Теплоаккумулятор подключение: Обвязка теплоаккумулятора: схемы, пояснения, принцип работы

Содержание

Обвязка теплоаккумулятора: схемы, пояснения, принцип работы

Подключить теплоаккумулятор (буферную емкость) для отопления можно десятком разных способов. Есть самые простые — просто трубы подключить, есть сложнее, с большим количеством элементов, которые решают различные задачи. Разберем, как подключить теплоаккумулятор, по порядку, с возможностями схем, для разных потребителей. Рассмотрим плюсы и минусы каждой из схем.

Обвязка теплоаккумулятора: упрощенная схема

Буферную емкость ставят между водогрейной печью/котлом и системой отопления. В самом простом варианте подключают трубы напрямую, без каких-либо излишеств (см. рисунок ниже). Вот только лучше поставить отсечные краны  на каждом из отводов — перед и после емкости. Это даст возможность отключать емкость, проводить ремонтные работы с баком и не сливать при этом теплоноситель из системы. Еще очень желательны фильтры.

В чем недостаток такой схемы подключения теплоаккумулятора для системы отопления? При поступлении в теплообменник котла теплоносителя с низкой температурой, образуется конденсат. Он состоит из очень едких жидкостей, которые разрушают металл. Испаряясь, этот конденсат оставляет толстый слой налета на теплообменнике, что очень сильно снижает эффективность (теплообменник хуже нагревается). Ситуация с холодной обраткой появляется во время старта системы, пока не нагрет теплоноситель. Так как в данной схеме греться должен весь объем, конденсат выпадает продолжительное время, что приводит к быстрому снижению эффективности отопления, разрушению теплообменника.

Самая простая схема подключения теплового аккумулятора к системе отопления

Второй недостаток этой схемы: вода в емкости может быть очень горячей — до 90°C и больше. Если подавать ее в радиаторы напрямую, в помещениях может быть слишком жарко, к тому же о нагретые до такой температуры радиаторы можно серьезно обжечься. На теплый водяной пол, такой горячий теплоноситель вообще давать нельзя — все расплавиться.

И, самое важное, в данной схеме нет циркуляционного насоса. То есть, движется теплоноситель по естественным причинам: благодаря уклону труб (не забудьте, кстати, о правильном уклоне) и разнице температур между подачей и обраткой. Но такое движение медленное и малоэффективное, особенно при понижении температуры в баке. Такая схема малоэффективна. Для того чтобы теплоноситель двигался быстрее, ставят циркуляционный насос.

Куда поставить циркуляционный насос

В большинстве схем обвязки теплоаккумулятора с циркуляционным насосом, он стоит в обратном трубопроводе перед котлом. В обратке — потому что тут ниже температуры, но можно поставить и на подаче. Современные насосы рассчитаны на прокачку теплоносителя до 110°C, так что они там неплохо себя чувствуют. Второй момент: при установке на подаче, насос не будет создавать дополнительное давление на теплообменник, что продлит срок его службы.

В любом случае при установке циркуляционного насоса в подаче или на обратке, возможность естественной циркуляции отсутствует. То есть, при отключении электроэнергии, циркуляция остановится, котел неминуемо закипит. Чтобы избежать этого, ставят четырехходовой клапан, через который организуют сброс перегретой воды в канализацию и подпитку холодной водой из ХВС. Так организуется аварийное охлаждение теплообменника и предупреждается закипание теплоносителя.

Один из способов избежать перегрева теплоносителя в котле отопления

Обратите внимание, что реализовывать эту схему можно только на стальных или медных теплообменниках. С чугунными — нельзя. При попадании холодной воды они могут лопнуть.

Есть и другой способ. Он более щадящий по отношению к теплообменнику (подходит и для чугунных) и требует меньше материалов. Можно сделать обвязку между котлом и теплоаккумулятором для отопления так, чтобы сохранить естественную циркуляцию. В таком случае при отключении электропитания котел не закипит — будет продолжать греть воду в емкости.

Для сохранения естественной циркуляции теплоносителя, насос ставят в отдельном, специально созданном контуре. Чтобы схема работала, в контуре ставят лепестковый обратный клапан большого сечения.

