2
– коэффициент надежности,
R0
– нормативное сопротивление грунта. Зная площадь лопасти, вычисляют ее диаметр по формуле
D=2√S/π
, и по получившемуся значению выбирают из сортамента ближайший в большую сторону типоразмер.
Такие данные нужно ввести для расчетов в онлайн калькулятор фундамента на винтовых сваях
Применив для расчета количества свай для фундамента калькулятор, можно выбрать наиболее подходящий для заданных условий и выгодный экономически размер свай путем подстановки различных параметров. Глубина погружения свай определяется на основании глубины залегания несущего слоя грунта и уровня грунтовых вод.
Расчет свайно-ростверкого фундамента
При строительстве на сложных грунтах, на участках с большим уклоном, либо при строительстве из кирпича, газобетонных или других блоков по верхней поверхности свай изготавливают ленту, которая называется ростверк. Выполнен он может быть монолитным из железобетона или сборным (сварным) из металлопроката. При расчете свайно-ростверкого фундамента к нагрузкам от сооружения добавляется еще и вес самого ростверка. При изготовлении ростверка из металлопроката, двутавра или швеллера, вес вычисляется умножением длины ленты на удельный вес профиля, который указывается в сортаменте. Для железобетонной конструкции – вычисляется объем бетона (площадь сечения ленты на длину) на плотность материала, равную 2400 кг/м3.
Как посчитать количество свай под крыльцо и эркер?
Если планируется возвести эркер или крыльцо, то принципы расчета количества свай такие же, как и для основного сооружения. Сначала устанавливаем сваи по углам. Затем смотрим длину стен – если она более 3-х метров, то потребуются дополнительные сваи. Формулу для вычисления их количества мы уже привели выше.
Конечно, в этой статье описаны общие принципы расчета свайного поля для простейшего одноэтажного дома. Для того чтобы все было сделано правильно, и здание было надежным и долговечным, лучше доверить все вычисления профессионалам.
Эскиз составляющих элементов свайного фундамента с роствертком
Свайно-ростверковые фундаменты пользуются заслуженной популярностью среди тех частных застройщиков, которые хотят возвести качественное основание в максимально сжатые сроки на ландшафте сложной структуры. Ведь ростверк может быть незаглубленным или малозаглубленным, а это существенная экономия средств на его возведение.
Но, существует проблема правильного расчета необходимого количества несущих конструкций, их типа и шага установки, поэтому перед возведением нужно сделать полный сбор информации.
Также, сначала проводится проектирование фундамента с учетом характеристик будущего здания, ведь от того, сколько будет установлено свай, зависит конечная стоимость возведения дома, а уже затем проводится расчет свайного фундамента.
Конкретные цифры для расчётов
В случае, когда сложно либо невозможно определить несущую способность грунта, принимается значение 2,5 кг\см2, это усреднённый показатель для грунтов российской средней полосы.
Исходные данные для расчёта свайных фундаментов
Максимальный шаг винтовых свай для малоэтажного и хозяйственного индивидуального строительства:
- строения из бревна или бруса 3 м;
- сооружения каркасного либо сборно-щитового типа 3 м;
- здания с несущими стенами из облегчённых блоков 2,5 м;
- дома из кирпича и полнотелых бетонных блоков 2 м;
- монолитные сооружения 1,7 м.
Для кустов свай под печи, колонны и подобные сооружения с сосредоточенной нагрузкой допустимое минимальное расстояние между сваями 1,5 м, для веранд и аналогичных построек 1,2 м.
Вес конструкций и частей зданий
Для сбора весов допустим приблизительный подсчёт. Ошибка в большую сторону приведёт к небольшому увеличению стоимости работ. Если же реальные нагрузки окажутся больше расчётных, то возможно разрушение фундамента и здания в целом.
Предпочтительный ориентир при отсутствии точной информации максимальное значение.
Стены :
- кирпичные 600-1200кг\м2;
- бревенчатые 600 кг\м2;
- газо- и пенобетонные 400-900 кг\м2;
- каркасные и панельные 20-30 кг\м2.
Крыши с учётом стропильной системы:
- листовая сталь, в т.ч. металлопрофиль и металлочерепица 20-30 кг\м2;
- листы асбоцементные 60-80 кг\м2;
- рубероид и другие мягкие покрытия 30-50 кг\м2.
