Точка промерзания: Точка промерзания

Содержание

Точка промерзания

Достоверно указать местонахождение этой точки в конструкции непросто. Вычисляется она приблизительно, на основе математических расчётов и температурных графиков. Возьмем, к примеру, стену любого дома. Какой бы толщины она не была - всегда найдется точка, где уличный температурный "минус" меняется на домашний "плюс". Стена дома служит барьером для проникновения мороза внутрь, и существует некая граница, где отрицательная температура переходит в положительную, соответственно минуя «нулевое» значение. Именно эта точка прохождения нулевого значения и называется "точка промерзания".

До наступления эпохи применения минеральных утеплителей, точка промерзания всегда находилась внутри стены. Именно поэтому была необходимость строительства стен «метровой толщины». Такая "стеночка" не только от татаро-монгольских набегов убережет, но и остыть дому не даст. И если стены еще можно утеплить за счет толщины, то, как быть с крышей - ее же нельзя бесконечно утяжелять! Таким образом, несмотря на солидность, толстыми стенами особого эффекта не добиться.

Использование современных утеплителей позволило «вынести» данную точку за наружную границу стены. При этом дом, превращается в своеобразный термос: в холод - тепло, в жару – прохладно. Теплоизоляционное покрытие позволяет дому свободно "дышать" и, в отличие от обычного термоса, избыточная эксплуатационная влажность зданию не грозит. При этом теплоизоляционный комплекс не пропускает вглубь стены атмосферную влагу. Ставим ли мы чайник, моем полы или купаемся - любое из этих действий наполняет наше жилище влажностью. Покинуть наш дом она в состоянии только через дверные, оконные и вентиляционные проёмы, а так же непосредственно через сами стены и потолок. Любая из этих конструкций, при нарушении газообмена, покрывается капельками влаги. Постоянная влажность приводит к появлению плесени, грибковых образований, разрушению поверхности. Бороться с данным явлением призваны вентиляционная система и "дышащие" поверхности. Кроме повышения температуры внутренней стены, теплоизоляция защищает наружную поверхность от перепада температур. А значит, срок службы дома значительно возрастает. Ведь разрушительны не столько морозы, сколько сами циклы «заморозки-разморозки». Подобное воздействие успешно разрушает целые скалы, что же говорить о творении рук человеческих.

Теплоизоляция на основе базальтовых волокон призвана служить теплохранителем конструкций, но если влага сумеет найти дорожку к тепловой защите, то в лучшем случае, изоляция потеряет свои свойства, а в худшем - станет источником новых проблем. Так что всевозможные минеральные (минераловатные) плиты и маты нужно уберечь от сырости и влажности при помощи специальных диффузионных и супердиффузионных пленок, ставших неотъемлемой частью теплоизоляционных систем. Наружное фасадное покрытие берёт на себя основную атаку атмосферных осадков, но против дождя с ветром они бессильны. Ветро- влагозащитные мембраны, смонтированные поверх утеплителя, не дадут проникнуть влаге во внутрь изоляции, а идущий изнутри пар - спокойно пропустят сквозь себя наружу.

Для предотвращения проникновения пара изнутри здания в конструктив - используют гидрофобные краски, полиэтилен высокой прочности или пленку (иногда армированную алюминиевой фольгой). Все эти преграды способны защитить несущую конструкцию от проникновения внутренней влаги. От пронзительного ветра, стена дома защищена теплоизоляционным материалом с заданными свойствами. Жесткая или полужесткая минеральная плита не только примет на себя порывы ветра, но и сможет минимизировать так называемые "мостики холода", образованные металлическими направляющими, которые обладают достаточно высокой теплопроводностью.

Современная теплоизоляция - это не только экономия стенового материала и снижение трудоемкости, это качественно новый подход к решению "холодной" проблемы.

Глубина промерзания грунта в Подмосковье, 🔨 СНИП, расчётная глубина как определить.

Из данной статьи вы узнаете, что собою представляет понятие глубины промерзания грунта и почему его необходимо учитывать при проектировании фундаментов. Мы рассмотрим нормативные величины ГПГ для разных регионов России и узнаем, как определить фактическую и расчетную величину глубины промерзания почвы согласно действующим нормативам СНиП.

Глубина промерзания грунта (ГПГ) - нормативное понятие, которое описывает среднестатистическую глубину, на которою почва промерзает в холодное время года.

Для расчета глубины промерзания берется среднестатистический показатель сезонного промерзания в конкретном регионе за последние 10 лет.


Карта нормативной глубины промерзания почвы в разных регионах России

Карта нормативной глубины промерзания почвы в разных регионах России
Рис. 1.0:  Карта нормативной глубины промерзания почвы в разных регионах России

 

Уровень промерзания почвы - одна из основных величин, которые учитываются при проектировании фундаментов любого типа. Если в основе расчетов будет лежать неправильный показатель ГПГ, либо данный фактор будет не учитываться вообще, проектировщик не сможет рассчитать требуемую глубину заложения фундамента.

внимание!внимание!

Важно учесть! Плитные и ленточные фундаменты, не обладающие достаточной глубиной заложения, отличаются чрезмерной подверженностью воздействиям морозного пучения почвы - они неустойчивы, подвержены деформациям и разрушениям.

повреждение здания под воздействием пучения грунтаповреждение здания под воздействием пучения грунта

Рис. 1.1:  Характерный признак неправильно рассчитанной глубины заложение фундамента и, как следствие, повреждение здания под воздействием пучения грунта


Морозное пучение происходит в промерзших пластах почвы, пропитанных влагой. Грунтовые воды, при замерзании, склонны к увеличению своего объема на 2-9%, в результате такого расширения пропитанная водой почва начинает подниматься вверх и давить на фундамент здания, оказывая на него выталкивающее воздействие.

внимание!внимание!

Важно! Чтобы избежать негативных влияний пучения, ленточные и плитные фундаменты должны закладываться ниже глубины промерзания почвы.

 

При таком расположении основание полностью лишено воздействия вертикальных сил пучения (выталкивающего давление почвы, находящейся под фундаментной лентой). Фундамент подвергается лишь касательному пучению (в результате трения стенок основания и боковых пластов пучинистой почвы), влияние которого можно устранить с помощью обустройства уплотняющей отсыпки по периметру стенок фундамента.


Схема промерзания участка застройкиСхема промерзания участка застройки
Рис 1.2:  Схема промерзания участка застройки


Перед началом любого строительства, проводящегося на пучинистых грунтах, необходимо выяснить ГПГ в конкретном регионе, чтобы в дальнейшем иметь возможность подобрать оптимальную глубину заложения фундамента.

 

 

 

внимание!внимание!

Внимание! Как неправильный расчет нагрузки на фундамент может привести к большим финансовым потерям: ссылка.

 

Глубина промерзания СНИП

ГПГ - величина, которую без наличия специального оборудования невозможно определить непосредственно перед началом строительства, поскольку ее расчеты требуют предварительного анализа конкретной местности на протяжении более чем 10-ти лет. В строительной практике, для определения глубины промерзания, используются нормативные данные о ГПГ и базовая информация для ее расчета, заложенная в документах СНиП.

До недавнего времени основным документом, в котором были приведены данные о глубине промерзания грунта, являлся СНиП № 20101-82 "Климатология и геофизика строительства", и сопутствующие ему карты разных регионов Российской Федерации. 

внимание!внимание!

Важное замечание! С недавних пор данный нормативный документ был разделен на две отдельные справки - СНИП № 20201-83 "Фундаменты зданий о сооружений" и СНИП № 2301-99 "Климатология строительства".


В данный документах приведены среднестатистические показатели глубины промерзания почвы для конкретных регионов РФ, ознакомится с которыми вы можете в таблице 1.1

Город Сезонная глубина промерзания разных видов почвы (см)
Глиняный грунт и суглинок Супеси и мелкие сухие пески Крупные и гравелистые пески
Ярославль 143 174 186
Архангельск 156 190 204
Челябинск
173 211 226
Вологда 143 174 186
Тюмень 173 210 226
Екатеринбург 157 191 204
Сургут 222 270 290
Казань 143 175 187
Саратов 119 144 155
Курск
106
129 138
Санкт-Петербург 98 120 128
Москва 110 134 144
Самара 154 188 201
Нижний Новгород 145 176 189
Рязань 136 165 177
Новосибирск 183 223 239
Ростов на Дону
66
80 86
Орел 110 134 144
Псков 97 118 127
Пермь 159 193 207


Таблица 1.1:  Нормативная глубина промерзания почвы в разных городах России


ГПГ зависит от двух основных факторов - среднестатистических минусовых температур в конкретных регионах и типа грунта.

Косвенным фактором, влияющим на ГПГ, является толщина снежного покрова, которым укрыт грунт - чем он толще, тем меньшей будет глубина промерзания. Стоит учитывать, что данные, указанные в нормативных таблицах СНИП, не учитывают толщину снежного покрова, поэтому фактическая величина ГПГ в регионе всегда будет меньшей, чем глубина, указанная в таблице 1.1.


Рис. 1.3:  Схема зависимости ГПГ от толщины снежного покрова

 

внимание!внимание!

Важное замечание! Всем домовладельцам, сталкивающимся с проблемой пучения почвы, стоит помнить о том, что они сами себе могут доставить дополнительных неприятностей, очищая снег и формируя сугробы возле стен дома.


Неравномерное пучение, которое происходит в местах, где почва обладает разной глубиной промерзания, крайне негативно сказывается на состоянии фундамента - из-за различных выталкивающих сил, воздействующих на фундаментную ленту, основание дома перекашивается, в результате чего возникают трещины на стенах и цоколе. Если вы очищаете снег вокруг постройки - делайте это по всем периметру здания, и не формируйте сугробы возле одной из стен дома.

 


Глубина промерзания грунта в Подмосковье

Как свидетельствуют отзывы опытных строителей, свыше 80% грунтов в Москве и области представлены пучинистой почвой - суглинком, глиной, песками, супесями. При строительстве домов на таких грунтах крайне важно учитывать глубину их промерзания, поскольку фундамент, заложенный выше требуемого уровня, не будет обладать ожидаемой от него надежностью и долговечностью.

ГПГ в Подмосковье варьируется достаточно сильно - от 90 до 200 сантиметров. Такие колебания обусловлены разной плотностью грунтов - чем большая плотность, и чем выше уровень залегания грунтовых вод, тем сильнее будет промерзать почва.

