Теплоизоляция что такое лямбда а: Коэффициент теплопроводности. Выбираем «свою» теплоизоляцию

Содержание

Как выбрать теплоизоляцию | СТРОИТЕЛЬНЫЕ МАТЕРИАЛЫ

Тепло-изоляция… Оградить и сохранить тепло Вашего дома, изолировать его от полярной стужи – работа у теплоизоляции очень ответственная!  В серии статей про выбор теплоизоляции, ее монтаж и работу в конструкции, мы поможем Вам сэкономить трижды:

  • при покупке,
  • на затратах на отопление,
  • на отсутствии необходимости переделок.

Чтобы оперативно получать уведомления о публикации информации, подпишитесь на нашу группу ВК https://vk.com/stroymag89

  1. Теплопроводность
  2. Плотность теплоизоляции. Мифы и практика.
  3. Физические свойства теплоизоляции, сжимаемость, прочность на отрыв – где это нужно, а где бесполезно
  4. Паропроницаемость теплоизоляции.
  1. Теплопроводность

Коэффициент теплопроводности – самая главная характеристика теплоизоляционных материалов. Коэффициент теплопроводности обозначается буквой λ (лямбда).

Казалось бы, чего проще – бери «лямбду», сравнивай и решай, что теплее. Тем более что благодаря маркетологам (ох уж эти маркетологи!) многие производители одно время включали значение лямбды в название продукции. Например «Маты КНАУФ Инсулейшн TR 037» — вроде указан коэффициент теплопроводности 0.037 Вт/м*С° ?

Но на практике для характеристики теплоизоляции определяются несколько коэффициентов теплопроводности, соответствующих разным условиям. Например:  λ10, λ25, λА, λБ – означают теплопроводность для разных условий влажности. Из этого перечня лямбда с индексом 10 (ее еще называют «сухая») будет обладать наименьшим значением. Ее обычно и закрепляют в названии продукции.

В названии теплоизоляции существуют различные «моды». Например,  лет 10 назад в название теплоизоляции включали цифры, означающие

плотность. Например, ППЖ-200, Маты УРСА М-11, ПСБС-25. Про особенности суждений о свойствах теплоизоляции по ее плотности у нас есть отдельная статья.
Затем пошла «мода» на включение в название теплоизоляционных материалов значения лямбды «ИЗОВЕР КТ-40», УРСА Терра 34»
Сейчас — «мода» на названия по сфере применения. Причем один вид продукции, сошедшей с конвейера, может попасть в разные упаковки – одна подчеркнет его шумоизолирующие свойства, другая — что его можно применить в каркасную стену, а третья — в мансарду. Хотя по факту это — один и тот же материал.

Но в реальных теплотехнических расчетах для зданий в ЯНАО, как и во многих других регионах нашей страны, используется коэффициент λБ. А он будет существенно ниже – например, для указанных матов «КНАУФ Инсулейшн TR 037» λБ

равен 0,042 Вт/м*С° – отличается от «сухой» лямбды на 13%!

Отличие сухой лябмды от реальной будет тем больше, чем больше материал адсорбирует влаги из воздуха. Меньше всего адсорбируют влагу «закрытопористые» материалы – например, экструдированный пенополистирол, либо с обработкой гидрофобными материалами (например, KNAUF пишет Aquastatic, URSA – индекс Г – гидрофобизатор)

Сравним два родственных материала: Обычный белый «пенопласт» пенополистирольные блоки ПСБС и экструдированный пенополистирол (выпускается под марками URSA XPS, Пеноплекс и др. ).
Разница между сухой лямбдой (0,036-0,041 Вт/м*С° — для разной плотности) и λБ (0,044-0,050 Вт/м*С°) у обычного пенопласта составляет 18%.
А у экструдии – 0,031 и 0,033 – всего 6%.
Исходное сырье одно. Но экструдия — «закрытопористый» материал и плохо пропускает пары воды. А ПСБС воду «любит», и гидрофобной обработки у него нет. Поэтому и такая разница.

 

Всегда ищите лямбду Б — λБ! Она указана у всех производителей, но не всегда на виду.

Приводим коэффициент λБ а популярные в Салехарде материалы.

 

материал

λБ

URSA XPS N-III-G40,033
RW ВЕНТИ БАТТС оптима0,038
URSA GEO П-300,039
Техновент Стандарт0,039
URSA GEO П-200,040
RW ВЕНТИ БАТТС, ВБД0,040
RW ЛАЙТ БАТТС СКАНДИК0,041
URSA PureOne 34PN0,041
URSA КАРКАС0,042
URSA GEO М-250,042
KNAUF TR 037, TS0370,043
URSA GEO M-110,046
ПСБС-250,044-0,050
конструктивные материалы
Сосна (поперек волокон)0,180
Газобетон D6000,260

 

2. Как рассчитать нужную толщину теплоизоляции!

Зная «правильную лямбду» — λБ,  вы сможете самостоятельно рассчитать нужную толщину теплоизоляции. Есть очень важная величина – «Сопротивление теплопередаче R» ограждающей конструкции (стены, перекрытий).

R=δ/  λБ, где δ– толщина материала, в метрах;

Зачем она нужна? Чтобы рассчитать нужную толщину утепления.

δ = R *  λБ, где δ– толщина материала, в метрах;

Требуемое сопротивление теплопередаче определено для каждого региона. Для Салехарда они следующие:

Ограждающая конструкцияТребуемое сопротивление теплопередаче Rreq, м2°С/Вт
Стены4,61
Покрытия и перекрытия над проездами6,03
Перекрытия чердачные, над неотапливаемыми подпольями и подвалами6,78

 

Упрощенный расчет не сложен:

Например, стены сложены из газобетона толщиной 30 см.

Какая толщина теплоизоляции Роквул Венти Баттс Оптима нужна для утепления стены?

  1. Расчет сопротивления теплопередаче стены из газобетона:

Толщина 0,3м, коэффициент теплопроводности λБ 0,26

R (газобетон)=0,3 /0,26 = 1,154 м2°С/Вт

 

  1. Расчет толщины слоя теплоизоляции для достижения необходимого сопротивления теплопередаче

коэффициент теплопроводности минплиты Роквул Венти Баттс Оптима  λБ =0,038 Вт/м*С°

Требумое сопротивление для стены = 4,61

Требуется добавить за счет теплоизоляции сопротивление (4,61-1,154)= 3,456

 

Толщина теплоизоляции δ = 3,456*0,038 = 0,13м = 130мм.

С учетом того, что теплоизоляцию толщиной 130 мм надо производить под заказ, и с учётом наших упрощений в расчете, примем нужную толщину 150мм.

 В таком расчете есть несколько упрощений. Специалисты бы взяли коэффициент теплопроводности не конкретно газосиликатного блока, а кладки. Т.е. учли бы мостики холода из цементного раствора, которым скрепляются блоки.

Для слоя теплоизоляции добавили бы теплопотери через дюбели для крепления минплиты и через металлические кронштейны для сайдинга.

Но мы для сравнительных расчетов можем обойтись без этого.

 

Т.е. стену из газобетона толщиной 30 см, нужно утеплить 150мм теплоизоляции типа Венти Баттс Оптима.

Мы подскажем вам способ сделать это дешевле. Надо на фасаде первый слой толщиной 100мм сделать из минплиты URSA П-30 (λБ =0,039), а второй слой — из минплиты толщиной 50мм Венти Баттс Оптима. Такой вариант будет на 35% дешевле. А тепло будет держать так же.

Что будет если утеплить минплитой толщиной 100мм? Тогда для достижения комфортной температуры вам нужно будет потратить больше энергии, реже сможете проветривать помещения.

