Уклон труб отопления при естественной циркуляции: Уклон труб в системе отопления

Уклон труб в системе отопления

Уклон труб – важный критерий, зачастую влияющий на эффективность работы, ремонтопригодность и безопасность систем отопления водяного или парового типа. В зависимости от вида и схемы комплекса обогрева выбирается соответствующий конкретным условиям уклон трубопроводов – обзору этого вопроса и посвящен материал данной статьи.

Содержание

Значение уклона труб в отоплении

Уклон трубопроводов в системах водяного и парового отопления имеет различные значения и участвует в решении следующих технических задач:

  1. Обеспечение естественной циркуляции теплоносителя под воздействием силы гравитации;
  2. Вывод из системы воздуха;
  3. Возможность слива теплоносителя из оборудования и трубопроводов;
  4. Обеспечение безаварийного движения конденсата в паровых системах отопления.

Уклон труб в схеме с естественной циркуляцией теплоносителя

 

Движение теплоносителя в комплексах с естественной циркуляцией теплоносителя обеспечивается за счет разницы плотностей холодной и горячей воды. Соблюдение уклона здесь является сопутствующим фактором, улучшающим режим движения теплоносителя – под воздействием гравитации вода перемещается по трубам несколько быстрее. Горизонтальное расположение или обратный уклон в открытых схемах не допускается – возможна полная остановка циркуляции.

Нормативное значение уклона труб в схеме с гравитационной циркуляцией варьируется от 5 до 10 мм на 1 метр погонной длины трубопровода. При монтаже трубы прокладываются с уклоном в сторону движения теплоносителя – прямой трубопровод наклонен к отопительным приборам, обратная магистраль сооружается с уклоном от отопительных приборов к котлу, расположенному в нижней точке системы. Вторая задача уклона в системе открытого типа – обеспечение слива оборудования через нижнюю точку, расположенную около котла.

Уклон в системе с принудительной циркуляцией

В системах с принудительной циркуляцией, обеспечиваемой силой напора циркуляционного насоса, уклон труб имеет 3 вариации:

  1. Горизонтальное расположение магистралей;
  2. Уклон в сторону движения теплоносителя;
  3. Обратный уклон.

Горизонтальная ориентация трубопроводов разрешена при нормативном значении движения теплоносителя не менее 0, 25 м/с – в этом случае пузырьки воздуха уносятся силой потока и не скапливаются в крупные объемы. Здесь следует отметить, что горизонтальная компоновка труб ухудшает качество и скорость слива теплоносителя при подготовке оборудования к ремонту.

Второй вариант – уклон магистралей в сторону движения теплоносителя. Его величина обычно составляет 2 – 3 мм на 1 метр длины трубопровода – такое значение препятствует образованию скопления воздуха и улучшает возможности по сливу воды.

Обратный уклон в системах с принудительной циркуляцией теплоносителя также допускается – но в этом случае в верхних точках и «мешках» устанавливаются воздухоотводящие устройства, прямые и подающие линии прокладываются с параллельным уклоном. Во всех случаях – при попутном или обратном наклоне общий уклон магистралей ориентируют к общей точке слива теплоносителя.

В паровых системах, где теплоноситель (пар) сам обладает движущей силой, уклон трубопроводов соблюдают в сторону движения рабочей среды.

Это необходимо для попутного движения образующегося конденсата вместе с паровой фазой – обычно величина уклона здесь составляет 1 – 2%. В ином случае при работе оборудования могут наблюдаться гидравлические удары, способные разгерметизировать или разрушитель трубопроводы и рабочие узлы.

Рекомендуем прочитать:

(Просмотров 2 874 , 2 сегодня)

Система отопления с естественной циркуляцией: принцип работы

Система отопления с естественной циркуляцией теплоносителя (гравитационная система отопления) не имеет в своей конструкции циркуляционных насосов, а циркуляция теплоносителя осуществляется путем использования природных физических законов. Ее большим плюсом есть то, что она является весьма долговечной и не требует для своего функционирования наличия дополнительных источников энергии и дорогостоящего оборудования. При правильном проектировании и качественно выполненном монтаже гравитационная система отопления может работать без капитального ремонта не менее 35-40 лет. Она характеризуется небольшой протяженностью трубопроводов (ограничен радиус действия по горизонтали до 30 м), низкие гидравлические напоры и потери давления.