Так сохраняется естественная циркуляция даже при отсутствии электропитания

Когда не работает циркуляционный насос, он пропускает поток теплоносителя от ТА. При работе циркуляционного насоса, он своим напором подпирает клапан и теплоноситель идет через насос. На насос идет труба не менее дюйма в диаметре. Только в этом случае может сохраниться естественная циркуляция.

Решаем проблему конденсата

Логичное решение проблемы слишком холодной воды на обратке — добавить горячую с подачи. Реализуется это при помощи перемычки и установленного на отводе регулируемого трехходового смесительного клапана. Клапан должен быть смесительного типа: при достижении выставленной температуры, он плавно начинает сдвигать клапана в двух подключенных трубах. Таким образом получается постепенное и плавное изменение температуры.

Обвязка теплоаккумулятора: добавочный контур для подмеса теплой воды в обратку

Холодная вода в обратном трубопроводе появляется в нескольких случаях: при разгоне котла, когда вода в теплоаккумуляторе сильно остыла (после простоя), а котел в работе. Давайте рассмотрим, как работает эта схема подключения аккумулятора тепла в обоих случаях. Движение теплоносителя показано на иллюстрациях ниже.

Пока котел не разогрелся, теплоноситель совсем холодный. В этом случае трехходовой клапан перекрывает поток теплоносителя на ТА и он движется по малому кругу (рисунок внизу, верхняя левая картинка). Прогрев происходит быстро, так как воды мало, время, образования конденсата минимально. На рисунке принято, что трехходовой клапан настроен на 55°C. Пока вода в малом круге не достигнет этой температуры, она так и циркулирует в нем.

Когда теплоноситель в малом кольце разогревается до 55°C, клапан сдвигает заслонки, включается в работу теплоаккумулятор для отопления. В этом случае одновременно идут три потока (правый рисунок в верхнем ряду):

  • малый, как на первой картинке;
  • часть теплоносителя идет на ТА через клапан;
  • из ТА по обратке, через клапан, на насос и в теплообменник котла (третий круг).

В таком положении все находится до тех пор, пока теплоноситель в баке не прогреется до выставленной температуры (в данном случае до 55°C).

Как работает трехходовой смесительный клапан в схеме с ТА

Когда температура в баке достигает 55°C, трехходовой клапан отсекает подмес. Жидкость движется по большому кругу (нижний рисунок):

  • подача — не заходя на клапан — в ТА;
  • обратный поток — через клапан, на насос, в котел.

В таком состоянии все работает до тех пор, пока горит топливо. Чтобы обвязка теплоаккумулятора была завершенной, добавим контролирующие элементы — в трубопровод подачи устанавливается группа безопасности: манометр, предохранительный (аварийный) клапан сброса давления, автоматический воздухоотводчик. Для установки аварийного клапана, в некоторых котлах есть специальные штуцера. В противном случае аварийный клапан ставят с остальными компонентами сразу на выходе котла — до первого ответвления.

Окончательный вид обвязки ТА со стороны котла (группа безопасности не нарисована, стоит на подаче после котла)

Еще устанавливается расширительный бак мембранного типа. Он будет принимать в себя лишнюю воду по мере расширения (при нагреве жидкости увеличиваются в объеме).

 Теплоаккумулятор для отопления к котлу мы подключили. На этом обвязка теплоаккумулятора со стороны котла окончена.

Подключение ТА к потребителям

С другой стороны теплоаккумулирующую емкость надо подключить к системе отопления. Если подключаем только радиаторы, все просто — с одного из верхних выходов идет труба в трубопровод подачи, в нижний подключаем обратку. Но, в этом случае, возможен перегрев радиаторов. Когда вода в баке нагрета до температуры выше 60°C, это может быть опасным, а температура может быть 90°C и даже выше. При касании к таким горячим радиаторам, высока вероятность получения нешуточного ожога. К тому же в помещении явно будет жарко.