Среднестатистической расчетной величиной ГПГ, учитываемой при строительстве зданий в Подмосковье, принято считать 140 сантиметров. Более детальные показатели для разных городов Подмосковья вы можете увидеть в таблице 1.2.

Город Сезонная глубина промерзания почвы (см)
Дубна 150
Талдом 130
Сергиев Посад, Александров 140
Орехово-Зуево 130
Егорьевск 130
Коломна 110
Ступино 120
Серпухово 100
Обнинск 110
Балабаново 110
Можайск 125
Волоколамск 120
Клин, Солнечногорск 120
Звенигород, Истра 110
Наро-Фоминск 125
Чехов 120
Воскресенск 110
Павловский Посад, Ногинск, Пушкино 110
Дмитров 140
Пушкино, Щепково, Балашиха 150
Одинцово, Болицыно, Кубинка 140
Подольск, Домодедово, Люберцы 100
Железнодорожный 110
Мытища, Лобня 140


Таблица 1.2:  Глубина промерзания грунта в Московской области

 


 

 


Расчетная глубина промерзания грунта

Расчетная величина ГПГ, согласно нормативам СНИП, определяется по формуле: h = √M*k, в которой:

  • М - сумма максимальных показателей минусовых температур в холодное время года;
  • k - коэффициент, отличающийся для разных видов грунтов.

Величина коэффициента, использующегося в расчетной формуле, составляет:

  • 0,23 - для глинистой почвы и суглинков;
  • 0,28 - для пылеватой и мелкой песчаной почвы, супесей;
  • 0,3 - для средне крупных гравелистых и крупных песков;
  • 0,34 - для почвы с вкраплениями крупнообломочных горных пород.

Для примера, определим расчетную величину ГПГ для Вологды. Данные среднемесячных минусовых температур для этого города мы можем взять в документе СНИП № 2101.99.

Для Вологды она составляет:

определим расчетную величину ГПГ для Вологды. определим расчетную величину ГПГ для Вологды.
Из данной таблицы мы определяем значение M - для этого нам нужно суммировать показатели месяцев, обладающих минусовыми температурами.

  • M = 11,6 + 10,7 + 5,4 + 2,9 + 7,9 = 38,5.

Теперь нам нужно извлечь квадратный корень из получившейся величины:

Что позволяет выполнить расчеты согласно основной формуле, учитывая коэффициент типа грунта, на котором будут выполняться строительные работы. Для примера используем коэффициент суглинистой почвы, он равен 0,23.

В результате мы получаем расчетную величину промерзания суглинистой почвы в Вологде равную 143 сантиметрам. Аналогичным образом расчеты выполняются для любых видов почв в других городах России.

 

 

 

Как определить реальную глубина промерзания грунта

внимание!внимание!

Внимание! Фактические и нормативные показатели ГПГ всегда будут отличаться между собой из-за ряда сопутствующих факторов, таких как толщина снега и льда, которыми укрыт грунт.

 

promerzanie6promerzanie6

Рис. 1.4:  Нормативная глубина промерзания грунта в РФ (данные на 2006 год)


Для определения реальной глубины промерзания используется специальный прибор - мерзлотомер. Данное устройство представляет собою обсадную трубку, внутри которой размещен наполненный водой шланг с внутренними ограничителями передвижения льда. На шланг нанесена сантиметровая разметка.

Мерзлотомер погружается в грунт на глубину, равную фактической величине ГПГ (все измерения проводятся в холодное время года). Вода в трубке мерзлотомера превращается в лед на участке, где с прибором контактирует промерзшая почва.

 

Фактическая глубина промерзания почвы в РФФактическая глубина промерзания почвы в РФ

Рис. 1.5:  Фактическая глубина промерзания почвы в РФ

Спустя 10-12 часов после погружения устройства в почву шланг с водой изымается из обсадной трубки и по замершему участку воды определяется реальная глубина промерзания почвы.

 

 

Наши услуги

Услуги компании "Богатырь" это забивка свай и лидерное бурение. Мы имеем собственный автопарк бурильно-сваебойной техники и готовы поставлять сваи на объект с дальнейшим их погружением на строительной площадке. Цены на забивку свай представлены на странице: цены на забивку свай. Для заказа работ по забивке железобетонных свай, оставьте заявочку:

 

Статьи по теме

 

Полезные материалы

partnery-02partnery-02
Пучение грунта

Из данного материала вы узнаете, что такое морозное пучение грунта и какую опасность оно представляет для фундамента.

 

partnery-02partnery-02
Испытания грунтов

Испытание грунтов - это этап строительства, предшествующий проектированию фундамента. Испытание грунтов производится на плотность и на сдвиг.

 

partnery-02partnery-02
Виды и сфера применения забивных ЖБ свай

При проектировании свайных фундаментов зданий и инженерно-технических сооружений выбор типа используемых железобетонных конструкций необходимо производить максимально тщательно.

 

 

Глубина промерзания грунта при строительстве и углублении колодца, при монтаже водопровода

Будущие владельцы и те, кто уже является обладателем собственного колодца сталкиваются с проблемой нормального функционирования источника, одна из сложностей — эксплуатация зимой.

Пример расположения коммуникаций ниже уровня промерзания грунта

Что такое промерзание грунта

Промерзание грунта – расширение почвы, уплотнения земли из-за превращения влаги в кристаллы льда. Сам процесс происходит по-разному, в зависимости от типа земли, региона, глубины. Данный фактор влияет на функционирование колодца, мерзлая почва вызывает горизонтальное и вертикальное смещение бетонных колец. При наличии в опалубке трещин или разломов, вода проникая в них, замерзает распирая бетон, это приведет дорогостоящему ремонту.


Типы и характеристики земли

Из разнообразия земляного покрова выделим основные с противоположными характеристиками:

  • Суглинок — на 60-70% состоит из глиняных пластов с примесями влажного песка. Данный вид покрова обладает малой пластичностью.
  • Супесь — рыхлая земля, состоящая, из песчаных частиц с небольшой концентрацией (5-15%) глинистых частиц. Вероятно, самый часто встречающийся вариант в Московской области.
  • Торф, насыпные пласты — располагаются в местах бывших руслах рек и водоемов. На данных видах покрова, строительство колодцев, их углубление, последующая эксплуатация — проблематична, происходит это из-за пластичности провоцирующей деформацию колец, труб водопровода из гидросооружения.
  • Насыщенная глина — как и предыдущий тип, глину характеризует пластичность, способность аккумулировать влагу и воду. Вода, замерзающая в почве вызывает пучение, оказывая давление на ЖБИ кольца и трубы подачи воды, если они установлены выше уровня промерзания земли.
  • Галечный, крупнозернистые грунты — для обустройства колодца, идеальное основание. Этот вид покрова надежно зафиксирует положение шахты и оборудования подведенного от нее. Такие породы в Москве, Подмосковье и территории Московской области встречается не более чем в 10% участков, а глубина залежей воды, в большинстве случаев, глубже среднестатистических.
Примеры типов различных почв

Существует несколько методов определения вида земли. Один из легких, который можно выполнить прямо сейчас – выройте четыре ямы по периметру участка глубиной по 50-60 сантиметров и сравните с таблицей на картинке.

Почему именно по периметру и нужно четыре ямы? Участок может состоять из различных типов почв, не исключен вариант - на разных концах территории у вас будут разные типы земли.


Таблица промерзания различных типов почв

Вид грунта Промежуток до грунтовых вод зимой Залегание трубопровода из колодца или фундамента дома
Скальные и полускальные Любое Любая, вне зависимости от глубины
Пески гравелистые, крупные и средние Любое Независимо от глубины, но не менее 0,5 метра
Пески мелкие, пылеватые Более чем на 2 метра, ниже уровня промерзания Более чем на 2 метра, ниже уровня промерзания
Супеси Превышает расчетный уровень обмерзания почвы менее чем на 2 метра Не менее 3/4 расчетной глубины покрова, но не менее 0,7 метра
Суглинки, глины Менее расчетной глубины Не менее расчетного уровня

Факторы влияния

На уровень промерзания влияют следующие природные показатели:

  • Растительность на участке;
  • Слой снежного покрова;
  • Температура на поверхности;
  • Тип поверхности;
  • Интенсивность влажности почвы.

При нуле градусов промерзают галечные и грунты крупной фракции. Мелкодисперсные типы промерзают при более низких температурах, мелкозернистые пласты состоят из мелких жилок, соответственно, вбирают большее количество жидкости.

Усредненные данные, при идентичных дневных температурах глубина следующая:

  • Суглинки - 130-140 сантиметров;
  • Глина, насыпные пласты 135-145 сантиметров;
  • Галечные почвы - 172-176 сантиметров;

Региональная нормативная глубина промерзания

Область Суглинки, глины Пески мелкие, пылеватые Пески гравелистые, средние Галечный грунты, крупнозернистые
Москва 1,35 1,64 1,76 2,00
Дмитров 1,38 1,68 1,80 2,04
Владимир 1,44 1,75 1,88 2,12
Тверь 1,37 1,67 1,80 2,03
Калуга 1,34 1,64 1,75 1,98
Тула 1,34 1,63 1,74 1,98
Рязань 1,41 1,72 1,84 2,09
Ярославль 1,48 1,80 1,93 2,19
Вологда 1,50 1,82 1,95 2,21
Нижний Новгород 1,49 1,81 1,94 2,20
Санкт-Петербург 1,16 1,41 1,51 1,71
Карта глубин промерзания земли на территории России

Грунты для строительства колодцев

Возведение нового колодца, мероприятие не из дешевых, важно на первоначальных стадиях учесть нюансы строительства и эксплуатации, которые не возможно устранить впоследствии. Если залежи воды близки к поверхности, подойдет любой тип почвы. Если участок находится на торфе или иле, глубине залежей жидкости ниже десяти метров и уровне промерзания около двух, потребуется усиление конструкции шахты, утеплению стен источника.

Лучший земляной покров для рытья — скалистый, средние и крупные пески, с небольшой глубиной промерзания.

Преимущество породы:

  • Почва не подвержена пучению;
  • Не промерзает;
  • Не деформируется;
  • Ее подмывает и не размывает.

Проблема породы — работа на таком виде почв требует затрат времени и опыта колодезных мастеров.

При рытье гидросооружения, значимый фактор — уровень подземных вод, они должна быть ниже глубины промерзания. При нахождении жидкости выше, она будет замерзать, что приведет к пучению земляных пластов, происходит это неравномерно, что приводит к деформации или частичному смещению бетонных колец.