Система отопления с естественной циркуляцией теплоносителя (гравитационная система отопления) была изобретена и запатентована в 1832 г. русским инженером-металлургом, членом-корреспондентом Российской академии наук П. Г. Соболевским.

Принципиальная схема гравитационной системы отопления состоит из теплогенератора (отопительного котла), подающего и обратного магистральных трубопроводов, расширительного бака, и отопительных приборов (радиаторов).

Нагретый в теплогенераторе теплоноситель поступает по подающему и горизонтальным трубопроводам в нагревательные приборы (радиаторы), где происходит отдача им части своего тепла, в свою очередь элементы радиатора передают тепло в помещение. Затем по обратке (обратному трубопроводу) теплоноситель возвращается в теплогенератор, где снова подогревается до требуемой температуры, и далее цикл повторяется.

Естественная циркуляция теплоносителя (воды) по замкнутой системе трубопроводов обусловлена изменением веса и плотности жидкости, при повышении и понижении температуры. При нагреве теплоносителя в теплогенераторе снижается его масса и плотность в подающем трубопроводе. В тоже время в обратном трубопроводе находится уже отдавший свое тепло более холодный теплоноситель, имеющий большую массу и плотность. В системе возникает давление под действием сил гравитации – горячий теплоноситель поднимается вверх по подающей магистрали и растекается по горизонтальным трубопроводам самотеком, замещая холодный теплоноситель, который также самотеком поступает обратно в теплогенератор (котел). Расширительный бак принимает в себя теплоноситель, объём которого увеличивается с повышением температуры, создаёт и поддерживает постоянное давление.

Гравитационное давление вызывает движение теплоносителя, однако оно также расходуется на преодоление сопротивлений в трубах. Сопротивления вызываются в основном трением теплоносителя о стенки труб, а всевозможные разветвления, угловые повороты, присутствующие в системе являются дополнительными источниками сопротивлений. При проектировании отопления одной из главных задач является свести к минимуму сопротивления в трубопроводе. Для снижения сопротивления применяются трубы с большим сечением, также немалое значение имеет материал из которого изготовлены трубы.

Важным условием, обеспечивающим естественную циркуляцию теплоносителя, является наличие уклона в горизонтальных магистралях трубопроводов в сторону движения воды – уклон от подающего стояка к радиаторам, и уклон обратной магистрали от радиаторов к отопительному котлу. Если уклон будет выполнен в другую сторону, от система работать не будет.

Уклон трубопровода должен составлять как минимум 0,005 м на 1 метр погонный трубы.

Помимо обеспечения циркуляции теплоносителя уклон в трубах позволяет эффективно бороться с «завоздушиванием» системы. Пузырьки воздуха, образующиеся в процессе нагрева теплоносителя в системе, устремляется вверх по трубам и поступают в расширительный бак, а затем, соответственно, удаляются в атмосферу.

Проектируя систему отопления, необходимое гравитационное давление (циркуляционный напор) следует обязательно просчитывать по специальной формуле. Оно зависит от разности высот расположения котла и самого нижнего радиатора – чем больше эта разница (h), тем больше давление. Увеличению циркуляционного напора способствует также увеличение угла наклона подающей магистрали трубопровода, направленной в сторону радиаторов, и уклон обратной магистрали, направленной к теплогенератору (котлу).
Уклон трубопровода должен составлять, как минимум 0,005 м на 1 метр погонный трубы.

Такая схема позволяет теплоносителю легче преодолеть местные сопротивления в трубах. Возникающий циркуляционный напор также напрямую зависит от высоты установки радиаторов. Выполняя проектирование и последующий монтаж системы отопления с естественной циркуляцией, котёл размещают в самой нижней точке так, чтобы все теплообменники (радиаторы) находились выше него.

Трубопроводы систем отопления по виду монтажа подразделяются на одно- и двухтрубные. (Не следует путать понятия «двухпоточная», «однотрубная», «двухтрубная»: первое характеризует направление потоков теплоносителя, «цикличность» их в системе, а два последних – только способы соединения трубопроводов с отопительными приборами при соблюдении цикличности).