Подключение радиаторов

Чтобы избежать подачи слишком горячего теплоносителя, ставят еще один трехходовой смесительный клапан. Схема работает также как описано выше. Выставляем на регуляторе требуемую температуру, например, 50°C. Как только теплоноситель в подаче будет горячее, клапан откроет подмес воды из обратки.

Одна из выгод установки теплоаккумулятора — возможность приготовления ГВС в той же емкости (средняя картинка на рисунке ниже). Для этого в бак встраивают теплообменник или емкость. Его выход подключают к гребенке горячего водоснабжения.

Схемы обвязки буферной емкости со стороны системы отопления

Так как и в этом случае тоже возможен перегрев, тут также необходим узел подмеса. Вот только добавлять надо холодную водопроводную воду. Реализуется этот узел при помощи еще одного трехходового смесительного клапана. Выход от холодного водопровода подключаем к смесительному трехходовому клапану ГВС. Чтобы при отсутствии разбора горячей воды она не попадала в гребенку холодной воды, на линии подачи от ХВС ставим обратный клапан.

Эта схема обвязки теплоаккумулятора имеет существенный недостаток: когда горячая вода не используется, вода в трубах остывает. Чтобы «добыть» теплую, приходится сливать остывшую просто в канализацию. Это неудобно, так как приходится ждать, и неэкономно. Для решения проблемы, от последней точки разбора тянут обратную линию, в которой устанавливают свой циркуляционный насос. Этот контур называется рециркуляционным. Пока кран нигде не открыли, вода бегает по кругу. Таким образом, из всех кранов постоянно идет теплая вода. Обратите внимание на установку обратных клапанов — они обязательны для работоспособности схемы.

Обвязка теплоаккумулятора для индивидуального отопления со всеми функциональными элементами и арматурой

Для окончательной проработки схемы надо еще оговорить место установки арматуры. Это автоматические воздухоотводчики, которые ставят в самых высоких точках системы. Еще нужны запорные краны. Их устанавливают возле каждого крупного функционального узла так, чтобы при необходимости, можно было перекрыть краны и снять оборудование для ремонта или профилактики.

Как запитать теплый водяной пол

К теплоаккумулятору можно очень неплохо подключить и теплый пол. Обвязка в этом случае ничем не отличается от случая с радиаторами. Нужен тот же узел подмеса со смесительным трехходовым клапаном, но настроен он должен быть на более низкую температуру — не выше +40°C. В этом случае можно подключить теплый пол без смесительного узла — температура должна контролироваться при выходе из котла. Но можно и перестраховаться — поставить второй смесительный узел на распределительном коллекторе теплого пола.

Обвязка теплоаккумулятора с теплым водяным полом (в зеленом контуре)

Есть и второй вариант обвязки теплоаккумулятора с теплым полом — подавать той же температуры теплоноситель, что идет на радиаторы. Понижать ее будет смесительный узел. Хлопот и затрат меньше (нужны только тройники для отвода от основной магистрали), но и надежность такого решения ниже. Хотя, справляется же это оборудование с теплоносителем, который подает обычный котел.

Подключение буферной емкости и ее использование

Буферная емкость позволяет накапливать много тепловой энергии, в большом объеме нагретого теплоносителя. Затем отдавать ее в систему отопления дома постепенно, с помощью особенной обвязки. Использовать твердотопливный котел с буферной емкостью значительно удобней, комфортно.
Можно топить редко и помногу.

Фактически, буферная емкость с обычным твердотопливным котлом сейчас конкурирует с пеллетным автоматизированным котлом, или с различными модификациями твердотопливного котла на большую загрузку (т.н. длительного горения).
Какие имеются плюсы и минусы, в чем недостатки вариантов – далее…

В чем же особенность применения теплоаккумулятора и как его подключить правильно, чтобы использование было комфортным и безаварийным?

Схема подключения (обвязки) буферной емкости с твердотопливным котлом

На схеме твердотопливный котел и буферная емкость.
Схема упрощенная, не указаны краны, термометры, манометры и др.

Применены два трехходовых клапана.