Еще несколько расчетов:

 Сопротивление  теплопередаче деревянной стены толщиной 150мм (брус «капиталка»):

R (брус «капиталка»)=0,15 /0,18 = 0,83 м2°С/Вт – всего 18% от требуемого сопротивления для стены 4. 61.

Сопротивление  теплопередаче СИП-панели 200мм с пенопластом:

R (СИП панель)=0,2 /0,047 = 4,255 м2°С/Вт – 92% от требуемого сопротивления.

С учетом теплопотерь через массивный деревянный каркас, обязательно требуется дополнительное утепление.

 

Расчет толщины теплоизоляции на цокольное или чердачное перекрытие (по деревянным лагам):

Необходимое R = 6.78 м2°С/Вт

маты УРСА GEO М-11:   6.78*0.046=0.312 м  нужен слой толщиной минимум 350мм

плиты УРСА Terra34: 6.78*0.040=0.271 м нужен слой толщиной минимум 300мм
 

 

Подписывайтесь на нашу группу VK/stroymag89, чтобы не пропустить интересную информацию.

Что мы знаем о лямбде?

Главный инженер ОАО «Максмир» А.Н.Грушин

Если статья с таким названием появляется на сайте какой-либо компании, то можно с большой степенью вероятности утверждать, что компания имеет отношение к строительству, а речь ,скорее всего, пойдет о теплопроводности теплоизоляционных материалов. Точнее о коэффициенте теплопроводности.

Нет другой такой характеристики теплоизоляционных материалов, которая так прочно связана со своим обозначением –

λ (ля́мбда, греч. λάμδα, λάμβδα) — 11-я буква греческого алфавита. Эта характеристика равна количеству теплоты, проходящему через однородный образец материала единичной длины и единичной площади за единицу времени при единичной разнице температур (1 К). В Международной системе единиц (СИ) единицей измерения коэффициента теплопроводности является Вт/(м·K).

Все интересуются плотностью теплоизоляции, но никто не спрашивает: «Какая гамма(ϒ) или ро(ρ)?». Все так и спрашивают: «У ПЕНОПЛЭКСА КРОВЛЯ какая плотность?». А если интересует коэффициент теплопроводности, то можно спросить: «У ВЕНТИ БАТТС ОПТИМА какая лямбда?». И всем всё понятно. Или не всё и не всем. Почему? Дело в том, что у всякого «уважающего себя» теплоизоляционного материала есть (должно быть) несколько разных коэффициентов теплопроводности.

Зачем?

Немного физики. Распространение теплоты (тепловой энергии) в природе происходит посредством трех процессов: теплопроводности, конвекции и теплового излучения.

Процесс теплопроводности в чистом виде имеет место лишь в твердых телах. Процесс конвекции происходит в текучих средах при перемещении объёмов жидкости или газа в пространстве. Соответственно и описываются они разными уравнениями на основании разных законов физики. Но есть и общая закономерность – теплопроводность зависит от температуры.

Вернемся к теплоизоляционным строительным материалам, которые, как правило, имеют пористую или волокнистую структуру. Поэтому они не вполне твердые тела, а некие композиционные материалы, включающие в себя воздушную (газовую) составляющую с разной степенью влажности, вплоть до появления жидкой фазы. Применение уравнений теплопроводности к таким материалам является достаточно условным. Условной также является величина коэффициента теплопроводности такого материала. Эта величина имеет смысл коэффициента теплопроводности некоторого однородного тела, через которое при одинаковых форме, размерах и температурах на границах проходит тоже количество тепла, что и через данное пористое (волокнистое) тело.

Следует также отметить, что теплоизоляционные материалы – это промышленная продукция, производимая из разного сырья по различным технологиям на разном оборудовании. Поэтому величина коэффициента теплопроводности для каждого конкретного теплоизоляционного материала может быть определена только опытным путем при определенной температуре и влажности. Для того, чтобы сравнивать значения коэффициентов теплопроводности различных материалов их надо измерять при одинаковых условиях.

По европейским стандартам определяется λ10 – коэффициент теплопроводности в сухом состоянии при температуре 10°С (283°К). По-видимому эта температура выбрана потому, что при температуре окружающей среды в 10°С возникает необходимость отапливать дома, а, следовательно, и сберегать тепло. Надо отметить, что с падением температуры окружающей среды коэффициент теплопроводности (например λ-5 ) будет уменьшаться (улучшаться с точки зрения теплоизолирующей способности материала) при одинаковой влажности. Можно сказать, что λ10 – это «наихудший» коэффициент теплопроводности. Станет холоднее и теплоизоляция «заработает» лучше.

Согласно требованиям нормативных документов Российской Федерации определяется λ25 – коэффициент теплопроводности в сухом состоянии при температуре 25°С (298°К). Эта величина еще более «строгая» по отношению к теплоизоляционным материалам – в реальности они «работают», то есть сберегают тепло при температурах гораздо ниже 25°С.

Учитывая общую глобализацию, взаимопроникновение капиталов и технологий, активную внешнюю торговлю, производители теплоизоляции указывают, как правило, оба коэффициента: λ10 и λ25, что позволяет оценить «устойчивость» теплоизоляционного материала к изменению температуры. Как правило, чем материал менее плотный, тем разница между λ10 и λ25 больше. Но оба эти коэффициента теплопроводности, по сути, лишь характеристики теплоизоляционных материалов, произведенных на заводе, упакованных в пачки и сложенных на складе.

Для теплотехнического расчета необходима величина расчетного значения коэффициента теплопроводности при условиях эксплуатации А и Б по СП 50.13330.2012 «Строительная климатология» — λА и λБ. Эти значения определяются при 25°С (298°К) и при разном расчетном массовым отношением влаги в материале. Для минеральной ваты это 2% и 5% соответственно. Для других материалов массовое отношение влаги может быть иным. СП «Строительная климатология» рекомендует большинства территорий условия эксплуатации Б. Поэтому, когда мы спрашиваем: «Какая лямбда у ФАСАД БАТТС ЭКСТРА?», в абсолютном большинстве случаев нас интересует именно λБ. Здесь пока шла речь о теплоизоляционных материалах, эксплуатируемых в природных условиях, так называемой, строительной теплоизоляции.

Отдельно надо сказать о теплоизоляционных материалах, работающих при повышенных или пониженных температурах. Это, так называемая, техническая изоляция, используемая для поддержания необходимой температуры при различных технологических процессах. Так, например, для навивных минераловатных цилиндров, предназначенных для теплоизоляции горячих трубопроводов, определяются коэффициенты теплопроводности при температурах до 350°С. Они так и обозначаются: λ100, λ125, …, λ300, λ350. Для других видов технической изоляции определяются свои коэффициенты теплопроводности в зависимости от назначения и условий применения.

Таким образом, необходимое расчетное значение коэффициента теплопроводности λнеобходимое определяется назначением и условиями эксплуатации и является обязательной технической характеристикой теплоизоляционного материала.

Как выбрать качественный утеплитель?

 

Вы приняли разумное решение: утеплить свой загородный дом. Теперь осталось дать ответ на один очень важный вопрос: «Как выбрать качественный утеплитель?».
Известно, что качество теплоизоляция существенно влияет на надежность всей конструкции здания, а также на комфорт и здоровье его жильцов. Кроме того, от эффективности теплоизоляции напрямую зависит, какое количество средств Вам придется тратить на отопление и кондиционирование Вашего дома. 
Современный строительный рынок предлагает большое количество теплоизоляционных материалов. Что же выбрать из всего этого многообразия? Мы предлагаем Вам простые правила выбора теплоизоляции, которые помогут принять правильное решение.
Правило №1
Утеплитель ДОЛЖЕН БЫТЬ ВЛАГОСТОЙКИМ!