Система отопления с естественной циркуляцией: схемы, устройство, монтаж

Постройку автономной тепловой сети самотечного типа выбирают в случае нецелесообразности, а иногда и невозможности установки циркуляционного насоса или подключения к централизованному электроснабжению.

Такая система дешевле в установке и полностью независима от электричества. Однако его производительность во многом зависит от точности конструкции.

Чтобы система отопления с естественной циркуляцией функционировала бесперебойно, необходимо рассчитать ее параметры, правильно установить комплектующие и разумно выбрать водяной контур. Мы поможем в решении этих вопросов.

Мы описали основные принципы гравитационной системы, дали советы по выбору трубопровода, изложили правила сборки схемы и размещения рабочих узлов. Особое внимание мы уделили конструкции и функционированию одно- и двухтрубных отопительных контуров.

Содержание статьи:

  • Принципы процесса естественной циркуляции
    • Максимальный перепад гидростатического давления
    • Минимизация сопротивления движению воды
  • Правила выбора и монтажа труб
  • Однотрубная и двухтрубная схемы отопления
    • Однотрубная схема
    • Вариант обратки
  • Выводы и полезное видео по теме
1699
  • Процесс естественной циркуляции

    Процесс движения воды в отопительном контуре без применения циркуляционного насоса происходит благодаря естественным физическим законам.

    Понимание сущности этих процессов позволит вам компетентно решать типичные и нестандартные случаи.

    Фотогалерея

    Фото

    Естественный вариант, определяющий движение теплоносителя под действием силы тяжести, применяется в коттеджах и квартирах с автономной системой отопления.

    Резервный объем, необходимый для расширения теплоносителя при отоплении, обеспечивает открытый расширительный бак

    В построении систем с естественным движением теплоносителя бывают одно- и двухтрубные схемы. Однотрубные контуры устраивают с верхней разводкой

    Самотечные двухтрубные системы конструируются с верхней и нижней разводкой. Горизонтальные участки всегда прокладывают с уклоном 2-3 мм на погонный метр

    Существенным недостатком самотечных систем отопления является низкий напор, из-за чего в них не строят контуры более 30 м по горизонтали

    В системах с гравитационным движением теплоносителя, минимум технических устройств, как следствие, минимум проблем с наладкой и ремонтом

    При подготовке теплоносителя используются твердотопливные, жидкотопливные и все виды газовых котлов

    Предположим, что на выходе из котла теплоноситель прогрет до температуры парообразования +105º. Этот факт необходимо учитывать при выборе оборудования и труб для строительства.

    Вариант естественного отопления

    Открытый расширительный бак

    Схема однотрубной разводки

    Двухтрубные разновидности

    Ограничения естественного отопления

    Простота системы естественного отопления

    Естественные котлы и отопительное оборудование0003

    Максимальный перепад гидростатического давления

    Основным физическим свойством любого теплоносителя (воды или антифриза), способствующим его движению по контуру при естественной циркуляции, является уменьшение плотности с повышением температуры.

    Плотность горячей воды меньше, чем холодной и поэтому существует разница в гидростатическом давлении столба теплой и холодной жидкости. Холодная вода, стекающая в теплообменник, вытесняет горячую воду вверх по трубе.

    Движущей силой воды в контуре при естественной циркуляции является разница гидростатического давления между холодным и горячим столбами жидкости

    Отопительный контур дома можно разделить на несколько фрагментов. По «горячим» фрагментам вода направлена ​​вверх, по «холодным» – вниз. Границами фрагментов являются верхняя и нижняя точки системы отопления.

    Основной задачей при моделировании воды является достижение максимально возможной разницы между давлением столба жидкости в «горячем» и «холодном» фрагментах.

    Классическим для естественной циркуляции элементом водяного контура является ускорительный коллектор (магистральный стояк) — вертикальная труба, направленная вверх от теплообменника.

    Ускорительный коллектор должен иметь максимальную температуру, поэтому он изолирован по всей длине. Хотя, если высота коллектора не большая (как для одноэтажных домов), то утепление можно не проводить, так как вода в нем не успеет остыть.

    Обычно система устроена так, что верхняя точка коллектора ускорения совпадает с верхней точкой всего контура. Устанавливают выход на или вентиляционный клапан, если используется мембранный бак.