Первый клапан включен в контур котла. Он предохраняет котел от низкой температуры теплоносителя (от работы ниже точки росы и увлажнения…). Клапан обязателен, так как с буферной емкостью работа кола в неблагоприятном «холодном» режиме продолжительная.

В данной схеме применяется смесительный клапан (смешивает жидкости). Направление движения жидкости по байпасу указано стрелкой.
Клапан управляется термоголовкой, датчик которой расположен на обратке котла.

Клапаном поддерживается температура на обратке котла больше чем 60 градусов.

Второй клапан находится в контуре радиаторов. Он поддерживает температуру в радиаторах по желанию пользователя. Часть обратки от радиаторов через клапан может направляться на подачу.

Здесь применяется разделительный клапан (разделяет потоки). Направление движения жидкости через байпас указано стрелкой. Датчик термоголовки радиатора размещается на подаче на входе в радиаторную сеть.

Следует обратить внимание на расположение насосов. Только с таким расположением насосов относительно трехходовых клапанов обеспечивается их работа.

Но насосы могут располагаться и на подающей ветви, принципиальной разницы нет.

Твердотопливный котел не автоматизирован, его работа должна контролироваться человеком по показаниям термометров, которыми снабжается буферная емкость. А также желательно установить термометр на трубопроводе на подаче в радиаторную сеть (в месте расположения датчика термоголовки).

Используется температурное реле в контуре радиаторов. Оно защищает пластиковые трубопроводы радиаторной сети от слишком высокой температуры. Настраивается на 85 градусов. Отключает насос радиаторного контура и включает звуковой сигнал (звонок), который предупреждает пользователя о срочной необходимости потушить горение в котле.

В сеть параллельно радиаторам может быть включен контур теплого пола.
Какие схемы используются в теплом полу

Вода ГВС нагревается во встроенном в емкость теплообменнике.

Другие схемы обвязки

Схема включения (обвязки) буферной емкости с использованием автоматического управления трехходовым клапаном с помощью сервопривода. Здесь используются одинаковые смесительные клапаны, в контуре радиаторов клапан установлен на подаче.

Схема подключения теплоаккумулятора к твердотопливному котлу с использованием автоматики управления температурой радиаторов. Используется датчик температуры на подающей ветви на радиаторы и информация с комнатных термостатов. А также управление насосом радиаторов (отключение) в случае критического повышения температуры.

Режим топки и объем емкости

Кроме твердотопливного котла буферная емкость будет полезной с электрокотлом, если подключен дешевый ночной тариф электричества. Тогда заряжать теплоаккумулятор можно ночью.

Объем теплоносителя: специалисты рекомендуют примерно тонну воды на 200 м кв. утепленного дома. Если больше – неудобно, долго заряжать. Меньше – чаще топить. При таком объеме топка примерно раз в сутки в средние морозы или реже.

Количество энергии которое может накапливать теплоаккумулятор в зависимости от емкости

Продолжительность топки напрямую будет зависеть от мощности твердотопливного котла. Рекомендуется с буферной емкостью использовать более мощный котел, чем подобранный по теплопотерям. Возможно использование котла в 2 – 3 раза мощнее, что увеличивает комфортность использования, укорачивает топку.

Как правило, с режим топки выбирают по опыту, таким образом, чтобы разогревать теплоноситель до 80 градусов. При этом радиаторная сеть работает в низкотемпературном режиме 50 – 60 градусов. Общее остывание теплоносителя на 20 – 40 градусов в течении суток обеспечивает компенсацию потери тепловой энергии домом. Количество секций радиаторов подбирается на низкотемпературный режим обогрева.

как подобрать радиаторы отопления для дома по мощности, виду

Подбор насосов и балансировка

Чтобы емкость работала правильно, у нее вверху должна находиться более теплая вода. Она же сразу забирается в радиаторную сеть. После начала топки радиаторы нагреваются сразу.
Но для этого вода по емкости должна двигаться сверху вниз. Т.е. в контуре котла расход должен быть больше. Как правило, это достигается даже одинаковыми насосам и одинаковым режимом работы (в контуре котла сопротивление меньше). Или в контуре радиаторов ставится дросселирующий кран.