Водопоглощение хорошего утеплителя = 0!
Чтобы понять связь между водопоглощением и теплозащитой достаточно провести простую аналогию: каждый из нас помнит с детства, что «Ноги должны быть в тепле», промочил ноги – простыл. Попал под дождь – нужна сухая одежда, чтобы согреться. Все это так же справедливо для «одежды» дома: фундамент, стены, кровля каждый день подвергаются влиянию окружающей среды: грунтовые воды, резкая смена температур, осадки – все это может привести к образованию конденсата в теплоизоляционном слое, а значит — лишить Ваш дом теплозащиты: зимой в таком доме будет холодно, а летом жарко.
Образование конденсата в утеплителе приводит к появлению плесени, грибков и других вредоносных бактерий, которые разрушают материал и создают потенциальную угрозу самочувствию и здоровью домочадцев.
Выбирая утеплитель, обращайте внимание на структуру материала: чем она тверже и однороднее, тем меньше шансов для проникновения влаги. Есть и более достоверный способ: испытать материал самостоятельно, погрузив небольшой кусочек в воду. Ответственные компании проводят такие опыты, погружая материал не как положено на несколько дней, а, например, на месяц. Такие показатели точно не дадут ошибиться.
Правило №2
Утеплитель должен быть ПРОЧНЫМ!

Прочность на сжатие качественного утеплителя не меньше 20 тонн на м2!
Прочность особенно важна при утеплении фундаментов, цоколей и полов, так как утеплитель в этих конструкциях постоянно находится в нагруженном состоянии. Прочность теплоизоляции помогает предотвратить усадку и деформацию утеплителя при вертикальном креплении в стенах, от чего зависит и эффективность утеплителя на протяжении всего срока службы.
Качественный утеплитель гарантирует 50 лет эффективной эксплуатации!
Некачественный утеплитель крошится во время строительных работ, а «мягкий» проминается и оседает со временем, что нарушает однородность теплоизоляционного слоя.
Выбирая утеплитель — обращайте внимание на ровность краев, попробуйте надавить на образец. У качественного утеплителя всегда будет ровный край, однородная структура и минимальные изменения при надавливании.
Правило №3
Утеплитель должен обеспечить высокую ТЕПЛОЗАЩИТУ!

Надежную теплозащиту обеспечивает коэффициент теплопроводности, который обозначается знаком – лямбда. Показатель теплопроводности напрямую влияет на количество материала необходимого для утепления стен, кровли или фундамента, и как следствие на стоимость решения по утеплению дома. У эффективного утеплителя лямбда = 0,032 Вт/м-К.
Так, например, дешевого утеплителя с плохим (высоким) коэффициентом теплопроводности потребуется гораздо больше для того чтобы обеспечить требуемую теплозащиту.
Коэффициент теплопроводности нельзя «пощупать руками», но от его значения, безусловно, зависит эффективность утеплителя. Производители указывают коэффициент теплопроводности в ТУ на продукцию и на своих интернет-сайтах, обращайте внимание на значение ? (лямбды).
Обратите внимание, что существуют такие параметры, как А и Б (А — сухой климат, Б — влажный климат). Большинство регионов нашей страны находится во влажном климате, поэтому, выбирая теплоизоляцию, стоит больше ориентироваться на значения показателя Б. 
Именно Б отражает коэффициент теплопроводности в условиях, приближенных к реальным, а не лабораторным (т.е. с учетом того, что теплоизоляция будет впитывать определенное количество влаги из окружающей среды). Если показатели А и Б утеплителя существенно различаются, то это говорит о высоком водопоглощении теплоизоляции.  
Правило №4
Утеплитель должен работать, КАК ТЕРМОС!

Запомните: «дышащие стены» это миф. Органами дыхания Вашего дома являются окна и приточно-вытяжная вентиляция, а задача стен — надежно защищать Ваш дом от холода и ветра, дождя и снега. 
Проникновение пара сквозь стены — это естественный физический процесс. Но при этом количество этого проникающего пара в жилом помещении с обычным режимом эксплуатации настолько мало (не более 2%), что его можно не брать в расчет.
Более того, в утеплителе с высокой паропропускной способностью постепенно накапливается конденсат, что приводит к увеличению теплопроводности, т.е. теплоизоляция перестает выполнять свою прямую обязанность — сберегать тепло. Таким образом, паропроницаемость утеплителя — это не достоинство, а недостаток, который требует устранения — использования специальных пароизоляционных пленок или мембран.
Нет смысла тратить лишние деньги на выдуманные преимущества, руководствуйтесь настоящими правилами при выборе теплоизоляции! Утеплитель должен гарантировано противостоять влаге и чем меньше его паропропускная способность, тем лучше он справляется с этой задачей.
Правило №5
Утеплитель должен ГРЕТЬ, а не гореть!

Негорючая теплоизоляция — это такой же миф как «дышащие стены», когда утеплитель находится внутри конструктива. Пожаробезопасность совершенно не играет никакой роли, если, например, утеплитель закапывают в землю при утеплении фундамента или кладут под стяжкой при утеплении пола. При строительстве кирпичного дома стеновой утеплитель будет находиться внутри так называемой «колодезной кладки», где горючесть так же не имеет никакого значения.
Доверяйте жизненной логике, а не советам маркетологов. К примеру, мы с вами хорошо понимаем, что такое жить в деревянном доме, а по их логике такие строения давно пора было бы запретить — это же скопление самых настоящих дров!
Правило №6
Утеплитель должен быть БЕЗОПАСНЫМ!

Существует миф о том, что мягкие утеплители производятся из натуральных материалов, поэтому они самые безопасные и экологичные, но в их производстве часто используют фенолформальдегидные смолы, а волокнистая структура может вызвать аллергию и затруднить дыхание. Плохое самочувствие может быть и из-за того, что материал не отвечает требованиям биостойкости, в результате чего появляются плесень и грибок, губительные для ослабленного организма.
Помните! Безопасный утеплитель:
— не содержит мелких волокон и пыли, 
— не содержит таких химически вредных веществ, как фенолформальдегидные смолы, 
— производится без озоноразрушающего фреона,
— производится из безопасного сырья,
— биостоек.
Обращайте внимание на состав продукта. Современные производители теплоизоляции предлагают новый стандарт экологичности: некоторые утеплители производятся только из тех марок полистирола, которые также используются для производств детских игрушек, медицинской упаковки, одноразовой посуды. Молекулы полистирола, из которого производится теплоизоляция, состоят только из атомов углерода и водорода. Каждый день предметы из полистирола окружают нас в повседневной жизни: детали холодильников, трубочки для коктейлей, упаковка для яиц, баночки для йогурта и многое, многое другое.
Свойства настоящей теплоизоляции:
Водопоглощение 0% 
Неизменный коэффициент теплопроводности 0,032 Вт/м·К 
Высокая прочность на сжатие 
Эффективная эксплуатация не менее 50 лет. Без усадки и деформации 
Не содержит вредных веществ для человека и окружающей среды