Перекрытия:
- деревянные с утеплителем 70-100 кг\м2;
- цокольные с утеплителем 100-150 кг\м2;
- монолитные армированные 500 кг\м2;
- плитные пустотелые 350 кг\м2.
Снеговая и ветровая нагрузки подсчитываются с учётом средних региональных показателей с поправочными коэффициентами. Средняя эксплуатационная (полезная) нагрузка с учётом веса людей, оборудования, техники, мебели, домашней утвари — 100 кг\м2. После сведения веса необходимо применить к результату коэффициент запаса 1,2.
Пример подсчёта потребности в сваях
Для примера расчёта возьмём одноэтажный дачный дом:
- с крышей из металлочерепицы;
- стены бревенчатые;
- перекрытия деревянные;
- размер 6 Х 6 м;
- без фундаментальной печи;
- высота стен 2,4 м.
Расчет:
- вес стен из бревна: 2,4 (высота) Х 24 (периметр) Х 600 = 34560;
- вес перекрытий: 36 (площадь) Х2 Х 100 = 7200;
- вес крыши: 54 (площадь) * 20 = 1080;
- полезная нагрузка: 100 Х 36 = 3600.
Сборный вес дома: 34560+7200+1080+3600=46440 кг.
Снеговую нагрузку определяем для севера нашей страны по номинальной массе снежного покрова 190 кг\м2. Отсюда расчет равен: 6х6х190=6840 кг.
Итоговый сборный вес: (46440+6840) Х 1,2 (запас) = 63936 кг.
Выбираем сваю самого популярного размера 89*300мм при её погружении на 2,5 м с несущей способностью 3,6 т, а сводный вес также переводим в тонны. 63,9 : 3,6 = 17,75 шт. — понадобится 18 штук винтовых свай.
Далее сваи распределяются по свайному полю с учётом первоочередной установки в углах, примыканиях и пересечениях. Количество буронабивных свай будет соответствовать расчёту количества свай винтовых при соблюдении аналогичных параметров.
Для расчёта нагрузок, подбора оптимальных параметров свай и их количества, а также расчёта ростверка, разработаны специальные компьютерные программы, например, StatPile и GeoPile, облегчающие и упрощающие задачу по устройству фундаментов.
График изгиба стержней свайного фундамента с расчетами
🕑 Время чтения: 1 минута
Чтобы четко понимать график изгиба стержней свайного фундамента, необходимо знать типичные детали армирования свайного фундамента. Свайный фундамент — это распространенный тип глубокого фундамента, используемый для поддержки тяжелонагруженных конструкций, когда рассматриваемый участок имеет очень слабый грунт, сжимаемый по своей природе.
Комплектация:
- Схема типичного свайного фундамента
- Структурная спецификация и детали армирования свайного фундамента
- Расчет графика изгиба стержней свайного фундамента
- Шаг 1: Длина вертикальной арматуры
- Шаг 2: Внутреннее дистанционирующее кольцо – количество и длина каждое кольцо
- Этап 3: Наружное спиральное кольцо – количество и длина каждого кольца
- Этап 4: График изгиба стержней
Типичное устройство свайного фундамента имеет несущую конструкцию, поддерживаемую наголовником сваи, который, в свою очередь, поддерживается несколькими сваями, как показано на плане и виде спереди на рисунках ниже.
Рис. 1: Устройство свайного фундамента – Надстройка, свайный оголовок и сваи
Спецификация конструкции и детали армирования свайного фундаментаНа рисунке-2 показаны типичные детали армирования и чертеж свайного фундамента. Детали шапки ворса в этой статье не объясняются.
Рис. 2: Детали свайного фундамента
Вся компоновка хорошо понятна из рисунка-2. Каркас сваи имеет вертикальную арматуру, скрепляемую наружным и внутренним кольцами. Армирование в свайном строительстве включает:
- Вертикальная арматура
- Усиление внешнего кольца
- Усиление внутреннего кольца
Вышеупомянутые детали упомянуты на рисунке 3 ниже. Внешние кольца выполнены в виде спиральных колец, а внутренние — в виде круглых или спиральных связей.
Рис.
Длина развертки ’L d ’ предусмотрена снаружи колонны, врезающейся в оголовок сваи. Рекомендуемая длина анкеровки предусмотрена в нижней части колонны, как показано на рис. 2. Из рисунка:
- Длина сваи = 20 м
- Диаметр сваи = 0,6 м
- Диаметр:
- Вертикальная арматура = 20 мм – 12 шт.