Давление в системе с буферной емкостью делается пониженное – 0,7 -1,5 атм. Гидроаккумулятор подбирается объемом – 12% от объема воды в системе.

Важно. Насос контура котла нужно отключать после того как котел прогорит. Иначе произойдет ускоренное охлаждение теплоносителя через теплообменник котла и дымоход. Удобно сделать автоматику на отключение после снижения температуры в котле. В любом случае, выключатели двух насосов нужно расположить удобно на стене в месте обслуживания отопления, так как пользоваться отключением насосов придется часто.

Преимущества применения тепловых аккумуляторов

Помимо всего прочего, буферная емкость позволяет эксплуатировать твердотопливный котел в оптимальном режиме. Сжигание дров (угля) производится с наибольшей подачей воздуха, максимально эффективно (с наибольшим КПД), с наибольшей температурой, при этом образуется меньше СО, смолы и недогоревшей золы (сгорает). Все режимы с ограничением подачи воздуха являются не оптимальными для горения.

В продаже можно встретить множество дорогих буферных емкостей от Европейских производителей. Но местного производства обойдутся в 2 – 3 раза дешевле. Заказывают часто из нержавейки. Делают теплоаккумуляторы и отдельные мастера, «гаражная» емкость из черного металла 3 – 4 мм будет дешевой, но сколько времени ее можно эксплуатировать под давлением…

  • Система с твердотопливным котлом и буферной емкостью отличается значительными первоначальными затратами. Но в дальнейшем отопление дровами или (и) углем наиболее дешевое, а комфортность повышенная. В схему «просится» электрический котел, обеспеченный дешевым тарифом, что только повысит комфортность отопления.
  • Пеллетный котел автоматизированный требует обслуживания, как правило, раз в неделю. Но он еще дороже сам по себе, чем первая схема, и топливо также дорогое.
    Чем выгоднее отапливать частный дом
  • Так называемые «котлы длительного горения» с большим объемом загрузки, в целом, имеют массу недостатков, сложны и дороги (хоть и не настолько как первые схемы), рекомендованы быть не могут.
    Подробнее Какие встречаются котлы длительного горения

Аккумуляторы тепла — журнал HPAC

Всякий раз, когда гидравлическая система разделена на несколько зон, стоит предусмотреть буферный резервуар между источником тепла и системой распределения. Это особенно верно, когда источником тепла является односкоростное устройство «вкл/выкл», а не модулирующее устройство.

Одним из примеров является 4-тонный геотермальный тепловой насос, питающий несколько панельных радиаторов с индивидуальным управлением. Каждый радиатор представляет собой то, что я бы назвал «микрозоной». Мощность такой зоны составляет, вероятно, менее 10 %, а может быть, даже менее 5 % тепловой мощности источника тепла. Если вы подключите несколько таких зон напрямую к источнику тепла, даже если он может модулировать, скажем, 20% от номинальной мощности, вы, скорее всего, столкнетесь с короткими циклами. То же самое справедливо и для теплового насоса воздух-вода.

Размер буферного резервуара

Размер буферного резервуара зависит от двух параметров, которые выбирает разработчик:

  1. Каково минимальное время работы источника тепла, чтобы избежать определения разработчика «короткий цикл»?
  2. И каково допустимое изменение температуры буферной емкости в течение минимального времени рабочего цикла?
    Когда эти два решения приняты, математика проста. Минимальный размер бака можно определить по формуле 1.

Формула 1:

где:
V = требуемый объем буферного резервуара (галлоны)
t = желаемая продолжительность «цикла» источника тепла (минуты)
Qheat source = теплопроизводительность источника тепла (БТЕ/ч)
qload = скорость отбора тепла из бака (может быть равна нулю) (БТЕ/ч)
∆T = повышение температуры бака с момента включения источника тепла до момента его выключения (F)

Вот пример. Предположим, что проектировщик хочет, чтобы водяной тепловой насос с номинальной производительностью 48 000 БТЕ/ч работал с минимальным рабочим циклом 10 минут, подавая тепло на радиатор полотенцесушителя, выделяя тепло со скоростью 2 000 БТЕ/ч.