Теплоизоляция что такое лямбда а

fbvk
  • Игры
  • Обогреватели
    • Тепловые пушки
    • Пленочный обогреватель — плюсы и минусы
    • Учимся делать теплый плинтус
    • Современные системы отопления
    • Бак для горячей воды — мечта домоседа
    • Всё об обогревателях
    • Энергосберегающие обогреватели
    • Газовые
    • Масляные обогреватели
    • Инфракрасные
    • Конвекторы
  • Камины
    • О каминах
    • Применение камина для обогрева
    • Электрические камины с реалистичным видом
    • Дровяной камин в квартире?
    • Гостиная с камином
    • Декоративный камин
    • Искусственный камин
    • Что выбрать — камин или печь камин?
  • Электрообогрев
    • Теплые полы в доме — все за и против
    • Греющий кабель — особенности использования для защиты водопровода
    • Обогреватель зеркала
    • Защита от плесени
    • Электрический теплый пол
    • Теплолюкс Standart
    • Теплоскат
    • Теплодор
    • Тепловод
    • Система электрообогрева грунта
    • Трубы гофрированные
    • Полотенцесушители электрические
    • Терморегуляторы
  • Водяной обогрев
    • Водяной обогрев пола в загородном доме
  • Кондиционирование
    • Промышленные кондиционеры
    • Промышленные кондиционеры
  • Для коттеджа
  • Карта сайта
  • Контакты
  • Игры
  • Обогреватели
    • Тепловые пушки
    • Пленочный обогреватель — плюсы и минусы
    • Учимся делать теплый плинтус
    • Современные системы отопления
    • Бак для горячей воды — мечта домоседа
    • Всё об обогревателях
    • Энергосберегающие обогреватели
    • Газовые
    • Масляные обогреватели
    • Инфракрасные
    • Конвекторы
  • Камины
    • О каминах
    • Применение камина для обогрева
    • Электрические камины с реалистичным видом
    • Дровяной камин в квартире?
    • Гостиная с камином
    • Декоративный камин
    • Искусственный камин
    • Что выбрать — камин или печь камин?
  • Электрообогрев
    • Теплые полы в доме — все за и против
    • Греющий кабель — особенности использования для защиты водопровода
    • Обогреватель зеркала
    • Защита от плесени
    • Электрический теплый пол
    • Теплолюкс Standart
    • Теплоскат
    • Теплодор
    • Тепловод
    • Система электрообогрева грунта
    • Трубы гофрированные
    • Полотенцесушители электрические
    • Терморегуляторы
  • Водяной обогре

Теплопроводность. Просто о сложном. — Блоги Mastergrad

 При выборе качественного теплоизоляционного материала потребитель должен принимать во внимание целый ряд параметров, среди которых неизменно присутствует показатель теплопроводности. Высокой или низкой должна быть теплопроводность, что такое «лямбда», на какие показатели теплопроводности ориентироваться – ответы на эти и другие самые распространенные вопросы, возникающие при покупке утеплителя, вы найдете в данной статье.

Слово «теплопроводность» или еще более запутанное «лямбда» знакомо каждому школьнику из курса физики за восьмой класс. Однако со временем информация, которой мы не пользуемся, забывается. Попробуем освежить в памяти эти несложные и очень полезные знания.

Теплопроводность, как уже было сказано выше, — одно из ключевых понятий в современном строительстве, особенно когда речь заходит о теплоизоляционных материалах. От теплопроводности зависит толщина вашей стены или кровли, вес всего дома, а следовательно, и прочность (несущая способность) фундамента, долговечность конструкций и многое другое.

Современное определение теплопроводности – понятие комплексное. И состоит из нескольких составных частей, отвечающих за перенос тепла (теплообмен).

 

 

На первый взгляд формула кажется пугающей, но на самом деле все просто.

Суммарная или итоговая теплопроводность состоит из теплопроводности за счет конвекции, теплопроводности твердой и газообразной фазы, а также теплопроводности, учитывающей теплообмен за счет излучения.

Запутались еще сильнее? Тогда по порядку. Разберем каждый элемент этой формулы более подробно.

 

Теплообмен (или теплопередача) – это способ изменения внутренней энергии без совершения работы над телом или самим телом.

Теплопередача всегда происходит в определенном направлении: от тел с более высокой температурой к телам с более низкой.

 

Из курса физики нам известно, что теплообмен включает в себя три вида передачи тепла: теплопроводность, конвекцию и излучение.

 

Теплопроводность — явление передачи внутренней энергии от одной части тела к другой или от одного тела к другому при их
непосредственном контакте.

Если вы опустите ложку в стакан с горячим напитком, нагреется не только та часть ложки, которая погружена в жидкость, но и та ее часть, которая находится над водой.

Теплопроводность различных веществ неодинакова, она может быть плохой (низкой) и хорошей (высокой). Хорошая теплопроводность у металлов. Плохая — у шерсти, дерева и пластиков. Самым плохим проводником тепла является вакуум.

Для примера вспомните кухонную посуду: кастрюли и сковородки. Вы вряд ли станете снимать металлическую кастрюлю, полную вкусного супа, с горячей плиты голыми руками, потому что существует реальная опасность обжечь руки. Вместо этого вы используете кухонное полотенце, силиконовые или тряпичные прихватки, то есть те материалы, которые плохо проводят тепло.

Именно поэтому «правильные» кастрюли и сковородки снабжены пластмассовыми или деревянными ручками, плохо проводящими тепло. Вспомнить хотя бы старую бабушкину сковородку с деревянной ручкой: сковородка горячая, а за ручку схватиться можно безо всяких прихваток.

Как объясняется это явление? Рассмотрим на примере нагревания металлического стержня (или ложки из примера со стаканом).

В металле, как и во всех твердых телах, молекулы совершают колебательные движения около некоторых положений равновесия. Скорость колебательного движения молекул металла при нагревании увеличивается в той части, которая ближе расположена к пламени или источнику тепла. Эти молекулы, взаимодействуя с соседними молекулами, передают им часть своей энергии. В результате чего повышается температура отрезка стержня. Затем увеличивается скорость колебательного движения молекул в следующих отрезках стержня и так далее, до тех пор, пока не прогреется весь стержень. Именно поэтому вакуум обладает самой плохой теплопроводностью: в нем практически отсутствуют молекулы, которые бы передавали энергию друг другу. Важно отметить, что сами молекулы, передавая кинетическую энергию, не меняют свое местоположение, то есть само вещество не перемещается.

С первым понятием разобрались, посмотрим, что же дальше.

 

 Следующая составляющая теплопроводности – это конвекция. У многих из вас на слуху такой прибор, как «конвектор». А вот почему он так называется, наверное, знает далеко не каждый. Хотя логично предположить, что название свое он получил за принцип работы – конвекцию.

Из курса физики следует, что конвекция — это перенос энергии струями жидкости или газа. Если в случае с теплопроводностью при теплообмене происходит перенос энергии, то при конвекции происходит перенос именно вещества.

Конвекторы (как и любые другие отопительные приборы) нагревают окружающий воздух, вследствие чего температура в комнате повышается и вам становится тепло. При этом струи теплого воздуха поднимаются вверх, а струи холодного опускаются вниз. Аналогично происходит процесс нагревания воды в чайнике: горячая вода поднимается, а холодная опускается на ее место. Этот же принцип заложен в отопительной системе для обогрева домов.

Различают два вида конвекции: естественная и вынужденная.

Нагревание воздуха в комнате солнечными лучами – это пример естественной конвекции. А вот если воздух нагревается тепловым вентилятором, то это уже вынужденная конвекция. Вентилятор заставляет воздух в комнате двигаться, при этом нагревая его до необходимой температуры. В качестве других примеров конвекции можно привести холодные и теплые морские течения, а также образование и движение облаков и ветров.

Переходим к следующей составляющей: излучение (лучистый теплообмен).

Излучение – это способ переноса энергии от одного тела к другому в виде электромагнитных волн. Как правило, это инфракрасное (IR) излучение. Этот принцип заложен еще в одном уникальном приборе – инфракрасном обогревателе.

Принцип его работы построен на том, что любое нагретое тело является источником излучения. Самый впечатляющий пример – Солнце. Пример поменьше – костер, распространяющий тепло на достаточно большое расстояние. В случае с обогревателем окружающие предметы нагреваются за счет электромагнитного излучения и в комнате становится тепло.

Этот вид теплообмена отличается тем, что может происходить и в вакууме. Ведь солнечная энергия как-то доходит до Земли.