    Тогда длина «горячего» участка контура минимально возможная, что приводит к снижению теплопотерь на этом участке.

    Также желательно, чтобы «горячий» участок контура не совмещался с протяженным участком, транспортирующим охлажденный теплоноситель. В идеале нижняя точка водяного контура совпадает с нижней точкой теплообменника, размещенного в отопительном приборе.

    Чем ниже расположен котел в системе отопления, тем ниже гидростатическое давление столба жидкости в горячем фрагменте контура

    Для «холодного» участка водяного контура также существуют свои правила, повышающие напор жидкости:

    • чем больше потери тепла на «холодном» участке тепловой сети , тем ниже температура вода и тем больше ее плотность, поэтому функционирование систем с естественной циркуляцией возможно только при значительной теплоотдаче;
    • чем больше расстояние от низа контура до патрубка радиатора , тем больше сечение водной толщи с минимальной температурой и максимальной плотностью.

    Для обеспечения соблюдения последнего правила часто печь или котел устанавливают в самой нижней точке дома, например, в подвале. Такое расположение котла обеспечивает максимально возможное расстояние между нижним уровнем радиаторов и точкой входа воды в теплообменник.

    Однако высота между нижней и верхней точками водяного контура при естественной циркуляции не должна быть слишком большой (на практике не более 10 метров). Печь или котел, нагреваются только теплообменник и нижняя часть ускорительного коллектора.

    Если этот фрагмент незначителен относительно всей высоты водяного контура, то перепад давления в «горячем» фрагменте контура будет незначительным и процесс циркуляции не запустится.

    Применение систем с естественной циркуляцией для двухэтажных зданий оправдано, а для больших этажей потребуется циркуляционный насос

    Минимизация сопротивления движению воды

    При проектировании системы с естественной циркуляцией необходимо принять с учетом скорости теплоносителя по контуру.

    Во первых чем быстрее скорость, тем быстрее теплообмен по системе «котел — теплообменник — водяной контур — радиаторы отопления — помещение».

    Во вторых чем быстрее скорость жидкости через теплообменник, тем меньше скорее всего она будет кипеть, что особенно важно при отоплении печки

    Кипятить воду в системе может быть очень дорого — затраты на демонтаж, ремонт и переустановку теплообменника требуют много времени и денег

    В системах скорость воды в основном зависит от параметров.

    При водяном отоплении с естественной циркуляцией скорость зависит от следующих факторов:

    • перепады давления между фрагментами контура в нижней его точке;
    • Гидродинамическое сопротивление Система отопления.

    Способы обеспечения максимального перепада давления обсуждались выше. Гидродинамическое сопротивление реальной системы невозможно точно рассчитать из-за сложной математической модели и большого количества входных данных, точность которых трудно гарантировать.

    Тем не менее, есть общие правила, соблюдение которых позволит снизить сопротивление контура отопления.

    Основными причинами снижения скорости движения воды являются сопротивление стенок трубы и наличие сужений из-за наличия арматуры или запорной арматуры. При малом расходе сопротивление стенки практически отсутствует.

    Исключение составляют длинные и тонкие трубы, характерные для отопления с помощью . Как правило, для него выделяют отдельные схемы с принудительной циркуляцией.

    При выборе типов труб для контура с естественной циркуляцией необходимо учитывать наличие технических ограничений при монтаже системы. поэтому их нежелательно использовать при естественной циркуляции воды из-за соединения их фитингами со значительно меньшим внутренним диаметром.

    Арматура металлопластиковых труб несколько сужает внутренний диаметр и является серьезным препятствием для стока воды при низком давлении (+)

    Правила выбора и монтажа труб

    Выбор между стальными или с любой циркуляцией происходит по критерию возможности их использования для горячего водоснабжения, а также с позиций цены, простоты монтажа и срока службы.

    Стояк монтируется из металлической трубы, так как через нее проходит вода наиболее высокой температуры, а в случае печного отопления или неисправности теплообменника возможен вариант пропуска пара.

    При естественной циркуляции необходимо использовать несколько больший диаметр трубы, чем в случае с циркуляционным насосом. Обычно для обогрева помещений до 200 кв. м, диаметр ускорительного коллектора и патрубка на входе обратки в теплообменник 2 дюйма.