Тепловой насос реагирует на температуру буферного резервуара. Он включается, когда температура буферного резервуара падает до 100F, и выключается, когда резервуар достигает 120F. Каков необходимый объем буферной емкости для этого?

Просто подставьте числа в формулу и возьмите калькулятор:

Буферные резервуары большего размера могут обеспечить более длительные циклы включения источника тепла. Они также могут обеспечить более узкое изменение температуры в течение определенного рабочего цикла. Компромисс между продолжительностью рабочего цикла и колебаниями температуры резервуара легко оценить с помощью формулы 1. Очевидно, что большие буферные резервуары стоят дороже, занимают больше места и обычно имеют более высокие потери тепла в режиме ожидания.

Выполнение соединений

Существует несколько способов подключения буферных резервуаров. Их называют «четырехтрубными», «трехтрубными» и «двухтрубными» конфигурациями. На рис. 1 (ниже) показаны все три.

Рис. 1. Буферный резервуар с двумя, тремя и четырьмя трубами.

Четырехтрубная схема является «классической» схемой трубопроводов для буферных резервуаров в гидравлических системах. Источник тепла добавляет тепло с одной стороны, а нагрузка отводит тепло с другой стороны. Такая конфигурация трубопроводов обеспечивает превосходное гидравлическое разделение между циркуляционным насосом источника тепла и циркуляционным насосом(ами) нагрузки.

Еще несколько лет назад я предполагал, что это единственная конфигурация трубопровода для буферного резервуара в гидравлической системе. Тем не менее, дополнительные исследования того, как баки-аккумуляторы подключаются к трубопроводам в европейских системах с использованием пеллетных котлов, стали для меня открытием. Читайте дальше, и вы увидите, чему я научился.

Одним из ограничений четырехтрубной конфигурации является то, что все тепло от источника тепла должно пройти через бак на пути к нагрузке. Это не проблема, если поддерживается температура буферного резервуара. Однако такое расположение определенно замедляет передачу тепла от источника тепла к нагрузке, если бак значительно остынет.

Если вы устанавливаете буферный бак с четырьмя трубами, обязательно установите обратный клапан на стороне источника тепла системы для предотвращения обратного термосифонирования из нагретого бака обратно через контур теплового насоса, когда тепловой насос выключен. Если допустить обратное термосифонирование, оно может отводить значительное количество тепла из резервуара в течение нескольких часов, когда тепловой насос выключен.

Двухтрубная конфигурация, с которой я столкнулся на некоторых европейских схемах трубопроводов, размещает нагрузку между буферным баком и источником тепла. Это позволяет передавать тепло непосредственно от источника тепла к нагрузке, когда они оба работают одновременно. Это очень желательно при восстановлении здания из аварийного состояния.

Если расход нагрузки ниже, чем расход через источник тепла, разница между этими расходами проходит через буферный бак.

Одно из ограничений двухтрубной конфигурации заключается в том, что в трубопроводе источника тепла необходимо установить дифференциальный клапан давления, шаровой кран с электроприводом или другое устройство, создающее сопротивление открытию в прямом направлении от 1 до 1,5 фунта на кв. нагрузка от прохождения через источник тепла, когда он выключен.

Также необходимо расположить тройники, соединяющие подающий и обратный трубопроводы с нагрузкой, как можно ближе к резервуару, чтобы обеспечить хорошее гидравлическое разделение.

Вот еще один урок, полученный в отношении двухтрубных буферных резервуаров: их следует использовать только тогда, когда источник тепла включается и выключается в зависимости от температуры буферного резервуара.

Если расход источника тепла и расход нагрузки примерно одинаковы, через бак будет проходить очень небольшой поток. Это может привести к отключению источника тепла из-за удовлетворения обогрева помещения без добавления большого количества тепла в бак. В этом случае бак не «включен» в потоки энергии.

Однако, когда источник тепла управляется непосредственно по температуре резервуара, он будет продолжать работать даже после того, как термостат обогрева помещения будет удовлетворен, накапливая тепло, которое немедленно готово для перехода к следующей запрашивающей зоне.