Примечательно, что темные тела лучше поглощают и отдают энергию. Если необходимо максимально нагреть материал, его окрашивают в черный цвет. В качестве примера можно привести солнечные коллекторы (водонагреватели), которые устанавливаются на крышах домов. Эти устройства позволяют собирать тепло от солнца и нагревать теплоноситель, который затем передает тепло внутрь дома для обогрева помещений или нагрева воды.

Хуже всего поглощают энергию светлые материалы или материалы с отражающей способностью. Способность светлых тел хорошо отражать лучистую энергию учитывают в самых разных сферах: при строительстве самолетов, при возведении высотных зданий в жарких странах, даже при выборе цвета одежды в теплое время года. На окнах часто применяют металлизированные пленки, которые частично отражают солнечное тепло и спасают помещение от перегрева.

 

С базовыми принципами разобрались. Пришло время вернуться к нашей формуле.

Её разбор проведем на примере теплоизоляционного материала из пенополиизоцианурата (ПИР/PIR) — LOGICPIR.

LOGICPIR – это инновационный утеплитель, обладающий уникальными показателями теплопроводности – всего 0,021 Вт/м*К, позволяющий добиться максимальной экономии пространства при минимальной толщине теплоизоляции. Кроме того, PIR-плиты не впитывают влагу, тем самым предотвращая образование конденсата и надежно защищая ваш дом от появления плесенных грибов, клещей и бактерий, представляющих опасность для здоровья. LOGICPIR относится к новому поколению полиуретанов, окружающих нас повсеместно: начиная от деталей интерьера автомобилей, матрацев и обуви и заканчивая медициной, где самая поразительная сфера их применения – изготовление протезов для сердечно-сосудистой системы. Стоит ли говорить, что материал экологически безопасен, что подтверждено целым рядом сертификатов и заключений.

Итак, вернемся к теплопроводности.

Структурная и газовая теплопроводность – это теплопроводность компонентов, из которых состоит материал, а именно:

  • твердой фазы – теплопроводности полимерного каркаса с множеством ячеек с очень тонкими, но прочными стенками;
  • газообразной фазы – теплопроводность газа, который находится в ячейках.

Если сравнивать теплоизоляцию PIR с пеностеклом или пенобетоном, то по структуре эти материалы схожи. Все они ячеистые и наполнены газом. Однако теплопроводности этих материалов будут отличаться.

Стекло и бетон, в отличие от пластиков, проводят тепло интенсивнее, соответственно, пеностекло и пенобетон обладают большей теплопроводностью и их показатели в качестве теплоизоляторов несколько хуже. Даже полимеры отличаются друг от друга теплопроводностью.

Как было сказано ранее, представленные материалы ячеистые и в каждом находятся какие-то газы. В пеностекле и пенобетоне это, как правило, окружающий воздух, в PIR – инертные газы. Хуже всего тепло проводят инертные газы, содержание молекул в 1 м3 очень маленькое, расстояние между молекулами очень большое, поэтому передать энергию между молекулами довольно сложно. Намного лучше тепло проводит воздух, поскольку он состоит из смеси разных газов, молекул очень много и все они друг с другом взаимодействуют.

Конвекционную составляющую у мелкоячеистой теплоизоляции обычно не рассматривают, поскольку размер ячеек теплоизоляции PIR ничтожно мал (меньше 1мм) и газ в этих ячейках неподвижен.

Последняя составляющая – излучение. Снизить ее влияние можно за счет применения дополнительных материалов, способных отражать тепловой поток. Для этого можно окрасить материал, скажем, в белый цвет. В случае с теплоизоляционными плитами PIR за отражение тепла отвечает фольга, которая покрывает материал с обеих сторон. Помимо функции отражения тепла фольга также несет защитную функцию с точки зрения утечки вспенивающего газа. По своим свойствам фольга является практически идеальным пароизоляционным материалом, а значит, способна задерживать миграции газов во внешнюю среду из ячеек теплоизоляции.

В процессе эксплуатации легкие инертные газы замещаются на более тяжелый окружающий воздух с хорошей теплопроводностью. Это происходит у всех пористых материалов за счет диффузных процессов.

Рассмотрим в качестве примера обычный воздушный шарик, наполненный гелием, который можно сравнить с одной ячейкой вспененной теплоизоляции. Новый шарик все время стремится улететь высоко в небо. Если утром он еще висел под потолком, то со временем он постепенно опустится и будет висеть в центре комнаты, а еще через несколько часов лежать на полу. Т.е. все это время газ за счет диффузии медленно выходит из шарика, и тот теряет свою «летучесть».

Так же и с теплоизоляцией. «Шарики» (ячейки), которые ближе всего расположены к границе с окружающим воздухом постепенно изменяют свой газовый состав. Однако те «шарики», которые находятся глубоко в материале, делают это очень медленно или не делают вовсе, поскольку инертному газу очень сложно пройти огромное количество стенок соседних «шариков» и вырваться наружу.

Кроме того, поверхность теплоизоляции покрыта фольгой, препятствующей выходу газа, соответственно, теплопроводность материала (ее газовая составляющая) сохраняется.

Итоговую формулу теплопроводности PIR можно записать в виде:

 

Подведем итог. Теплоизоляция – это очень важный показатель. От нее зависит, насколько теплым будет ваш дом. У наиболее эффективной теплоизоляции все ее составляющие () должны быть как можно ниже. У современной изоляции на примере LOGICPIR это достигается за счет применения инертных газов, полимеров и специальных покрытий, отражающих тепловой поток. Уверены, что теперь вы не только сможете безошибочно выбрать теплоизоляционный материал, отвечающий самым высоким требованиям, но и поможете своим детям сдать физику на высший балл.

Спасибо компании «Технониколь» за помощь в подготовке материала

Сравнение теплоизоляции стеновых материалов. Плюсы и минусы

Сравнить теплоизоляцию стеновых материалов можно исходя из нескольких основополагающих характеристик.

Основные характеристики теплоизоляционных материалов

Теплопроводность. Чем ниже теплопроводность, тем меньше требуется утеплительный слой, а значит, и ваши расходы на утепление сократятся.

Влагопроницаемость. Меньшая влагопроницаемость снижает негативное воздействие влаги на утеплитель при последующей эксплуатации.

Пожаробезопасность. Материал не должен поддерживать горение и выделять ядовитые пары, а иметь свойство к самозатуханию.

Экономичность. Утеплитель должен быть доступным по стоимости для широкого слоя потребителей.

Долговечность. Чем больше срок использования утеплителя, тем он дешевле обходится потребителю при эксплуатации и не требует частой замены или ремонта.

Экологичность. Материал для теплоизоляции должен быть экологически чистым, безопасным для здоровья человека и окружающей природы. Эта характеристика важна для жилых помещений.

Толщина материала. Чем тоньше утеплитель, тем меньше будет «съедаться» жилое пространство помещения.

Вес материала. Меньший вес утеплителя даст меньшее утяжеление утепляемой конструкции после монтажа.

Звукоизоляция. Чем выше звукоизоляция, тем лучше защита жилых помещений от шума со стороны улицы.

Простота монтажа. Момент достаточно важен для любителей делать ремонт в доме своими руками.

Сравнение характеристик популярных утеплителей

Пенопласт (пенополистирол)

Этот утеплитель самый популярный, благодаря легкости монтажу и небольшой стоимости.

Пенопласт изготавливается при помощи вспенивания полистирола, имеет очень низкую теплопроводность, устойчив к влажности, легко режется ножом и удобен во время монтажа. Благодаря низкой стоимости имеет большую востребованность для утепления различных помещений. Однако материал достаточно хрупкий, а также поддерживает горение, выделяя токсичные вещества в атмосферу. Пенопласт предпочтительнее использовать в нежилых помещениях.