    Это вызвано меньшей скоростью воды по сравнению с вариантом принудительной циркуляции, что приводит к следующим проблемам:

    • снижение теплоотдачи в единицу времени от источника в отапливаемое помещение;
    • засорение или воздушная пробка , которая не справляется с небольшим давлением.

    Особое внимание при использовании естественной циркуляции с нижним контуром подачи необходимо уделить проблеме удаления воздуха из системы. Его нельзя полностью удалить из теплоносителя через расширительный бачок, так как кипяток сначала попадает в приборы по магистрали, расположенные ниже их самих.

    При принудительной циркуляции давление воды подает воздух в воздухосборник, установленный в самой высокой точке системы — устройство с автоматическим, ручным или полуавтоматическим управлением. Через В основном регулируется теплоотдача.

    В самотечных тепловых сетях с подводом, расположенным ниже приборов, краны Маевского используются непосредственно для стравливания воздуха.

    Все современные радиаторы отопления имеют устройства для отвода воздуха, поэтому для предотвращения образования пробок в контуре можно сделать уклон, подгоняя воздух к радиатору

    Воздух также может быть удален с помощью воздухоотводчиков, установленных на каждом стояке или на ВЛ, проходящей параллельно магистралям системы. Из-за внушительного количества воздухоотводящих устройств самотечные схемы с нижней разводкой встречаются крайне редко.

    При низком давлении небольшая воздушная пробка может полностью остановить систему отопления. Так, согласно СНиП 41-01-2003 не допускается прокладка трубопроводов системы отопления без уклона при скорости воды менее 0,25 м/с.

    При естественной циркуляции такие скорости недостижимы. Поэтому помимо увеличения диаметра труб необходимо соблюдать постоянные уклоны для удаления воздуха из системы отопления. Уклон проектируют из расчета 2–3 мм на 1 метр, в квартирных сетях уклон достигает 5 мм на погонный метр горизонтальной линии.

    Уклон подачи делается по направлению движения воды так, чтобы воздух перемещался в расширительный бачок или систему стравливания воздуха, расположенную в верхней точке контура. Хотя можно сделать контрсмещение, но в этом случае необходимо дополнительно установить .

    Уклон обратки делается, как правило, в сторону движения охлажденной воды. Тогда нижняя точка контура совпадет с входом обратки в теплогенератор.

    Наиболее распространенное сочетание уклона подающей и обратной труб для удаления воздушных пробок из водяного контура с естественной циркуляцией

    При небольшой площади в контуре с естественной циркуляцией необходимо исключить попадание воздуха в узкие и горизонтальные трубы данной системы отопления. Перед теплым полом необходимо разместить устройство удаления воздуха.

    Схемы отопления однотрубные и двухтрубные

    При разработке схемы отопления дома с естественной циркуляцией воды возможно проектирование как одного, так и нескольких отдельных контуров. Они могут существенно отличаться друг от друга. Независимо от длины, количества радиаторов и других параметров они выполняются по однотрубной или двухтрубной схеме.

    Однолинейный контур

    Система отопления, использующая одну и ту же трубу для последовательной подачи воды к радиаторам, называется однотрубной. Самый простой однотрубный вариант – это отопление металлическими трубами без использования радиаторов.

    Это самый дешевый и наименее проблемный способ решения отопления дома при выборе в пользу естественной циркуляции теплоносителя. Единственный существенный минус – появление громоздких труб.

    У самых экономичных с радиаторами отопления горячая вода проходит последовательно через каждый прибор. Здесь нужно минимальное количество труб и вентилей.

    По мере остывания, поэтому последующие радиаторы получают более холодную воду, что необходимо учитывать при расчете количества секций.

    Простая однотрубная схема (выше) требует минимального объема монтажных работ и вложенных средств. Более сложный и затратный вариант, представленный ниже, позволяет отключить радиаторы без остановки всей системы.

    Наиболее эффективным способом подключения отопительных приборов к однотрубной сети является диагональный вариант.

    По данной схеме отопительных контуров с естественным типом циркуляции горячая вода поступает в радиатор сверху, после остывания отводится через трубу, расположенную снизу. Проходя таким образом, нагретая вода отдает максимальное количество тепла.