Строительство колодцев и водопровода ниже промерзания почвы

Если ваш участник расположен на следующих типах почв: пылеватых и мелких песках, суглинках и супесях, вам необходимо еще до строительства источника определить уровень залегания грунтовых вод.

Для выявления таких покровов используйте следующий способ: киньте фрагмент земли в воду, он быстро превратился в жидкую субстанцию? - такая почва при намокании будет проседать и легко поддаваться воздействию ледяного грунта. При таком виде земли обязательно требует усиления конструкции колодца.

Снег на участке также влияет на глубину промерзания. Чем его больше, тем больше тепла под землей и выше температура земляного покрова.


Как обезопасить колодец

Чтобы обезопасить колодец от возможных проблем при промерзании грунты и пучения почвы, выход из положения — усиление конструкции шахты.

Если у вас сделана подводка воды из колодца, трубы необходимо расположить ниже промерзания.


Установка скоб и анкеров

Чтобы обеспечить стволу источника воды стабильность, прочность, предотвратить смещение колодезных колец и не допустить образования вертикальных разрывов, проводится скобирование, то есть жесткое сочленение стыков ЖБИ анкерами и металлическими скобами. Скрепление конструкции осуществляется также, как при строительстве, так и у действующих источников (в качестве одного из этапов профилактических, ремонтных работ).

Фиксация может быть произведена двумя способами - установкой колец с замком и скоб. Замковые кольца способны противостоять боковому давлению грунтов, но не решают проблемы вертикальных разрывов. Без скобирования некоторые кольца во время подвижки грунта могут сместиться, в результате чего происходит искривление шахты.


Как проводится скрепление колец?

Для установки используется по 2-4 скобы на каждый стык (количество зависит от места монтажа). Перед монтажом на соседних кольцах (недалеко от шва) перфоратором проделываются отверстия нужного размера, в которые и устанавливаются скобы или анкера, закрепляемые мощными болтами. В итоге "держатель" связывает верх нижнего кольца и низ верхнего.

Особенности качественного скрепления:

  • Желательно скобировать всю шахту, независимо от типа грунта для достижения наилучшей стабильности конструкции;
  • Скрепление лишь 2-3 верхних стыков не допускается, если колодец стоит на плывуне, песчаных грунтах, а также в местности, где выпадают обильные осадки; во всех этих случаях нужно полностью скобировать шахту;
  • Работы по скреплению проводятся с применением специального инструмента, с соблюдением правил безопасности, поэтому не стоит спускаться в шахту без необходимого оборудования и при отсутствии навыков проведения ремонтных работ в колодце.

Утепление шахты и водопровода

Утепление колодца — процесс обустройства для сохранения тепла внутри резервуара. Подробнее о технологию утепления шахты, так же ознакомьтесь для чего нужно утеплять шахту.

Копка траншеи ниже уровня промерзания

Если утеплить шахту можно уже после эксплуатации источника, то водопровод из колодца и трубы, нужно до подводки воды.

Траншея копается ниже уровня промерзания с запасом в 20-30 сантиметров, а качестве страховки используется технология греющего кабеля. Вокруг трубы или внутри ее протягивают кабель на который подается тепло, это тепло помогает поддерживать постоянную температуру в системе водопровода.

Оцените статью

Другие интересные статьи

Вернуться к списку статей

Нормативная глубина промерзания грунта | Расчет сезонного промерзания грунта по СНиПу

Калькулятор ГПГ-Онлайн v.1.0

Калькулятор по расчету нормативной и расчетной глубины промерзания грунта для регионов РФ, Украины, Белоруссии и др. Два поиска: быстрый (по названию города) и расширенный. Пояснения и рабочие формулы можно найти под калькулятором.

Расширенный поиск:

Страна Выберите страну Российская Федерация Азербайджанская республика Республика Армения Республика Беларусь Грузия Республика Казахстан Кыргызская республика Республика Молдова Республика Таджикистан Республика Узбекистан Украина

Республика, край, область Выберите регион:

Город Выберите город:

Нормативная глубина промерзания (СП 131.13330.2012)

ГородГрунтГлубина промерзания, м
-Глина или суглинок0
Супесь, песков пылеватый или мелкий 0
Песок средней крупности, крупный или гравелистый0
Крупнообломочные грунты0

Нормативная глубина сезонного промерзания грунта

Источники данных: СНиП 23-01-99* (СП 131.13330.2012); СНиП 23-01-99; СП 22.13330.2011 (СНиП 2.02.01-83*); СНиП 2.02.01-83

Нормативная глубина сезонного промерзания грунта принимается равной средней из ежегодных максимальных глубин сезонного промерзания грунтов (по данным наблюдений за период не менее 10 лет) на открытой, оголенной от снега горизонтальной площадке при уровне подземных вод, расположенном ниже глубины сезонного промерзания грунтов.

Нормативную глубину сезонного промерзания грунта dfn, м, при отсутствии данных многолетних наблюдений следует определять на основе теплотехнических расчетов. Для районов, где глубина промерзания не превышает 2,5 м, ее нормативное значение допускается определять по формуле:

dfn = d0 * √Mt

где Mt - безразмерный коэффициент, численно равный сумме абсолютных значений среднемесячных отрицательных температур за зиму в данном районе, принимаемых по СНиП по строительной климатологии и геофизике, а при отсутствии в них данных для конкретного пункта или района строительства - по результатам наблюдений гидрометеорологической станции, находящейся в аналогичных условиях с районом строительства;

d0 - величина, принимаемая равной, м, для:
суглинков и глин - 0,23;
супесей, песков мелких и пылеватых - 0,28;
песков гравелистых, крупных и средней крупности - 0,30;
крупнообломочных грунтов - 0,34.

Значение d0 для грунтов неоднородного сложения определяется как средневзвешенное в пределах глубины промерзания.

Расчетная глубина сезонного промерзания грунта

Расчетная глубина сезонного промерзания грунта df, м, определяется по формуле:

df  = kh * dfn 

где dfn - нормативная глубина промерзания, определяемая;

kh - коэффициент, учитывающий влияние теплового режима сооружения, принимаемый: для наружных фундаментов отапливаемых сооружений - по табл.1; для наружных и внутренних фундаментов неотапливаемых сооружений kh = 1,1, кроме районов с отрицательной среднегодовой температурой.

П р и м е ч а н и я

  1. В районах с отрицательной среднегодовой температурой расчетная глубина промерзания грунта для неотапливаемых сооружений должна определяться теплотехническим расчетом в соответствии с требованиями СП 25.13330. Расчетная глубина промерзания должна определяться теплотехническим расчетом и в случае применения постоянной теплозащиты основания, а также если тепловой режим проектируемого сооружения может существенно влиять на температуру грунтов (холодильники, котельные и т.п.).
  2. Для зданий с нерегулярным отоплением при определении kh за расчетную температуру воздуха принимают ее среднесуточное значение с учетом длительности отапливаемого и неотапливаемого периодов в течение суток.

Таблица 1

Особенности сооружения

Коэффициент kh при расчетной среднесуточной
температуре воздуха в помещении, примыкающем к наружным фундаментам, °С

0

5

10

15

20 и более

Без подвала с полами, устраиваемыми:
по грунту

0,9

0,8

0,7

0,6

0,5

на лагах по грунту

1

0,9

0,8

0,7

0,6

по утепленному цокольному перекрытию

1

1

0,9

0,8

0,7

С подвалом или техническим подпольем

0,8

0,7

0,6

0,5

0,4

П р и м е ч а н и я
1 Приведенные в таблице значения коэффициента kh относятся к фундаментам, у которых расстояние от внешней грани стены до края фундамента af< 0,5 м; если af 1,5 м, значения коэффициента kh повышают на 0,1, но не более чем до значения kh= 1; при промежуточном значении af значения коэффициента kh определяют интерполяцией.
2 К помещениям, примыкающим к наружным фундаментам, относятся подвалы и технические подполья, а при их отсутствии – помещения первого этажа.
3 При промежуточных значениях температуры воздуха коэффициент kh принимают с округлением до ближайшего меньшего значения, указанного в таблице.

Строительные калькуляторы

заглубленный, мелкозаглубленный, определение, рекомендации СНиПа, расчет уровня промерзания грунтов

Глубина заложения фундамента — проектируемая величина, которая зависит от типа здания или сооружения, климатической зоны, грунтов на участке и уровня залегания подземных вод. На эту величину также оказывает влияние конструкция здания (с подвалом или без), принцип его использования (с отоплением или без), этажность и масса.

Если говорить предметно, это та величина, на которую нужно будет закопать фундамент, для того чтобы он обеспечивал стабильную опору для сооружения. Бывают они двух видов:

  • глубокого заложения;
  • мелкого заложения или незаглубленные. Типы ленточных фундаментов по глубине заглубления

    Типы ленточных фундаментов по глубине заглубления

Согласно нормам строительства для того чтобы противостоять силам морозного пучения, подошву необходимо заглублять на 15-20 см ниже уровня промерзания для грунта. При выполнении этого условия фундамент называют «глубокого заложения» или «заглубленный».

При глубине промерзания больше 2 метров проведение земляных работ имеет очень большие объемы, велик также расход материалов и очень высока цена. В этом случае рассматривают другие типы фундаментов — свайные или свайно-ростверковые, а также возможность заложения выше нормативной точки промерзания. Но это возможно только при наличии грунтов с нормальной несущей способностью, обязательном утеплении цоколя и фундамента, а также при устройстве утепленной отмостки.  В этом случае глубина заложения уменьшается в разы и обычно составляет менее метра.

Иногда фундамент заливают прямо на поверхности. Это — вариант для хозпостроек, причем, скорее всего из древесины. Только она в таких условиях способна  компенсировать возникающие перекосы.

Предварительные изыскания

Содержание статьи

Перед началом планирования дома, вы должны решить, в каком месту участка хотите поставить дом. Если геологические исследования уже есть, учитывайте их результаты: чтобы меньше было проблем с фундаментом, имел он минимальную стоимость, желательно выбрать самый «сухой» участок: там, где грунтовые воды находятся как можно ниже.

Первым делом вы должны определиться с местом для дома на участке

Первым делом вы должны определиться с местом для дома на участке

Далее в выбранном месте проводят геологические исследования почвы. Для этого бурят шурфы на глубину от 10 до 40 метров: зависит от строения пластов и планируемой массы здания. Скважин делают как минимум, пять: в тех, точках, где планируются углы и посередине.