Пеноплэкс (экструдированный пенополистирол)

Утеплитель не подвергается гниению и воздействию влаги, очень прочный и удобный в использовании – легко режется ножом. Низкое водопоглощение обеспечивает незначительные изменения теплопроводности материала в условиях высокой влажности, плиты имеют высокую сопротивляемость сжатию, не подвергаются разложению. Благодаря этому экструдированный пенополистирол можно использовать для утепления ленточного фундамента и отмостки. Пеноплекс пожаробезопасен, долговечен и прост в применении.

Базальтовая вата

Материал производится из базальтовых горных пород при расплавлении и раздуве с добавлением компонентов для получения волокнистой структуры материала с водоотталкивающими свойствами. При эксплуатации базальтовая вата не уплотняется, а значит, ее свойства не изменяются со временем. Материал пожаробезопасен и экологичен, имеет хорошие показатели звукоизоляции и теплоизоляции. Используется для внутреннего и наружного утепления. Во влажных помещениях требует дополнительной пароизоляции.

Минеральная вата

Минвата производится из природных материалов – горных пород, шлака, доломита с помощью специальной технологии. Минеральная имеет низкую теплопроводность, пожаробезопасна и абсолютно безопасна. Одним из недостатков утеплителя является низкая влагостойкость, что требует обустройства дополнительной влаго- пароизоляции при его использовании. Материал не рекомендуется использовать для утепления подвалов домов и фундаментов, а также во влажных помещениях — парилках, банях, предбанниках.

Пенофол, изолон (фольгированный теплоизолятор из полиэтилена)

Утеплитель состоит из нескольких слоев вспененного полиэтилена, имеющих различную толщину и пористую структуру. Материал часто имеет слой фольги для отражающего эффекта, выпускается в рулонах и в листах. Утеплитель имеет толщину в несколько миллиметров (в 10 раз тоньше обычных утеплителей), но отражает до 97% тепловой энергии, очень легкий, тонкий и удобный в работе материал. Используются для теплоизоляции и гидроизоляции помещений. Имеет длительный срок эксплуатации, не выделяет вредных веществ.

Первая из них – коэффициент теплопроводности, который обозначается символом «лямбда» (ι). Этот коэффициент показывает, какой объем теплоты за 1 час проходит через отрезок материала толщиной 1 метр и площадью 1 м² при условии, что разница между температурами среды на обеих поверхностях составляет 10°С.

[box type=»info» align=»» class=»» width=»»]Показатели коэффициента теплопроводности любых утеплителей зависят от множества факторов – от влажности, паропроницаемости, теплоемкости, пористости и других характеристик материала.[/box]

 

Чувствительность к влаге

Влажность – это объем влаги, которая содержится в теплоизоляции. Вода отлично проводит тепло, и насыщенная ею поверхность будет способствовать выхолаживанию помещения. Следовательно, переувлажненный теплоизоляционный материал потеряет свои качества и не даст желаемого эффекта. И наоборот: чем большими водоотталкивающими свойствами он обладает, тем лучше.

Паропроницаемость – параметр, близкий к влажности. В числовом выражении он представляет собой объем водяного пара, проходящий через 1 м2 утеплителя за 1 час при соблюдении условия, что разность потенциального давления пара составляет 1Па, а температура среды одинакова.

При высокой паропроницаемости материал может увлажняться. В связи с этим при утеплении стен и перекрытий дома рекомендуется выполнить монтаж пароизоляционного покрытия.

Водопоглощение – способность изделия при соприкосновении с жидкостью впитывать ее. Коэффициент водопоглощения очень важен для материалов, которые используются для обустройства наружной теплоизоляции. Повышенная влажность воздуха, атмосферные осадки и роса могут привести к ухудшению характеристик материала.

Также не рекомендуется применять водопоглощающую изоляцию при отделке ванных комнат, санузлов, кухонь и других помещений с высоким уровнем влажности.

Плотность и теплоемкость

Пористость – выраженное в процентах количество воздушных пор от общего объема изделия. Различают поры закрытые и открытые, крупные и мелкие. Важно, чтобы в структуре материала они были распределены равномерно: это свидетельствует о качестве продукции. Пористость иногда может достигать 50%, в случае с некоторыми видами ячеистых пластмасс этот показатель составляет 90-98%.

Плотность – это одна из характеристик, влияющих на массу материала. Специальная таблица поможет определить оба этих параметра. Зная плотность, можно рассчитать, насколько увеличится нагрузка на стены дома или его перекрытия.

Теплоемкость – показатель, демонстрирующий, какое количество тепла готова аккумулировать теплоизоляция. Биостойкость – способность материала сопротивляться воздействию биологических факторов, например, патогенной флоры. Огнестойкость – противодействие изоляции огню, при этом данный параметр не стоит путать с пожаробезопасностью. Различают и другие характеристики, к которым относятся прочность, выносливость на изгиб, морозостойкость, износоустойчивость.

Коэффициент сопротивления

Также при выполнении расчетов нужно знать коэффициент U – сопротивление конструкций теплопередаче. Этот показатель не имеет никакого отношения к качествам самих материалов, но его нужно знать, чтобы сделать правильный выбор среди разнообразных утеплителей. Коэффициент U представляет собой отношение разности температур с двух сторон изоляции к объему проходящего через нее теплового потока. Чтобы найти теплосопротивление стен и перекрытий, нужна таблица, где рассчитана теплопроводность строительных материалов.

 

Произвести необходимые вычисления можно и самостоятельно. Для этого толщину слоя материала делят на коэффициент его теплопроводности. Последний параметр — если речь идет об изоляции — должен быть указан на упаковке материала. В случае с элементами конструкции дома все немного сложнее: хотя их толщину можно измерить самостоятельно, коэффициент теплопроводности бетона, дерева или кирпича придется искать в специализированных пособиях.

При этом часто для изоляции стен, потолка и пола в одном помещении используются материалы разного типа, поскольку для каждой плоскости коэффициент теплопроводности нужно рассчитывать отдельно.

Теплопроводность основных видов утеплителей

Исходя из коэффициента U, можно выбрать, какой из видов теплоизоляции лучше использовать, и какую толщину должен иметь слой материала. Расположенная ниже таблица содержит сведения о плотности, паропроницаемости и теплопроводности популярных утеплителей:

 

Преимущества и недостатки различной теплоизоляции

При выборе теплоизоляции нужно учитывать не только ее физические свойства, но и такие параметры, как легкость монтажа, потребность в дополнительном обслуживании, долговечность и стоимость.

Сравнение самых современных вариантов

Как показывает практика, проще всего осуществлять монтаж пенополиуретана и пеноизола, которые наносятся на обрабатываемую поверхность в форме пены. Эти материалы пластичны, они с легкостью заполняют полости внутри стен постройки. Недостатком вспениваемых веществ является потребность в использовании специального оборудования для их распыления.

 

Как показывает приведенная выше таблица, достойную конкуренцию пенополиуретану составляет экструдированный пенополистирол. Этот материал поставляются в виде твердых блоков, но с помощью обычного столярного ножа ему можно придать любую форму. Сравнивая характеристики пенных и твердых полимеров, стоит отметить, что пена не образует швов, и это является ее главным преимуществом по сравнению с блоками.

Сравнение ватных материалов

Минеральная вата по свойствам похожа на пенопласты и пенополистирол, однако при этом «дышит» и не горит. Также она обладает лучшей устойчивостью при воздействии влаги и практически не меняет свои качества в процессе эксплуатации. Если стоит выбор между твердыми полимерами и минеральной ватой, лучше отдать предпочтение последней.

У каменной ваты сравнительные характеристики те же, что и у минеральной, но стоимость выше. Эковата имеет приемлемую цену и легко монтируется, но отличается низкой прочностью на сжатие и со временем проседает. Стекловолокно также проседает и, кроме того, осыпается.