Встреча посередине

Что получится, если «усреднить» четырехконвейерный буфер с двухконтурным буфером? Ответ: Трехтрубный буфер.

Эта конфигурация стала моей предпочтительной компоновкой, когда источником тепла является тепловой насос. Он обеспечивает возможность прямой подачи на стороне подачи, а также направляет обратный поток через нижнюю часть бака и, таким образом, обеспечивает задействование тепловой массы бака.

Не ожидайте значительной температурной стратификации в буферном резервуаре, подключенном к водяному тепловому насосу. Причина в относительно высокой производительности теплового насоса. Для большинства тепловых насосов рекомендуемая скорость потока составляет 3 галлона в минуту на тонну (12 000 БТЕ/ч) мощности. С водой в качестве рабочей жидкости, что приводит к дельта-Т всего около 8F.

Типичный 4-тонный тепловой насос, работающий в таких условиях, перекачивает 80-галлонный буфер менее чем за семь минут. Эти скорости потока, особенно при вертикальной подаче в резервуар, создадут сильное внутреннее перемешивание. По возможности устанавливайте трубопровод в резервуар таким образом, чтобы нагретая вода от источника тепла поступала в резервуар горизонтально, а не вертикально.

Стоит отметить, что я не всегда ценил преимущества трехтрубного буферного резервуара, и эта концепция пришла от коллеги профессора инженерного дела несколько лет назад.

Мы с ним работали над улучшением производительности системы, работающей на пеллетном котле. Мы случайно наткнулись на упущение одной из конструктивных деталей, о которых я упоминал выше (например, установка дифференциального клапана для предотвращения возврата потока от нагрузки через котел, когда он был выключен).

Мы также оба понимали некоторые ограничения конфигурации буферного резервуара с четырьмя трубами (например, время, необходимое для нагрева большого резервуара до того, как температура воды, подаваемой в нагрузку, достигнет необходимого уровня). Мой коллега предположил, что стоит подумать о компромиссе между двумя конфигурациями.

Собираем части вместе

На рис. 2 (ниже) показан простой шаблон: тепловой насос типа «воздух-вода», трехтрубный резервуар и высокозональное распределение.

Рис. 2. Тепловой насос типа «воздух-вода» с трехтрубным буферным резервуаром и высокозональной системой распределения.

Тепловой насос обеспечивает комбинацию низкотемп. панельные радиаторы и контуры лучистого пола. Радиатор панели и напольные контуры рассчитаны на работу при одинаковой температуре подаваемой воды. Это устраняет необходимость в смесительных клапанах. Всегда предпочтительнее, когда это возможно, более простое и менее дорогое.

Это один из самых важных уроков, которые я усвоил за 40 лет работы в этой отрасли.

Расход и тепловая мощность каждого контура регулируются неэлектрическим термостатическим клапаном. Циркуляционный насос с переменной скоростью, регулируемый давлением, автоматически регулирует скорость на основе этих клапанов.

Тепловой насос включается и выключается для поддержания температуры воды в середине буферного резервуара между 100F/38C и 110F/43C.

В дополнение к буферизации теплового насоса от коротких циклов, бак обеспечивает гидравлическое разделение между внутренним циркуляционным насосом теплового насоса и распределительным циркуляционным насосом с регулируемой скоростью.

В этой системе используются современные концепции, сочетающие высокую энергоэффективность, надежность и комфорт. Возможно, вы сможете использовать его в будущем проекте. <>

Джон Зигенталер

Джон Зигенталер, лицензированный профессиональный инженер. Его последняя книга — «Отопление с использованием возобновляемых источников энергии» (для получения дополнительной информации посетите сайт www.hydronicpros.com).

Объявление

Аккумулятор тепла | Аккувин | Виндхагер

Утеплитель из флиса Hotspot#hide»>X

До 38 % меньше потерь при хранении по сравнению с изоляцией из мягкого пенопласта благодаря энергосберегающему и экологически безопасному утеплителю из флиса толщиной 100 мм.