Средняя стоимость такого исследования — порядка 1000 $. Если стройка планируется масштабная, сумма не сильно отразится на бюджете (средняя стоимость дома 80-100 тыс. долларов), а уберечь может от многих проблем. Так что в этом случае заказывайте исследование у профессионалов. Если же поставить хотите небольшую постройку — небольшой дом, дачу, баню, беседку или площадку с мангалом, то вполне можно сделать исследования самостоятельно.

Исследуем геологию своими руками

Для проверки геологического строения грунтов своими руками вооружаемся лопатой. Во всех пяти точках — под углами будущего строения и в середине — придется копать глубокие ямы. Размер: метр на метр, глубина — не менее 2,5 м. Стенки делаем ровные (хотя бы относительно). Выкопав яму, берем рулетку и листок бумаги, замеряем и записываем слои.

Чтобы исследовать грунт под фудамент самостоятельно, нужно будет копать подобные шурфы на глубину порядка 2,5 метров

Чтобы исследовать грунт под фудамент самостоятельно, нужно будет копать подобные шурфы на глубину порядка 2,5 метров

Что можно увидеть в разрезе:

  • Сверху идет самый темный слой — плодородный. Его толщина от 10 см до 1,5 метров, иногда больше. Этот слой обязательно удаляется. Во-первых, он рыхлый, во-вторых, в нем живут разные животные/насекомые/бактерии/грибки. Потому сразу после разметки фундамента первым делом этот слой удаляют.
  • Ниже расположен естественный грунт. Таким он был до «обработки» животными и микроорганизмами. Тут могут быть такие грунты;
    • Плотный песок (крупный, средний, с гравием). Отличное основание для постройки дома: и вода уходит быстро и основание надежное. На таких грунтах можно ставить дом на мелкозаглубленный фундамент (глубина заложения от 50 см).
    • Сыпучие пески (мелкие и пылеватые). Если подземные воды расположены глубоко, строится можно. Но эти грунты опасны тем, что плывут при насыщении водой.
    • Глина, суглинок, супесь. Ведут себя точно также как и пылеватые пески: при намокании плывут, если воды мало, но их несущая способность высокая. Тут еще нужно смотреть на количество осадков врегионе.
    • Торфяники. Самые ненадежные основания. На них можно строиться только с использованием столбчатых фундаментов. И то, только при условии, что не очень глубоко расположен слой грунта с хорошей несущей способностью. Необходимо определить, что за грунты в каждом слое

      Необходимо определить, что за грунты в каждом слое

Часто сложности возникают при попытках различить глиносодержащие грунты. Иногда достаточно только на них посмотреть: если преобладает песок и имеются вкрапления глины — перед вам супесь. Если преобладает глина, но есть и песок — это суглинок. Ну а глина не содержит никаких вкраплений, копается тяжело.

Есть еще один метод, который поможет вам удостоверится насколько правильно вы определили грунт. Для этого из увлаженного грунта скатывают руками валик (между ладонями, как когда-то в детском саду) и сгибают его в бублик. Если все рассыпалось — это малопластичный суглинок, если развалилось на куски — пластичный суглинок, если осталось целым — глина.

Определившись с тем, какие грунты у вас находятся на выбранном участке, можно приступать к выбору типа фундамента.

Глубина заложения фундамента в зависимости от уровня грунтовых вод

Все особенности проектирования описаны в СНиП 2.02.01-83*. Обобщенно все можно свести к следующим рекомендациям:

  • При планировании на скальных, песчаных крупной и средней крупности, гравелистых,  крупнообломочных с песчаным заполнителем грунтах глубина залегания фундамента от уровня  расположения подземных вод не зависит.
  • Если под подошвой фундамента находятся мелкие или пылеватые пески, то при уровне подземных вод расположенных на 2 метра ниже уровня промерзания грунта, глубина заложения фундамента может быть любой. Если воды находятся выше этой отметки, то закладывать фундамент нужно ниже уровня промерзания.
  • Если под подошвой находится будут глины, суглинки, крупнообломочные грунты с пылеватым или глинистым заполнителем, то фундамент однозначно должен быть ниже уровня промерзания (от уровня подземных вод не зависит). Таблица с рекомендуемой глубиной заложения фундамента в зависимости от типа грунта и уровня подземных вод

    Таблица с рекомендуемой глубиной заложения фундамента в зависимости от типа грунта и уровня подземных вод (чтобы увеличить размер картинки, щелкните по ней правой клавишей мышки)

Как видите, в основном уровень заложения фундамента фундамента определяется наличием подземных вод и тем, насколько сильно промерзают грунты  в регионе. Именно морозное пучение становится причиной проблем с фундаментами (или изменение уровня грунтовых вод).

Глубина промерзания грунтов

Чтобы примерно определить до какого уровня промерзают грунты в вашем регионе, достаточно взглянуть на расположенную ниже карту.

По этой карте можно примерно определить уровень промерзания грунтов в регионе

По этой карте можно примерно определить уровень промерзания грунтов в регионе (чтобы увеличить размер картинки, щелкните по ней правой клавишей мышки)

Но это  — усредненные данные, так что для конкретной точки определить значение можно с очень большой погрешностью.  Для пытливых умов приведем методику расчета глубины промерзания грунта в любой местности. Вам нужно будет знать только средние температуры за зимние месяцы (те, в которых среднемесячная температура имеет отрицательные значения). Можете посчитать сами, формула и пример расчета выложены ниже.

Формула расчета глубины промерзания

Формула расчета глубины промерзания

Dfn — глубина промерзания в данном регионе,

Do — коэффициент, учитывающий типы грунта:

  • для крупнообломочных грунтов он равен 0,34;
  • для песков с хорошей несущей способностью 0,3;
  • для сыпучих песков 0,28;
  • для глин и суглинков он равен 0,23;

Mt — сумма среднемесячных отрицательных температур за зиму в вашем районе. Находите статистику службы метрологии по вашему региону. Выбираете месяца, в которых среднемесячная температура ниже нуля, складываете их, находите квадратный корень (есть функция на любом калькуляторе). Результат подставляете в формулу.

Например, собираемся строиться на глине. Средние зимние температуры в регионе: -2°C, -12°C, -15°C, -10C, -4°C.

Расчет промерзания грунта будет таким:

  1. Mt=2+12+15+10+4=43, находим квадратный корень из 43, он равен 6,6;
  2. Dfn= 0,23*6,6= 1,52 м.

Получили, что расчетная глубина промерзания по заданным параметрам: 1,52 м. Это еще не все, учесть нужно будет ли отопление, и, если будет, какие температуры будут поддерживаться в нем.

Если здание неотапливаемое (баня, дача, стройка будет идти несколько лет), применяют повышающий коэффициент 1,1, который создаст запас прочности. В этом случае глубина заложения фундамента 1,52 м * 1,1 = 1,7 м.

Если здание будет отапливаться, грунт тоже будет получать порцию своего тепла и промерзать будет меньше. Потому при наличии отопления коэффициенты понижающие. Их можно взять из таблицы.

Коэффициенты, учитывающие наличие отопления в здании. Получается,  чем теплее в доме, тем на меньшую глубину нужно заглублять фундамент

Коэффициенты, учитывающие наличие отопления в здании. Получается, чем теплее в доме, тем на меньшую глубину нужно заглублять фундамент (чтобы увеличить размер картинки, щелкните по ней правой клавишей мышки)

Итак, если в помещениях будет постоянно поддерживаться температура выше +20°С, полы с утеплением, то глубина заложения фундамента будет 1,52 м * 0,7 = 1,064 м. Это уже меньшие затраты, чем углубляться на 1,52 м.

В таблицах и на картах приведен средний уровень за последние 10 лет. Вообще, наверное, в расчетах стоит использовать данные за самую холодную зиму, которая была за последние 10 лет. Аномально холодные и бесснежные зимы бывают примерно с такой периодичностью. И при расчетах желательно ориентироваться на них. Ведь вас мало успокоит, если отстояв 9 лет, на 10-й ваш фундамент даст трещину из-за слишком холодной зимы.

На какую глубину копать фундамент

Вооружившись этими цифрами и результатами исследования участка, нужно подобрать несколько вариантов фундаментов. Самые популярные — ленточный и столбчатый или свайный. Большинство специалистов сходится во мнении, что при нормальной несущей способности грунта их подошва  должна находиться на 15-20 см ниже глубины промерзания. Как ее посчитать, мы рассказали выше.

Глубина заложения фундамента - это уровень, на который необходимо углубить фундамент

Глубина заложения фундамента — это уровень, на который необходимо углубить фундамент

При этом учитывайте следующие рекомендации:

  • Опираться подошва должна на грунт с хорошей несущей способностью.
  • Фундамент должен погружаться в несущий слой минимум на 10-15 см.
  • Желательно чтобы грунтовые воды располагались ниже. В противном случае необходимо принимать меры по отведению воды или понижению их уровня, а это требует очень больших средств.
  • Если несущий грунт находится слишком глубоко, стоит рассмотреть вариант свайного фундамента.

Выбрав несколько типов фундамента, определив для них глубину заложения, проводят ориентировочный подсчет стоимости каждого. Выбирают тот, который будет экономичнее.

Еще обратите внимание, что для уменьшения глубины заложения фундамента можно применять утепленную отмостку. При строительстве ленточного фундамента мелкого заложения отмостка обязательна.

Мелкозаглубленный фундамент

Иногда фундамент глубокого заложения строит очень дорого. Тогда рассматривают свайный (свайно-ростверковый) или фундаменты мелкого заложения (мелкозаглубленные). Их еще называют «плавающими». Их только два вида — это монолитная плита и лента.

Плитный фундамент считается самым надежным и легко предсказуемым. У него такая конструкция, что она может получить значительные повреждения только при грубых просчетах при проектировании. Тем не менее, и его можно испортить.

Тем не менее, застройщики плитные фундаменты не любят: они считаются дорогими. На них уходит много материала (в основном арматуры) и времени (на вязку той же арматуры). Но иногда плитный фундамент получается дешевле ленточного глубокого заложения или даже свайного. Так что не сбрасывайте его сразу со счетов. Он бывает оптимальным, если строить хотят тяжелое здание на пучнистых или сыпучих грунтах.

Фундамент мелкого заложения

Фундамент мелкого заложения

Мелкозаглубленная лента может иметь глубину от 60 см. При этом она должна опираться на грунт с нормальной несущей способностью. Если глубина плодородного слоя больше, то глубина заложения ленточного фундамента увеличивается.