Сыпучие и органические материалы

Для теплоизоляции дома иногда применяются сыпучие материалы – перлит и гранулы из бумаги. Они отталкивают воду и устойчивы к воздействию патогенных факторов. Перлит экологичен, он не горит и не оседает. Тем не менее, сыпучие материалы редко применяются для утепления стен, лучше с их помощью обустраивать полы и перекрытия.

Из органических материалов необходимо выделить лен, древесное волокно и пробковое покрытие. Они безопасны для окружающей среды, но подвержены горению, если не пропитаны специальными веществами. Кроме того, древесное волокно подвержено воздействию биологических факторов.

 

В целом, если учитывать стоимость, практичность, теплопроводность и долговечность утеплителей, то наилучшие материалы для отделки стен и перекрытий – это пенополиуретан, пеноизол и минеральная вата. Остальные виды изоляции обладают специфическими свойствами, так как разработаны для нестандартных ситуаций, а применять такие утеплители рекомендуется только в том случае, если других вариантов нет.

Loft Insulation — Введение

Когда вы начнете рассматривать изоляционные материалы, такие как изоляция чердаков, вы можете быстро увязнуть в некоторых довольно сложных технических терминах. В этой статье мы постараемся упростить их, чтобы вы могли постоять за себя, находясь в местном магазине DIY!

Теплопроводность изоляционных материалов

Теплопроводность, также известная как Лямбда (обозначается греческим символом λ), является мерой того, насколько легко тепло проходит через определенный тип материала, не зависит от толщины рассматриваемого материала.

Чем ниже теплопроводность материала, тем лучше тепловые характеристики (то есть тем медленнее тепло будет проходить по материалу).

Измеряется в ваттах на метр по Кельвину (Вт / мК).

Чтобы вы почувствовали изоляционные материалы — их теплопроводность колеблется от 0,008 Вт / мК для панелей с вакуумной изоляцией (так что это лучшие, но очень дорогие!) До примерно 0,061 Вт / мК для некоторых видов древесного волокна. .

>>> НАЖМИТЕ, ЧТОБЫ УЗНАТЬ БОЛЬШЕ О U-ЗНАЧЕНИЯХ ИЗОЛЯЦИОННЫХ ИЗДЕЛИЙ <<<

Если бы вы использовали овечью шерсть для утепления своей собственности, это примерно 0.034 Вт / мК, примерно как у большинства других изоляционных материалов из шерсти и волокна.

Значения R

R-значение — это мера сопротивления тепловому потоку через материал данной толщины. Таким образом, чем выше значение R, тем большее термическое сопротивление имеет материал и, следовательно, лучше его изоляционные свойства.

R-значение рассчитывается по формуле

Где:

l — толщина материала в метрах и

λ — коэффициент теплопроводности в Вт / мК.

Значение R измеряется в квадратных метрах Кельвина на ватт (м 2 K / Вт)

Например, тепловое сопротивление 220 мм монолитной кирпичной стены (с теплопроводностью λ = 1,2 Вт / мК) составляет 0,18 м 2 К / Вт.

Если вы изолируете сплошную кирпичную стену, вы просто найдете коэффициент сопротивления изоляции и затем сложите эти два значения. Если вы изолировали это полиизоциануратом с фольгой толщиной 80 мм (с теплопроводностью λ = 0,022 Вт / мК и значением R 0,08 / 0.022 = 3,64 м 2 K / Вт), у вас будет общее значение R для изолированной стены 0,18 + 3,64 = 3,82 м 2 K / Вт. Следовательно, это улучшит тепловое сопротивление более чем в 21 раз!

Таким образом, значение R — это относительно простой способ сравнить два изоляционных материала, если у вас есть теплопроводность для каждого материала. Это также позволяет увидеть эффект от добавления более толстых слоев того же изоляционного материала.

В реальных зданиях стена состоит из множества слоев различных материалов.Общее тепловое сопротивление всей стены рассчитывается путем сложения теплового сопротивления каждого отдельного слоя.

К сожалению, тепло входит и выходит из вашего дома несколькими разными способами, и значения R учитывают только теплопроводность. Он не включает ни конвекцию, ни излучение.

Поэтому вы можете выбрать значение U, которое учитывает все различные механизмы потери тепла — читайте дальше, чтобы узнать, как это рассчитывается!

U-значения

Значение U строительного элемента является обратной величиной полного теплового сопротивления этого элемента.Значение U — это мера того, сколько тепла теряется через заданную толщину конкретного материала, но включает три основных способа, которыми происходит потеря тепла — теплопроводность, конвекция и излучение.

Температура окружающей среды внутри и снаружи здания играет важную роль при расчете теплопроводности элемента. Если представить себе внутреннюю поверхность участка 1 м² внешней стены отапливаемого здания в холодном климате, тепло поступает в этот участок за счет излучения от всех частей внутри здания и конвекции из воздуха внутри здания.Таким образом, следует учитывать дополнительные термические сопротивления, связанные с внутренней и внешней поверхностями каждого элемента. Эти сопротивления обозначаются как R si и R , так что соответственно с общими значениями 0,12 км² / Вт и 0,06 км² / Вт для внутренней и внешней поверхностей соответственно.

Это мера, которая всегда находится в пределах Строительных норм. Чем ниже значение U, тем лучше материал как теплоизолятор.

Рассчитывается путем взятия обратной величины R-Value и последующего добавления тепловых потерь на конвекцию и излучение, как показано ниже.

U = 1 / [R si + R 1 + R 2 +… + R so ]

На практике это сложный расчет, поэтому лучше всего использовать программное обеспечение для расчета U-Value.

Единицы измерения — ватты на квадратный метр по Кельвину (Вт / м 2 K).

Ориентировочно неизолированная полая стена имеет коэффициент теплопередачи примерно 1,6 Вт / м 2 K, а сплошная стена имеет коэффициент теплопередачи примерно 2 Вт / м 2 K

Использование значений U, R и теплопроводности

Если вы сталкиваетесь с проблемами теплопроводности, R-значений и U-значений в будущем, вот 3 простых вещи, которые следует запомнить, чтобы убедиться, что вы получите лучший изоляционный продукт.

    • Более высокие числа хороши при сравнении термического сопротивления и значений R продуктов.
    • Низкие числа хороши при сравнении значений U.
    • Коэффициент теплопроводности — это наиболее точный способ оценить изолирующую способность материала, принимая во внимание все различные способы потери тепла, однако его труднее рассчитать.

Внедрение энергосберегающих технологий

Вы заинтересованы в установке домашних возобновляемых источников энергии? Мы прочесали страну в поисках лучших торговцев, чтобы убедиться, что мы рекомендуем только тех, кому действительно доверяем.Вы можете найти одного из этих мастеров на нашей простой в использовании карте местного установщика.

>>> ПЕРЕЙДИТЕ НА КАРТУ МЕСТНОГО УСТАНОВЩИКА <<<

Или же, если вы хотите, чтобы мы нашли для вас местного установщика, просто заполните форму ниже, и мы свяжемся с вами в ближайшее время!