Индикационный термометр «hotspot#hide»>X

Термометры с 3 дисплеями позволяют легко считывать температуру в баке-аккумуляторе сверху, посередине и внизу.

6/4” Соединение «hotspot#hide»>X

Требуется очень мало места и подходит для ниш благодаря соединениям, расположенным спереди.

Крючковая планка hotspot#hide»>X

Простой и быстрый монтаж, а также элегантный внешний вид благодаря одновременной функции кабельного канала. утилизация за счет забора отопительной воды с наивысшим температурным уровнем (верхний) и загрузки нижнего диапазона, который обычно не используется.

Убедительность до мельчайших деталей
 
  • До 38 % меньше потерь при хранении по сравнению с утеплителем из мягкого пенопласта благодаря энергосберегающему и экологически безопасному утеплителю из флиса толщиной 100 мм.
     
  • Термометры с 3 дисплеями позволяют легко считывать температуру бака-аккумулятора сверху, посередине и снизу.
     
  • Требуется очень мало места и подходит для ниш благодаря соединениям, расположенным спереди.
     
  • Простая и быстрая установка, а также элегантный внешний вид благодаря одновременной функции кабельного канала.
     
  • Наилучшее использование энергии за счет забора отопительной воды с самым высоким температурным уровнем (вверху) и загрузки нижнего диапазона, который обычно не используется.

+ Тепловая нагрузка без вспомогательной энергии благодаря запатентованному каскадному решению

 

 

 

 

+ Оптимальное использование тепла благодаря приподнятым патрубкам

+ Высокое качество, экологичность 1 00 мм флисовый утеплитель ECO SKIN

AccuWIN — аккумулятор тепла

Благодаря верхнему патрубку вода забирается только с самого высокого температурного уровня и направляется в систему отопления. Нижняя труба подает воду только из самой холодной температурной зоны к котлу отопления. Это позволяет полностью использовать весь объем аккумулятора.

Загрузка каскада аккумулирования тепла

1/ Загрузка аккумулятора каскада

Загрузка аккумулятора первого каскада осуществляется с помощью системы управления нагрузкой аккумулятора и гидравлического устройства. Поскольку необходимо нагреть лишь небольшое количество воды, энергия может быть извлечена быстро. Это также помогает уменьшить потери излучения.

2/ Загрузка второго аккумулятора

Если температура возле средней соединительной линии достигает 45 °C, открывается клапан и второй аккумулятор загружается без вспомогательной энергии благодаря тепловому лифту. При этом нижняя часть первого аккумулятора остается свободной, например, для энергии от системы солнечного отопления.

3/ Оба аккумулятора прогреты насквозь

После подачи достаточного количества энергии оба аккумулятора полностью прогреты.

Разрядка теплоаккумулирующего каскада

1/ Разгрузка первого аккумулятора

При необходимости тепло отводится из первого бака-аккумулятора. Это означает, что пространство в нижней части снова освобождается для добавления новой солнечной энергии. Температура в обоих аккумуляторах идеально разделена, так как для обратки используется нижнее подключение. Так второй тепловой аккумулятор остается теплым в верхней части.

2/ Разгрузка второго аккумулятора

Если температура в первом теплоаккумуляторе падает ниже температуры во втором, тепло от второго аккумулятора к первому насосом перекачивается. Таким образом, сохраняется идеальная тепловая стратификация, и вся накопленная энергия может быть использована.

Технические данные

AccuWIN доступен в трех различных формах.

9 0223
Номинальный объем л 825 1000 1500
Диаметр с/без изоляции мм 990/790 990/790 1 200/1000
Высота с/без изоляции мм 1 940 /1860 2135/2050 2235/2150
Общая высота без изоляции мм 1905 2,090 2 270
Минимальная высота помещения мм 1 960 2 190 2 290
Вес с/без изоляции кг 120/110 140/130 220/205
Соединения подачи и возврата Внутр.
Теплоаккумулятор подключение: Обвязка теплоаккумулятора: схемы, пояснения, принцип работы

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Scroll to top