С ленточными фундаментами  мелкого заложения под легкие здания все очень просто: они работают хорошо. Комбинация со срубом из бревна или бруса — это экономный и в то же время надежный вариант. Если и случаются перегибы ленты, то упругая древесина отлично с ними справляется. Почти также хорошо себя на такой основе чувствует себя каркасный дом.

Более внимательно нужно просчитывать если на мелкозаглубленном ленточном фундаменте собираются строить задние из легких строительных блоков (газобетона, пенобетона, и т.п.). Они на изменения геометрии реагируют не самым лучшим образом. Тут нужна консультация опытного и, обязательно, компетентного специалиста с большим опытом.

Строение плитного фундамента

Строение плитного фундамента

А вот под тяжелый дом мелокзаглубленный ленточный фундамент ставить невыгодно. Чтобы передать всю нагрузку, его нужно делать очень широким. В этом случае, скорее всего, дешевле будет плитный.

Как работает мелкозаглубленый фундамент

Этот тип используется тогда, когда бороться с силами пучения слишком дорого и не имеет смысла. В случае с фундаментами мелкого заложения с ними и не борются. Их, можно сказать, игнорируют. Просто делают так, что фундамент и дом поднимаются и опускаются вместе с вспучившимся грунтом. Потому их еще называют «плавающими».

Все что при этом необходимо — обеспечить стабильное положение и жесткую связь всех частей фундамента и элементов дома. А для этого нужен правильный расчет.

Глубина и скорость промерзания грунта и их влияние на процессы пучения — SGround.ru
Глубина и скорость промерзания грунта и их влияние на процессы пучения

Связь пучения со скоростью, глубиной промерзания

Оглавление:

  1. Введение
  2. Скорость промерзания грунта
  3. Глубина промерзания грунта
  4. Заключение
  5. Связанные статьи

1. Введение

Одними из наиболее значимых факторов, определяющих величину поднятия дневной поверхности (степень пучинистости) при промерзании грунтов являются глубина и скорость их промерзания.

Дневная поверхность грунта – жаргонный термин в строительной геологии, обозначающий поверхность современного рельефа. Можно заменить терминами: поверхность земли, уровень земли. В случае если на рассматриваемом участке выполнялась или будет выполняться планировка (насыпь или выемка грунта), то поверхность следует называть «уровень планировки»

Глубина и скорость промерзания грунтов зависит от большого числа факторов: значений отрицательной температуры наружного воздуха в зимний период, от продолжительности зимнего периода, от толщины и плотности снегового покрова и динамики изменения этих показателей в течении зимы, теплопроводности грунта, наличия теплоизолирующих покрытий (бывают как естественные, например, моховый или торфовый слой, так и искусственные), интенсивности воздействия солнечной радиации на конкретный участок поверхности, от смен холодной погоды на оттепели и от положения уровня грунтовых вод.

2. Скорость промерзания грунта

Увеличение объема грунта и величина подъема поверхности земли зависят от скорости промерзания, а скорость, в свою очередь, зависит от значений отрицательной температуры наружного воздуха и теплотехнических свойств грунта.

Экспериментально установлено, что чем меньше скорость промерзания, тем больше величина пучения и, наоборот, при больших скоростях промерзания грунт меньше увеличивается в объеме.

На величину вспучивания оказывает влияние и коэффициент фильтрации глинистого грунта, которой обусловливает подток капиллярной влаги к фронту промерзания. В образцах, замерзающих при большой скорости промерзания, визуально не наблюдается образования ледяных включений в виде прослоек и линз, следовательно, грунт незначительно ухудшает свои физические свойства при оттаивании.

При быстром промерзании в грунте не успевает накопиться влага, поступающая по капиллярам, поэтому он меньше проявляет пучение

При малой скорости промерзания грунта происходит формирование льдистой текстуры за счет постоянного притока влаги по капиллярам из нижележащих слоев талого грунта, сопровождающееся повышенным накоплением ледяных включений в нем. Такие грунты при оттаивании резко ухудшают свои физические свойства. Иногда грунты, имеющие твердую или пластичную консистенцию до промерзания, превращаются в текучее состояние после промерзания и оттаивания.

Наибольшее количество льда в грунтах природного сложения скапливается при промерзании грунта на глубину до 1-1,2 м так как на этих глубинах больше сказывается колебание отрицательной температуры наружного воздуха, например, при смене холодной погоды на оттепели, что позволяет накопить в структуре грунта больше влаги в виде льда

Глубина и скорость промерзания грунта и их влияние на процессы пучения

3. Глубина промерзания грунта

Значение глубины промерзания грунтов оказывает большое влияние на вспучивание дневной поверхности грунта. Например, в Забайкалье подъем поверхности грунта достигает 40 см при глубине промерзания суглинистого грунта 2,6-2,8 м, а сильнопучинистый суглинок в Московской области вспучивается на 15 см при глубине промерзания на 1,5 м.

Глубина промерзания грунта может в зависимости от региона РФ и локальных условий меняться в широких пределах: от 0 до 6 м. Максимальные значения глубины промерзания грунтов наблюдаются в Забайкалье, ближе к границе Монголии, преимущественно на песчаных и крупнообломочных грунтах и большей частью на северных склонах.

Наблюдениями за глубиной промерзания грунтов установлено, что влажные глины и суглинки промерзают заметно меньше, чем супеси, пески мелкие и пылеватые, а пески крупные и крупнообломочные грунты промерзают еще больше, чем супеси и пылеватые пески.

Чем более крупные частицы слагают грунт, тем больше будет глубина его промерзания при прочих равных условиях, однако крупнодисперсные грунты не подвержены пучению

Так как глубина промерзания зависит от действительно большого числа факторов, для начала разберемся что на этот счет говорится в нормативной литературе.

В нормативной документации на проектирование фундаментов рассматривается только глубина промерзания грунта. Эта величина рассчитывается по формулам в зависимости от среднемесячных температур в холодный период года и типа грунта без учета всех остальных факторов (не учитывается снеговой покров, солнечная радиация, свойства и влажность грунта и пр.).

Действующий на данный момент норматив в области проектирования фундаментов — СП 22.13330.2016 Основания зданий и сооружений гласит:

СП 22.13330.2016 п. 5.5.1 Глубину заложения фундаментов следует принимать с учетом: …- глубины сезонного промерзания грунтов. Выбор оптимальной глубины заложения фундаментов в зависимости от указанных условий необходимо выполнять на основе технико-экономического сравнения различных вариантов.

5.5.2 Нормативную глубину сезонного промерзания грунта dfn, м, принимают равной средней из ежегодных максимальных глубин сезонного промерзания грунтов (по данным наблюдений за период не менее 10 лет) на открытой, оголенной от снега горизонтальной площадке при уровне подземных вод, расположенном ниже глубины сезонного промерзания грунтов.

При использовании результатов наблюдений за фактической глубиной промерзания следует учитывать, что ее следует определять в соответствии с ГОСТ 24847.

5.5.3 Нормативную глубину сезонного промерзания грунта dfn, м, при отсутствии данных многолетних наблюдений следует определять на основе теплотехнических расчетов. Для районов, где глубина промерзания не превышает 2,5 м, ее нормативное значение следует вычислять по формуле

Глубина и скорость промерзания грунта и их влияние на процессы пучения, (5.3)

где d0 — величина, принимаемая равной:

  • для суглинков и глин 0,23 м;
  • супесей, песков мелких и пылеватых — 0,28 м;
  • песков гравелистых, крупных и средней крупности — 0,30 м;
  • крупнообломочных грунтов — 0,34 м;

Мt — безразмерный коэффициент, численно равный сумме абсолютных значений среднемесячных отрицательных температур за год в данном районе, принимаемых по СП 131.13330, а при отсутствии в нем данных для конкретного пункта или района строительства — по результатам наблюдений гидрометеорологической станции, находящейся в аналогичных условиях с районом строительства.

Значение d0 для грунтов неоднородного сложения определяют как средневзвешенное в пределах глубины промерзания. (прим. если промерзает несколько разных слоев то необходимо определять осредненное значение коэффициента d0)

Нормативную глубину промерзания грунта dfn в районах, где >2,5 м, а также в горных районах (где резко изменяются рельеф местности, инженерно-геологические и климатические условия), следует определять теплотехническим расчетом в соответствии с требованиями СП 25.13330.

5.5.4 Расчетную глубину сезонного промерзания грунта df, м, вычисляют по формуле

Глубина и скорость промерзания грунта и их влияние на процессы пучения, (5.4)

где Kh — коэффициент, учитывающий влияние теплового режима сооружения, принимаемый для наружных фундаментов отапливаемых сооружений — по таблице 5.2; для наружных и внутренних фундаментов неотапливаемых сооружений Kh=1,1, кроме районов с отрицательной среднегодовой температурой;

dfn — нормативная глубина промерзания, м, определяемая по 5.5.2 и 5.5.3.

Примечания:

  1. В районах с отрицательной среднегодовой температурой расчетную глубину промерзания грунта для неотапливаемых сооружений следует определять теплотехническим расчетом в соответствии с требованиями СП 25.13330. Расчетную глубину промерзания следует определять теплотехническим расчетом и в случае применения постоянной теплозащиты основания, а также, если тепловой режим проектируемого сооружения может существенно влиять на температуру грунтов (холодильники, котельные и т.п.).
  2. Для зданий с нерегулярным отоплением при определении Kh за расчетную температуру воздуха принимают ее среднесуточное значение с учетом длительности отапливаемого и неотапливаемого периодов в течение суток.

dfn — нормативная глубина промерзания, определяемая по СП 22.13330.2016 не учитывает множественные факторы т.к. нормативы нацелены на получение наиболее надежного результата. Эта величина показывает насколько промерзает грунт на свободной от снега поверхности, не прогреваемой солнцем в течении всей зимы (под навесом). Реальная глубина промерзания будет меньше или такой же в зависимости от количества снега и солнечной радиации на поверхности

Таблица 5.2

Глубина и скорость промерзания грунта и их влияние на процессы пучения

Для того, чтобы определить реальную глубину промерзания с учетом множества факторов, включая снеговой покров, солнечную радиацию и тепловой режим сооружения необходимо выполнить теплотехнический расчет. Теплотехнические расчеты сложны и трудоемки, а так же требуют большого количества исходных данных. Для отдельных случаев существуют упрощенные расчеты, некоторые из которых приведены в СП 25.13330. Вопросы теплотехники грунтов затрагиваются в этой статье.

4. Заключение

Для правильного учета сил морозного пучения и выбора мер по защите от его воздействия необходимо и достаточно верно определить глубину промерзания грунта. Для этого следует пользоваться расчетами, приведенными в нормативной литературе.