- Наружное спиральное кольцо = 8 мм @ 200 мм c/c
- Внутренние спиральные стяжки = 16 мм @ 2000 мм c/c
- Нижняя длина анкерного крепления = 300 мм
- Длина разработки = 40д
- Прозрачная крышка = 75 мм
В случае графика изгиба стержней колонны или сваи возникает необходимость в притирке стержней
так, чтобы была достигнута длина сваи (20 м). Следовательно, дополнительно предусмотрена длина притирки, равная 5Dd . Поэтому, Общая длина резки для вертикальной арматуры = длина анкеровки в нижней части сваи + высота сваи + длина развертывания (40d) + длина внахлестку (50d) – прозрачное покрытие внизу. т.е. L v = 300 + 20000 + 40d +50d -75 = 300 + 20000+ (40 х 12) + (50 х 12) – 75 Общая длина вертикальной арматуры, L v = 21,3 м Примечание: При вязке стержня рекомендуется вязать посередине, так как вязка на концах стержней будет подвергаться более высоким нагрузкам. Шаг 2: Внутреннее дистанционное кольцо – количество и длина каждого кольцаЗдесь мы должны определить длину каждого внутреннего кольца вместе с их номерами. Количество колец (N r ) = [Длина сваи/Шаг] + 1 = [20000/2000] +1 = 11 нет Окружность кольца дает длину каждого кольца. Для этого необходимо определить радиус кольца. С учетом радиуса ворса, чистого покрытия, радиуса внешнего кольца:
Для каждой характеристики наружного спирального кольца необходимо определить его радиус. Радиус наружного спирального кольца = [диаметр ворса – прозрачное покрытие]/2 = [600 -75]/2 = 262,5 мм Длина кольца = 2xpixr = 2 х 3,147 х 262,5 = 1648,5 мм = 1,65 м Количество колец (N r ) = [Длина сваи / Шаг] + 1 = [20000/200] +1 = 101 нет
Этап 4: График гибки стержнейСпецификация | Диаметр стержней (м) | Количество стержней (м) | Длина стержней (м) | Общая длина (м) |
Вертикальная перекладина | 12 | 12 | 21,3 | 255,6 |
Внутреннее кольцо | 16 | 11 | 1,58 | 17,4 |
Внешнее кольцо | 8 | 101 | 1,65 | 166,65 |
Проектирование свай [проектирование подробное руководство]
В статье рассмотрено проектирование свай (монолитных буронабивных одинарных). Буронабивные сваи чаще используются в мире в качестве фундамента глубокого заложения, когда осевая нагрузка не может быть достигнута за счет мелкозаглубленного фундамента.
Существуют различные методы проектирования свай. Во всех методах поверхностное трение и расчет торцевой опоры выполняются при проектировании свай. Если мы сможем рассчитать вышеуказанные параметры, мы сможем легко оценить емкость сваи.
Расчет отрицательного поверхностного трения и нормального поверхностного трения о грунт в данном посте не рассматривается.
Однако при оценке несущей способности сваи можно учитывать влияние поверхностного трения грунта.
В частности, при отрицательном поверхностном трении, которое снижает грузоподъемность сваи, это следует учитывать при расчете. Влияние трения кожи о землю и кожу будет рассмотрено в другой статье на этом сайте.
Обычно допустимое торцевое трение и поверхностное трение получают из геотехнических исследований.
В отчете приводится чистая допустимая торцевая опора и допустимое поверхностное трение.
Если предельная концевая опора и предельное поверхностное трение указаны в отчете о геотехнических исследованиях, они должны быть преобразованы в допустимые нагрузки, поскольку мы сравниваем их с рабочими нагрузками (эксплуатационными нагрузками) конструкции.
Уравнения для оценки торцевой опоры и трения о поверхность сваи в раструбе)
Площадь поверхности сваи в раструбе рассчитывается путем умножения длины втулок (длина сваи в свежей породе) на длину периметра сваи. Как правило, сваи имеют глубину забивки вокруг диаметра сваи, если это не указано в геотехническом отчете.
Геотехническая несущая способность сваи = Несущая способность торца + Способность к поверхностному трению
Геотехническая несущая способность сваи сравнивается с конструкционной несущей способностью сваи для получения несущей способности сваи.
Несущая способность сваи может быть оценена с помощью структурного анализа.
Свая может быть выполнена в виде колонны, воспринимающей осевую нагрузку в грунте и породе.