CSR Брэдфорд объясняет науку, лежащую в основе теплоизоляционных ватин

  • Домашняя изоляция
    • Задний
    • Утеплитель для дома
    • Стены
      • Задний
      • Изоляция стен
      • Настенные ракетки Gold
      • Брэдфорд Блэк Утеплитель Баттс
      • Звукоизоляция SoundScreen
      • Настенные батончики Polymax
      • Изоляция стен
      • Fireseal
      • Полиэфирная изоляция
    • Настенные покрытия
      • Задний
      • Настенные покрытия
      • Стеновая пленка Enviroseal RW
      • Стеновая пленка Thermoseal
    • Потолок
      • Задний
      • Потолки
      • Золотая потолочная накладка
      • Брэдфорд Блэк Утеплитель Баттс
    • Этаж
      • Задний
      • Этаж
      • Изоляция пола Optimo
    • Утепление крыши
      • Задний
      • Изоляция кровли
      • Антикон
      • Fireseal
      • Мультител БАЛ 12.5-40 Одеяло
    • Обшивка кровли
      • Задний
      • Sarking крыши
      • Enviroseal HTS Roof Sarking
      • Термоупаковка крыши
    • Изоляция сарая
      • Задний
      • Изоляция сарая
      • Полиэфирная изоляция
    • Втулка для домашнего комфорта
  • Центр домашнего комфорта
    • Задний
    • Втулка для домашнего комфорта
    • Летом в моде, зимой — термос — доведите домашний комфорт до максимума без удара током
    • Не жертвуйте комфортом и безопасностью в сарае или уличном здании
    • Темные стены, темные крыши — позаботьтесь о горячем индустриальном стиле
    • Работа на выходных, которая позволит сэкономить деньги в течение всего года: изоляция потолка своими руками
    • Узнайте больше о том, как изоляция работает в вашем доме
      • Задний
      • Втулка для домашнего комфорта
      • Комфорт имеет значение…
      • Часто задаваемые вопросы
      • Решения для домовладельцев
        • Задний

Теплоизоляция | Cabot Corporation

Обладая самой низкой теплопроводностью на рынке, добавки к аэрогелевым покрытиям революционизируют подходы к управлению температурным режимом в отрасли.

Обеспечивая непревзойденные характеристики в качестве изоляционной добавки, наш аэрогель ENOVA ® является основой нового класса теплоизоляционных покрытий. Эти продукты решают давние проблемы в области энергоэффективности, безопасного прикосновения и контроля конденсации, при этом они приклеиваются к поверхности подложки, что значительно снижает вероятность коррозии под изоляцией (CUI).Как показано на фотографии (справа), в попытке контролировать образование конденсата на резервуарах для воды и связанных с ними трубопроводах инженеры выбрали Aerolon, инновационную систему теплоизоляционного покрытия от Tnemec с аэрогелем Cabot.

Энергоэффективность

При работе с проводящими поверхностями большинство потенциальных преимуществ, которые могут быть получены с помощью изоляции, исходит от первого очень тонкого слоя защиты. Обладая превосходным сопротивлением тепловому потоку, покрытия из высоконагруженного аэрогеля обладают способностью значительно снижать потери тепла за счет доли дюйма покрытия.При тепловом моделировании (3EPlus) и вспомогательных испытаниях покрытия на основе аэрогеля показали снижение более чем на 50% мощности, необходимой для поддержания температуры в нагретых резервуарах с покрытием всего лишь 150 мил (0,150 дюйма).

Safe Touch

При включении в систему защитных покрытий на ощупь продукты из аэрогеля ENOVA могут помочь предотвратить контактные ожоги и обеспечить гибкость продукта, необходимую для эффективного покрытия потенциально сложных поверхностей. При составлении формулы с высокой толщиной сухой пленки (DFT) на один слой существует возможность нанесения одного или двух слоев для обеспечения «безопасной на ощупь» поверхности в соответствии с рекомендациями Управления по охране труда (OSHA).Благодаря преимуществам, обеспечиваемым добавками аэрогеля в нашем широком спектре установленных приложений, обеспечивающих безопасное прикосновение, легко понять, почему наш аэрогель ENOVA зарекомендовал себя как лучшее решение для добавок теплоизоляционных покрытий.

Контроль конденсации

Когда температура поверхности опускается ниже точки росы, вскоре образуется конденсат и повреждение от влаги. Покрытия, наполненные частицами нашего аэрогеля, могут резко изменить температурный профиль подложки, на которую они наносятся, часто сохраняя температуру поверхности покрытия выше точки, в которой будет конденсироваться вода.Для существующих структур с запотевающими поверхностями или новых проектов, где потоотделение будет проблемой, покрытия на основе аэрогеля предоставляют новый вариант контроля конденсации.

Теплоизоляционных материалов в Египте | الشركة الهندسية للتجارة والمقاولات

Изоляционные материалы и их тепловые свойства

Теплоизоляция — это уменьшение теплопередачи

(передача тепловой энергии контакта между объектами при разной температуре тепла).

Ключевые вопросы

  • Снижение количества энергии, потребляемой из ископаемого топлива, является наиболее важным фактором в обеспечении устойчивости. • Изоляция имеет наибольший потенциал для снижения выбросов CO 2 . • Энергосбережение за счет использования изоляции намного превышает энергию, используемую при ее производстве.

Только когда здание соответствует стандарту «Низкое тепловыделение», содержание углерода в изоляции становится значительным.

Характеристики

Самым важным аспектом изоляционного материала является его производительность — то, что он постоянно обеспечивает заданное сопротивление прохождению тепла на протяжении всего срока службы здания (типы изоляции стен). Хотя опубликованные производителями изоляции ожидаемые характеристики будут важным руководством, в процессе проектирования необходимо учитывать другие факторы, связанные с «реальной» установкой материала:

• Простота установки

— максимальная производительность будет определяться тем, насколько эффективно строитель может укладывать материал, используя обычные навыки.Например, изоляционные плиты необходимо устанавливать таким образом, чтобы не возникало зазоров ни между соседними плитами, ни между плитами и другими элементами конструкции, которые составляют часть общей изоляционной оболочки, например, стропилами или балками. Любые оставшиеся зазоры позволят воздуху пройти, что приведет к снижению производительности.

• Усадка, уплотнение, оседание

— Некоторые материалы, вероятно, будут иметь некоторую нестабильность размеров в течение срока эксплуатации.Во многих случаях это ожидается и может быть преодолено с помощью тщательного проектирования и методов установки. Во всех других случаях необходимо обращаться к производителю изоляции за указаниями относительно связанных рисков, особенно в тех случаях, когда материалы не имеют установленной производительности.

• Защита от влаги

— характеристики некоторых изоляционных материалов ухудшаются во влажном или влажном состоянии.Проектировщик должен путем тщательной проработки деталей обеспечить защиту уязвимой изоляции от влаги. Если влага представляет собой высокий риск (проникновение или относительная влажность более 95%), следует выбрать материал с соответствующей устойчивостью.
Ниже мы рассмотрим характеристики ряда обычных и все более распространенных строительных изоляционных материалов.
Изоляционные материалы, особенно если речь идет о «зеленых» характеристиках, делятся на так называемые «натуральные» материалы и «искусственные» материалы.
При выборе изоляционного материала с точки зрения воздействия на окружающую среду часто оказывается, что «натуральный» материал является наиболее выгодным с точки зрения экологических свойств. Однако в некоторых случаях эффективность, присущая искусственным материалам, может быть включена в экологическое уравнение, чтобы обеспечить более широкую экологическую выгоду, например, когда пространство для изоляции имеет большое значение, например, при модернизации.

Каковы термины производительности и что они означают?

Теплопроводность

Теплопроводность измеряет легкость, с которой тепло может проходить через материал за счет теплопроводности.

Термическое сопротивление (R)

Термическое сопротивление — это величина, которая связывает теплопроводность материала с его шириной.

Удельная теплоемкость

Удельная теплоемкость материала — это количество тепла, необходимое для повышения температуры 1 кг материала на 1K

Плотность

Плотность относится к массе (или «вес») на единицу объема материала.

Коэффициент теплопроводности

Коэффициент теплопроводности измеряет способность материала проводить тепловую энергию относительно его способности накапливать тепловую энергию.

Теплоизоляция что такое лямбда а: Коэффициент теплопроводности. Выбираем «свою» теплоизоляцию

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Scroll to top