Учет скорости промерзания в расчетах невозможен из-за сложности определения этого показателя и его изменчивости.

Учитывать снеговой покров в надежде что он снизит глубину промерзания не следует, так как после возведения сооружения снег скорее всего будет переноситься ветром от одной части сооружения к другой и с наветренной стороны поверхность грунта будет оголена. Если же сооружение поднято над землей, то под ним будет оголенная поверхность без снега и с температурой наружного воздуха, что так же увеличит глубину промерзания.

Если глубина промерзания грунта больше 2,5 м и если среднегодовая температура в регионе отрицательная, то для определения нормативной глубины промерзания необходимо выполнять теплотехнический расчет.

Так же теплотехнический расчет следует выполнять если, например, применяется утепление грунта.

Для принятия решений по фундаментам используется расчетное значение глубины промерзания, которое в 1,1 больше нормативного для неотапливаемых сооружений и ниже нормативного для отапливаемых сооружений.

5. Связанные статьи

Депрессия точки замерзания - химия LibreTexts

Депрессия точки замерзания является коллигативным свойством, наблюдаемым в растворах в результате введения растворенных молекул в растворитель. Все точки замерзания растворов ниже, чем у чистого растворителя, и прямо пропорциональны молярности растворенного вещества.

где \ (\ Delta {T_f} \) - депрессия точки замерзания, \ (T_f \) (решение) - точка замерзания раствора, \ (T_f \) (растворитель) - точка замерзания растворителя, \ (K_f \) - постоянная депрессии точки замерзания, а м - - моляльность.

Введение

Неэлектролиты - это вещества без ионов, только молекулы. Сильные электролиты, с другой стороны, состоят в основном из ионных соединений, и по существу все растворимые ионные соединения образуют электролиты. Поэтому, если мы сможем установить, что вещество, с которым мы работаем, является однородным и не ионным, можно с уверенностью предположить, что мы работаем с неэлектролитом, и мы можем попытаться решить эту проблему, используя наши формулы. Это, скорее всего, будет иметь место для всех проблем, с которыми вы сталкиваетесь, связанных с понижением температуры замерзания и повышением температуры кипения в этом курсе, но это хорошая идея, чтобы следить за ионами.Стоит отметить, что эти уравнения работают как для летучих, так и для нелетучих решений. Это означает, что для определения снижения температуры замерзания или повышения температуры кипения давление пара не влияет на изменение температуры. Кроме того, помните, что чистый растворитель - это раствор, в котором ничего не добавлено или не растворено. Мы будем сравнивать свойства этого чистого растворителя с его новыми свойствами при добавлении в раствор.

Добавление растворенных веществ к идеальному решению приводит к положительному ΔS, увеличению энтропии.Из-за этого химические и физические свойства вновь измененного раствора также изменятся. Свойства, которые претерпевают изменения вследствие добавления растворенных веществ в растворитель, известны как коллигативные свойства. Эти свойства зависят от количества добавляемых растворенных веществ, а не от их идентичности. Двумя примерами коллигативных свойств являются температура кипения и температура замерзания: из-за добавления растворенных веществ температура кипения имеет тенденцию к увеличению, а температура замерзания имеет тенденцию к снижению.

Точку замерзания и температуру кипения чистого растворителя можно изменить при добавлении в раствор.Когда это происходит, температура замерзания чистого растворителя может стать ниже, а температура кипения может стать выше. Степень, в которой происходят эти изменения, можно найти по формулам:

\ [\ Delta {T} _f = -K_f \ times m \]

\ [\ Delta {T} _f = K_b \ times m \]

, где \ (m \) - моляльность , а значения \ (K \) - константы пропорциональности; (\ (K_f \) и \ (K_b \) для заморозки и кипения соответственно.

Если решение для константы пропорциональности не является конечной целью проблемы, эти значения, скорее всего, будут даны.Некоторые общие значения для \ (K_f \) и \ (K_b \) соответственно:

Растворитель \ (K_f \) \ (К_б \)
Вода 1,86 ,512
Уксусная кислота 3,90 3.07
бензол 5,12 2,53
Фенол 7,27 3,56

Молярность определяется как число молей растворенного вещества на килограмм растворителя . Будьте осторожны, чтобы не использовать массу всего раствора. Часто проблема дает вам изменение температуры и константы пропорциональности, и вы должны сначала найти моляльность, чтобы получить окончательный ответ.

Раствор для того, чтобы оказать какое-либо изменение коллигативных свойств, должен удовлетворять двум условиям. Во-первых, он не должен влиять на давление паров раствора, а во-вторых, он должен оставаться взвешенным в растворе даже во время фазовых переходов. Поскольку растворитель больше не является чистым при добавлении растворенных веществ, мы можем сказать, что химический потенциал у растворителя ниже. Химический потенциал - это молярная энергия Гибба, которую один моль растворителя может внести в смесь.Чем выше химический потенциал растворителя, тем больше он способен стимулировать реакцию. Следовательно, растворители с более высоким химическим потенциалом также будут иметь более высокое давление пара.

Точка кипения достигается, когда химический потенциал чистого растворителя, жидкости, достигает потенциала химического потенциала чистого пара. Из-за уменьшения химического потенциала смешанных растворителей и растворенных веществ мы наблюдаем это пересечение при более высоких температурах.Другими словами, температура кипения загрязненного растворителя будет выше, чем у чистого жидкого растворителя. Таким образом, повышение температуры кипения происходит с повышением температуры, которое количественно определяется с использованием

\ [\ Delta {T_b} = K_b b_B \]

, где

  • \ (K_b \) известен как эбуллиоскопическая константа и
  • \ (м \) - моляльность растворенного вещества.

Точка замерзания достигается, когда химический потенциал чистого жидкого растворителя достигает потенциала чистого твердого растворителя.Опять же, поскольку мы имеем дело со смесями с пониженным химическим потенциалом, мы ожидаем, что точка замерзания изменится. В отличие от точки кипения, химический потенциал загрязненного растворителя требует более низкой температуры, чтобы он достиг химического потенциала чистого твердого растворителя. Следовательно, наблюдается понижения температуры замерзания .

Пример \ (\ PageIndex {1} \)

2,00 г неизвестного соединения снижает температуру замерзания 75,00 г бензола с 5.{\ circ} C / m} \\ [4pt] & = 0,123 м \ end {align *} \]

\ [\ begin {align *} \ text {Amount Solute} & = 0.07500 \; кг \; бензол \ times \ dfrac {0.123 \; m} {1 \; кг \; бензол} \\ [4pt] & = 0.00923 \; м \; растворенный \ конец {выровнять *} \]

Теперь мы можем найти молекулярный вес неизвестного соединения:

\ [\ begin {align *} \ text {Molecular Weight} = & \ dfrac {2.00 \; грамм \; неизвестно} {0.00923 \; mol} \\ [4pt] & = 216.80 \; г / моль \ конец {выровнять *} \]

Депрессия точки замерзания особенно важна для водной жизни.Так как соленая вода замерзнет при более низких температурах, организмы могут выжить в этих водоемах.

,
Что такое депрессия точки замерзания и как она работает с видео
    • Классы
      • Класс 1 - 3
      • Класс 4 - 5
      • Класс 6 - 10
      • Класс 11 - 12
    • КОНКУРСЫ
      • BBS
      • 000000000 Книги
        • NCERT Книги для 5 класса
        • NCERT Книги Класс 6
        • NCERT Книги для 7 класса
        • NCERT Книги для 8 класса
        • NCERT Книги для 9 класса
        • NCERT Книги для 10 класса
        • NCERT Книги для 11 класса
        • NCERT Книги для 12-го класса
      • NCERT Exemplar
        • NCERT Exemplar Class 8
        • NCERT Exemplar Class 9
        • NCERT Exemplar Class 10
        • NCERT Exemplar Class 11
        • NCERT Exemplar Class 12
        • 9000al Aggar Agaris Agard Agard Agard Agard Agard 2000 12000000
          • Решения RS Aggarwal класса 10
          • Решения RS Aggarwal класса 11
          • Решения RS Aggarwal класса 10
          • 90 003 Решения RS Aggarwal класса 9
          • Решения RS Aggarwal класса 8
          • Решения RS Aggarwal класса 7
          • Решения RS Aggarwal класса 6
        • Решения RD Sharma
          • Решения класса RD Sharma
          • Решения класса 9 Шарма 7 Решения RD Sharma Class 8
          • Решения RD Sharma Class 9
          • Решения RD Sharma Class 10
          • Решения RD Sharma Class 11
          • Решения RD Sharma Class 12
        • ФИЗИКА
          • Механика
          • 000000 Электромагнетизм
        • ХИМИЯ
          • Органическая химия
          • Неорганическая химия
          • Периодическая таблица
        • МАТС
          • Теорема Пифагора
          • Отношения и функции
          • Последовательности и серии
          • Таблицы умножения
          • Детерминанты и матрицы
          • Прибыль и убыток
          • Полиномиальные уравнения
          • Делительные дроби
        • 000 ФОРМУЛЫ
          • Математические формулы
          • Алгебровые формулы
          • Тригонометрические формулы
          • Геометрические формулы
        • КАЛЬКУЛЯТОРЫ
          • Математические калькуляторы
          • S000
          • S0003
          • Pегипс Класс 6
          • Образцы документов CBSE для класса 7
          • Образцы документов CBSE для класса 8
          • Образцы документов CBSE для класса 9
          • Образцы документов CBSE для класса 10
          • Образцы документов CBSE для класса 11
          • Образец образца CBSE pers for Class 12
        • CBSE Документ с вопросами о предыдущем году
          • CBSE Документы за предыдущий год Class 10
          • CBSE Вопросы за предыдущий год Class 12
        • HC Verma Solutions
          • HC Verma Solutions Класс 11 Физика
          • Решения HC Verma Class 12 Physics
        • Решения Lakhmir Singh
          • Решения Lakhmir Singh Class 9
          • Решения Lakhmir Singh Class 10
          • Решения Lakhmir Singh Class 8
        • Примечания
        • CBSE
        • Notes
            CBSE Класс 7 Примечания CBSE
          • Класс 8 Примечания CBSE
          • Класс 9 Примечания CBSE
          • Класс 10 Примечания CBSE
          • Класс 11 Примечания CBSE
          • Класс 12 Примечания CBSE
        • Примечания пересмотра
        • CBSE Редакция
        • CBSE
        • CBSE Class 10 Примечания к пересмотру
        • CBSE Class 11 Примечания к пересмотру 9000 4
        • Замечания по пересмотру CBSE класса 12
      • Дополнительные вопросы CBSE
        • Дополнительные вопросы CBSE 8 класса
        • Дополнительные вопросы CBSE 8 по естественным наукам
        • CBSE 9 класса Дополнительные вопросы
        • CBSE 9 дополнительных вопросов по науке CBSE
        • 9000 Класс 10 Дополнительные вопросы по математике
        • CBSE Класс 10 Дополнительные вопросы по науке
      • Класс CBSE
        • Класс 3
        • Класс 4
        • Класс 5
        • Класс 6
        • Класс 7
        • Класс 8
        • Класс 9
        • Класс 10
        • Класс 11
        • Класс 12
      • Решения для учебников
    • Решения NCERT
      • Решения NCERT для класса 11
          Решения NCERT для физики класса 11
        • Решения NCERT для класса 11 Химия
        • Решения для класса 11 Биология
        • NCERT Решения для класса 11 Математика
        • 9 0003 NCERT Solutions Class 11 Бухгалтерия
        • NCERT Solutions Class 11 Бизнес исследования
        • NCERT Solutions Class 11 Экономика
        • NCERT Solutions Class 11 Статистика
        • NCERT Solutions Class 11 Коммерция
      • NCERT Solutions для класса 12
        • NCERT Solutions для Класс 12 Физика
        • Решения NCERT для 12 класса Химия
        • Решения NCERT для 12 класса Биология
        • Решения NCERT для 12 класса Математика
        • Решения NCERT Класс 12 Бухгалтерский учет
        • Решения NCERT Класс 12 Бизнес исследования
        • Решения NCERT Класс 12 Экономика
        • NCERT Solutions Class 12 Бухгалтерский учет Часть 1
        • NCERT Solutions Class 12 Бухгалтерский учет Часть 2
        • NCERT Solutions Class 12 Микроэкономика
        • NCERT Solutions Class 12 Коммерция
        • NCERT Solutions Class 12 Макроэкономика
      • NCERT Solutions Для Класс 4
        • Решения NCERT для математики класса 4
        • Решения NCERT для класса 4 EVS
      • Решения NCERT для класса 5
        • Решения NCERT для математики класса 5
        • Решения NCERT для класса 5 EVS
      • Решения NCERT для класса 6
        • Решения NCERT для класса 6 Maths
        • Решения NCERT для класса 6 Science
        • Решения NCERT для класса 6 Общественные науки
        • Решения NCERT для класса 6 Английский
      • Решения NCERT для класса 7
        • Решения NCERT для класса 7 Математика
        • Решения NCERT для 7 класса Science
        • Решения NCERT для 7 класса Общественные науки
        • Решения NCERT для 7 класса Английский
      • Решения NCERT для 8 класса Математические решения
        • для 8 класса Математика
        • Решения NCERT для класса 8 Science
        • Решения NCERT для класса 8 Общественные науки
        • NCERT Solutio ns для класса 8 Английский
      • Решения NCERT для класса 9
        • Решения NCERT для класса 9 Общественные науки
      • Решения NCERT для класса 9 Математика
        • Решения NCERT для класса 9 Математика Глава 1
        • Решения NCERT Для класса 9 Математика 9 класса Глава 2
        • Решения NCERT для математики 9 класса Глава 3
        • Решения NCERT для математики 9 класса Глава 4
        • Решения NCERT для математики 9 класса Глава 5
        • Решения NCERT для математики 9 класса Глава 6
        • Решения NCERT для Математика 9 класса Глава 7
        • Решения NCERT для математики 9 класса Глава 8
        • Решения NCERT для математики 9 класса Глава 9
        • Решения NCERT для математики 9 класса Глава 10
        • Решения NCERT для математики 9 класса Глава 11
        • Решения NCERT для Математика 9 класса Глава 12
        • Решения NCERT для математики 9 класса Глава 13
        • Решения NCERT для математики 9 класса Глава 14
        • Решения NCERT для математики класса 9 Глава 15
      • Решения NCERT для науки 9 класса
        • Решения NCERT для науки 9 класса Глава 1
        • Решения NCERT для науки 9 класса Глава 2
        • Решения NCERT для класса 9 Наука Глава 3
        • Решения NCERT для 9 класса Наука Глава 4
        • Решения NCERT для 9 класса Наука Глава 5
        • Решения NCERT для 9 класса Наука Глава 6
        • Решения NCERT для 9 класса Наука Глава 7
        • Решения NCERT для 9 класса Научная глава 8
        • Решения NCERT для 9 класса Научная глава
        • Научные решения NCERT для 9 класса Научная глава 10
        • Научные решения NCERT для 9 класса Научная глава 12
        • Научные решения NCERT для 9 класса Научная глава 11
        • Решения NCERT для 9 класса Научная глава 13
        • Решения NCERT для 9 класса Научная глава 14
        • Решения NCERT для класса 9 Science Глава 15
      • Решения NCERT для класса 10
        • Решения NCERT для класса 10 Общественные науки
      • Решения NCERT для математики класса 10
        • Решения NCERT для математики класса 10 Глава 1
        • Решения NCERT для математики класса 10 Глава 2
        • решения NCERT для математики класса 10 глава 3
        • решения NCERT для математики класса 10 глава 4
        • решения NCERT для математики класса 10 глава 5
        • решения NCERT для математики класса 10 глава 6
        • решения NCERT для математики класса 10 Глава 7
        • решения NCERT для математики класса 10 глава 8
        • решения NCERT для математики класса 10 глава 9
        • решения NCERT для математики класса 10 глава 10
        • решения NCERT для математики класса 10 глава 11
        • решения NCERT для математики класса 10, глава 12
        • Решения NCERT для математики класса 10, глава 13
        • соль NCERT Решения для математики класса 10 Глава 14
        • Решения NCERT для математики класса 10 Глава 15
      • Решения NCERT для науки 10 класса
        • Решения NCERT для науки 10 класса Глава 1
        • Решения NCERT для науки 10 класса Глава 2
        • Решения NCERT для науки 10 класса, глава 3
        • Решения NCERT для науки 10 класса, глава 4
        • Решения NCERT для науки 10 класса, глава 5
        • Решения NCERT для науки 10 класса, глава 6
        • Решения NCERT для науки 10 класса, глава 7
        • Решения NCERT для науки 10 класса, глава 8
        • Решения NCERT для науки 10 класса, глава 9
        • Решения NCERT для науки 10 класса, глава 10
        • Решения NCERT для науки 10 класса, глава 11
        • Решения NCERT для науки 10 класса, глава 12
        • Решения NCERT для 10 класса Science Глава 9
        • Решения NCERT для 10 класса Science Глава 14
        • Решения NCERT для науки 10 класса Глава 15
        • Решения NCERT для науки 10 класса Глава 16
      • Программа NCERT
      • NCERT
    • Коммерция
      • Класс 11 Коммерческая программа Syllabus
      • Учебный курс по бизнес-классу 11000
      • Учебная программа по экономическому классу
    • Учебная программа по коммерческому классу
      • Учебная программа по 12 классу
      • Учебная программа по 12 классу
      • Учебная программа по экономическому классу
          000000 000000 000000
        • Образцы коммерческих документов класса 11
        • Образцы коммерческих документов класса 12
      • Решения TS Grewal
        • Решения TS Grewal Класс 12 Бухгалтерский учет
        • Решения TS Grewal Класс 11 Бухгалтерский учет
      • Отчет о движении денежных средств
      • eurship
      • Защита потребителей
      • Что такое фиксированный актив
      • Что такое баланс
      • Формат баланса
      • Что такое акции
      • Разница между продажами и маркетингом
    • P000S Документы ICSE
    • ML Решения Aggarwal
      • ML Решения Aggarwal Class 10 Maths
      • ML Решения Aggarwal Class 9 Математика
      • ML Решения Aggarwal Class 8 Maths
      • ML Решения Aggarwal Class 7 Математические решения
      • ML 6 0004
      • ML 6
    • Selina Solutions
      • Selina Solution для 8 класса
      • Selina Solutions для 10 класса
      • Selina Solution для 9 класса 9
    • Frank Solutions
      • Frank Solutions для класса 10 Maths
      • Frank Solutions для класса 9 Maths
    • ICSE Class 9000 2
    • ICSE Class 6
    • ICSE Class 7
    • ICSE Class 8
    • ICSE Class 9
    • ICSE Class 10
    • ISC Class 11
    • ISC Class 12
  • IAS
  • Сервисный экзамен
  • UPSC Syllabus
  • Бесплатно IAS Prep
  • Текущая информация
  • Список статей IAS
  • IAS 2019 Mock Test
    • IAS 2019 Mock Test 1
    • IAS 2019 Mock Test 2
    • KPSC KAS экзамен
    • UPPSC PCS экзамен
    • MPSC экзамен
    • RPSC RAS ​​экзамен
    • TNPSC группа 1
    • APPSC группа 1
    • BPSC экзамен
    • экзамен
    • JPS
    • экзамен
    • экзамен
    • WPSS
    • экзамен
    • JPS
    • экзамен
    • экзамен
    • экзамен
    • экзамен
    • экзамен
    • экзамен
    • экзамен
    • экзамен
    • экзамен
  • Вопросник UPSC 2019
    • Ключ ответа UPSC 2019
  • Коучинг IAS
    • IA S Коучинг Бангалор
    • IAS Коучинг Дели
    • IAS Коучинг Ченнаи
    • IAS Коучинг Хайдарабад
    • IAS Коучинг Мумбаи
  • JEE
    • Бумага
    • JEE JEE 9000
    • JEE
    • JEE-код
    • JEE
    • J0003 S0004000
    • JEE Вопрос
    • Биноминальная теорема
    • JEE Статьи
    • Квадратичное уравнение
  • NEET
    • Программа Бьюя NEET
    • NEET 2020
    • NEET Подготовка к экзамену NEET
    • S0003
    • образца
    • Поддержка
      • Жалоба Разрешение
      • Customer Care
      • Поддержка центр
  • Государственные платы
    • GSEB
      • GSEB Силабус
      • GSEB Вопрос бумаги
      • GSEB образец бумаги
      • GSEB Книги
      90 004
    • MSBSHSE
      • MSBSHSE Syllabus
      • MSBSHSE Учебники
      • MSBSHSE Образцы документов
      • MSBSHSE Вопросные записки
    • AP Board
      • -й год APSERT
      • -й год SBSUS
      • -й год
      • SUBSUS
      • SUBSUS
      • SUBSUS
      • SUBSUS
      • SUBSUS
      • SUBSUS
      • SUBSUS
      • SUBSUS
      • SUBSUS
      • SUBSUS
      • SUBSUS
      • SUBSUS SUBSUS SUBSUS SUBSUS SUBSUS
      • SUBSUS
      • SUBSUS
      • SUBSUS
      • SUBSUS SUBSUS
      • SUBSUS
      • Всеобщая справка
    • MP Board
      • MP Board Syllabus
      • MP Board Образцы документов
      • MP Board Учебники
    • Assam Board
      • Assam Board Syllabus
      • Assam Board Учебники
      • Sample Board Paperss Sample3 P0003 BSEB
        • Бихарская доска Syllabus
        • Бихарская доска Учебники
        • Бихарская доска Вопросные бумаги
        • Бихарская модель Бумажные макеты
      • БСЭ Одиша
        • доска
        • Sislabus
        • Совет 9408 S0008
        • Sisplus
        • S0008
        • Sample P000S
        • Sample
        • S000S PSEB Syllabus
        • Учебники PSEB
        • Документы PSEB
      • RBSE
        • Учебное пособие Раджастхана Syllabus
        • Учебники RBSE
        • Документы RBSE
      • PCB
      • HPE HPSBE
      • JKBOSE
        • JKBOSE Syllabus
        • JKBOSE Образцы документов
        • JKBOSE Образец экзамена
      • TN Board
        • TN Board Syllabus
        • Board 931 JAC
          • JAC Силабус
          • JAC учебники
          • JAC Вопрос Papers
        • Telangana Совет
          • Telangana Совет Силабус
          • Telangana совет учебники
          • Telangana Совет Вопрос Papers
          • KSEEB KSEEB Силабус
          • KSEEB Модель Вопрос Papers
        • KBPE
          • KBPE Силабус
          • KBPE Учебники
          • KBPE Вопрос Papers
        • UPMSP
          • UP Совет Силабус
          • UP Совет Книги
          • UP Совет Вопрос Papers
        • Западная Бенгалия Совет
          • Западная Бенгалия Совет Силабус
          • Западная Бенгалия Совет учебниками
          • West Bengal совет Вопрос документы
        • UBSE
        • TBSE
        • Goa Board
        • NbSe
        • CGBSE
        • MBSE
        • Meghalaya Совет
        • Manipur Совет
        • Харьяны Совет
      • Государственные экзамены
        • Банк экзаменов
          • SBI Exams
          • PIL, Exams
          • RBI Exams
          • PIL, РРБ экзамен
        • SSC Exams
          • SSC JE
          • SSC GD
          • SSC CPO 900 04
          • SSC CHSL
          • SSC CGL
        • RRB экзамены
          • RRB JE
          • RRB NTPC
          • RRB ALP
        • L00030004000000000000 UPSC CAPF
        • Список государственных экзаменов Статьи
      • Дети учатся
        • Класс 1
        • Класс 2
        • Класс 3
      • Академические вопросы
        • Физические вопросы
        • Вопросы химии
        • Химические вопросы
        • Химические вопросы
        • Вопросы химии
        • Химические науки
        • Вопросы химии
        • Вопросы
        • Вопросы науки
        • Вопросы ГК
      • Обучение онлайн
        • Обучение на дому
      • Полные формы
      • CAT
        • Программа CAT BYJU
        • CAT
        • 18
        ,
        Точка замерзания | Определение точки замерзания по Merriam-Webster

        Чтобы сохранить это слово, вам необходимо войти в систему.

        Определение точки замерзания

        : температура, при которой жидкость затвердевает

        Примеры точки замерзания в предложении

        Температура замерзания воды составляет 0 градусов по Цельсию и 32 градуса по Фаренгейту.

        Последние примеры в Интернете На поверхности вода бодрая и колеблется ниже нуля по Цельсию (соленость понижает температуру замерзания воды ), так что это не окажет большого влияния на лед.- Ула Чробак, Popular Science , «Ледяной покров Гренландии тает больше, чем мы думали», 6 февраля 2020 г. Это на 2 градуса теплее, чем в точке замерзания в этом месте, сказал Дэвид Холланд, нью-йоркский Университетский гляциолог. - Крис Муни, Anchorage Daily News , «Беспрецедентные данные подтверждают, что самый опасный ледник Антарктиды тает снизу», 31 января 2020 года. Как объясняет ученый-атмосферолог из Университета штата Колорадо Скотт Деннинг, это происходит потому, что жидкая вода в озере не может быть ниже точки замерзания - около 32 градусов по Фаренгейту.- Дженнифер Уикс, «Беседа », «Скоро зима: 5 основных статей о снеге и льде», 12 декабря 2019 года

        Эти примеры предложений автоматически выбираются из различных источников новостей в Интернете, чтобы отразить текущее использование слова «точка замерзания». Взгляды, выраженные в примерах, не отражают мнение Merriam-Webster или его редакторов. Отправьте нам отзыв.

        См. Больше

        Первое известное использование точки замерзания

        1747 в значении, определенном выше

        Подробнее о точке замораживания

        Статистика для точки замерзания

        Цитировать эту запись

        «Точка замерзания. Merriam-Webster.com Dictionary , Merriam-Webster, https://www.merriam-webster.com/dictionary/freezing%20point. По состоянию на 28 июля 2020 г.

        MLA Chicago APA Merriam-Webster

        Дополнительные определения для точки замерзания

        Дети Определение точки замерзания

        : температура, при которой жидкость становится твердой

        Медицинское определение замерзания точка

        : температура, при которой жидкость затвердевает, в частности : температура, при которой жидкое и твердое состояния вещества находятся в равновесии при атмосферном давлении : точка плавления точка замерзания воды равна 0 ° Цельсия или 32 ° по Фаренгейту

        Комментарии к точке замерзания

        Что заставило вас искать точку замерзания ? Пожалуйста, сообщите нам, где вы читали или слышали это (включая цитату, если это возможно).

        Депрессия точки замерзания

        - Концепция

        Депрессия точки замерзания является коллигативным свойством решений. Точки замерзания растворов ниже, чем у чистого растворителя или растворенного вещества, поскольку замерзание или превращение в твердое вещество создает порядок и уменьшает энтропию. Растворы имеют высокую энтропию из-за смеси растворителя и растворенного вещества, поэтому требуется меньше энергии, чтобы уменьшить их энтропию до той же точки.

        Хорошо, имея дело с решениями, вы столкнетесь с коллигативными свойствами, и одно из коллигативных свойств, которые вы увидите, это депрессия точки замерзания, которая говорит, что в растворе частицы растворенного вещества мешают силам притяжения среди растворителя. частицы.И это предотвращает попадание раствора в твердое состояние. По сути, это то, что они говорят, потому что в жидкости есть все эти дополнительные частицы, которые образуют раствор, и это не чистый растворитель, который мешает межмолекулярным силам, которые делают его твердым, твердым. Подобно водородным связям, диполь-дипольному взаимодействию и лондонским дисперсионным силам, эти лишние частицы, которые там как бы мешают, на самом деле помогают понизить температуру замерзания, чтобы вытолкнуть эти частицы, так что это будет чистый растворитель, когда он действительно заморожен.

        Точка замерзания утверждает, что частицы больше не обладают достаточной кинетической энергией для преодоления межмолекулярных сил притяжения, поэтому, когда эти частицы присутствуют, эти силы притяжения не нужны. Как будто им просто нужно вытолкнуть эти частицы, чтобы на них могли присутствовать силы притяжения внутренних частиц. Итак, давайте на самом деле поговорим о разных веществах и их точках замерзания. Итак, мы говорим о воде, которая является универсальным растворителем, и мы знаем, что вода обычно замерзает при 0 градусах Цельсия при нормальной точке замерзания.Теперь для каждого моляра вещества, которое я собираюсь поместить в эту воду в чистом веществе, это на самом деле снизит температуру температуры замерзания на 1,86 градуса Цельсия.

        Бензол замерзает при 5,5 градусах Цельсия, что значительно выше, чем у воды, и для каждого моль вещества, которое у вас есть на килограмм раствора, точка кипения будет падать еще больше на 5,12 градусов Цельсия и так далее, и так далее. Итак, если вы посмотрите на это, это очень похоже на повышение точки кипения, но эта формула набора точно такая же, но есть некоторые небольшие различия.Таким образом, изменение температуры точки замерзания равно константе, которую мы обсуждали, временное сходство этого решения, с которым мы имеем дело, время - это фактор Бен-Хоффа, а фактор Бен-Хоффа - это то, сколько частица фактически разделяет в решение. Итак, мы говорим об ионных соединениях, они разделяются на растворы в зависимости от того, сколько у них частиц или сколько в них ионов, а молекулярных соединений нет. Итак, давайте на самом деле привести это в действие.

        Хорошо, так что точка замерзания 0.029 моль водного раствора NaCl, поэтому мы знаем, что он водный, а водный говорит нам, что наш растворитель - вода. Таким образом, мы собираемся сказать, что наша дельта Т изменяется по температуре, и точка замерзания становится равной постоянной воды, которая составляет 1,86 градуса Цельсия для каждого моляра. И молярный раствор равен 0,029, и, поскольку это NaCl, я знаю, что он ионный для каждого моляра, который он на самом деле разделит на 2 вещества: Na плюс и Cl минус. Таким образом, мы фактически умножаем это на 2, у нас есть вещества, когда они в растворе.Таким образом, когда вы умножаете все это вместе, вы получаете 0,11 градуса по Цельсию, и мы скажем, что наша первоначальная точка замораживания равна 0, она снизится на 0,11, и поэтому наша новая точка замораживания составляет 0,11 градуса по Цельсию, отрицательно, потому что она сильно упала. Таким образом, нам действительно нравится говорить о том, когда вы думаете о том, когда на улице идет снег, и о причине, по которой вы кладете соль на дороги, на дорогах даже нет соли, которая фактически понижает точку замерзания, поэтому не будет листов льда на дороге или на дороге или на боковых прогулках.Вот почему они используют соль и фактически используют хлорид кальция, который обычно лучше, чем хлорид натрия, потому что он фактически распадается на 3 частицы, так что он понижает температуру замерзания в 3 раза больше, чем другой раствор Так что это пример пугающей депрессии.

        ,
        Точка промерзания: Точка промерзания
  • Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *

    Scroll to top