    При нижнем подключении к батарее, как входного патрубка, так и выходного патрубка значительно снижается теплоотдача, ведь нагретый теплоноситель должен идти как можно дольше. Из-за значительного охлаждения в таких схемах не используются батареи с большим количеством секций.

    «Ленинградка» отличается внушительными теплопотерями, что необходимо учитывать при расчете системы. Его плюс в том, что при использовании запорной арматуры на входном и выходном патрубках приборы можно опционально отключать для ремонта без остановки отопительного цикла (+)

    Отопительные контуры с подобным подключением радиаторов называются ««. Несмотря на отмеченные тепловые потери, им отдают предпочтение при обустройстве квартирных систем отопления, что обусловлено более эстетичным видом трубопровода.

    Существенным недостатком однотрубных сетей является невозможность отключения одной из секций отопления без прекращения циркуляции воды по всему контуру.

    Поэтому обычно применяют модернизацию классической схемы с установкой «обвода» радиатора с использованием ответвления с двумя шаровыми кранами или трехходового крана. Это позволяет регулировать подачу воды к радиатору, вплоть до его полного отключения.

    Для двухэтажных и более этажных зданий применяют варианты однотрубной схемы с вертикальными стояками. В этом случае распределение горячей воды более равномерное, чем при горизонтальных стояках. Кроме того, вертикальные стояки менее вытянуты и лучше вписываются в интерьер дома.

    Однотрубная схема с вертикальной разводкой успешно применяется для отопления двухэтажных помещений с использованием естественной циркуляции. Представлен вариант с возможностью отключения верхних радиаторов.

    Вариант обратки

    Когда одна труба используется для подачи горячей воды к радиаторам, а вторая для отвода охлажденной в котел или печь, такая схема отопления называется двухтрубной. Подобная система при наличии радиаторов отопления используется чаще, чем однотрубная.

    дороже, так как требует установки дополнительной трубы, но имеет ряд существенных преимуществ:

    • более равномерное распределение температуры теплоноситель подводится к радиаторам;
    • проще сделать расчет зависимости параметров радиаторов от площади отапливаемого помещения и необходимых значений температуры;
    • более эффективное управление теплом для каждого радиатора.

    В зависимости от направления движения охлажденной воды, относительно горячей, подразделяются на проходные и тупиковые. В связанных контурах движение охлажденной воды происходит в том же направлении, что и горячей, поэтому длина цикла для всего контура совпадает.

    В тупиковых схемах охлажденная вода движется в сторону горячей, поэтому для разных радиаторов длины циклов оборота теплоносителя разные. Поскольку скорость в системе небольшая, время нагрева может существенно отличаться. Те радиаторы, у которых длина цикла круговорота воды короче, будут нагреваться быстрее.

    При выборе тупиковых и сопутствующих схем отопления исходят в первую очередь из удобства проведения обратки

    Возможны два типа расположения подводки относительно радиаторов отопления: верхнее и нижнее. При верхнем подключении труба горячего водоснабжения располагается над радиаторами, а при нижнем – ниже.

    При нижнем подключении воздух можно отводить через радиаторы и нет необходимости держать трубы сверху, что хорошо с точки зрения дизайна помещения.

    Однако без ускорительного коллектора падение давления будет намного меньше, чем при использовании верхней подачи. Поэтому нижняя подводка практически не используется при отоплении помещений по принципу естественной циркуляции.

    Выводы и полезное видео по теме

    Организация однотрубной схемы на базе электрокотла для небольшого дома:

    Работа двухтрубной системы для одноэтажного деревянного дома на базе твердотопливного котла длительного горения:

    Использование естественной циркуляции при движении воды в контуре отопления требует точного расчеты и технически грамотные монтажные работы. В этих условиях система отопления обогреет помещения частного дома и избавит владельцев от шума насоса и зависимости от электричества.

    Если у вас возникли вопросы по теме или есть желание поделиться личным опытом организации и эксплуатации системы отопления гравитационного типа, пожалуйста, оставляйте комментарии к этой статье. Поле обратной связи расположено ниже.

    Стальные трубы. Диаграмма тепловых потерь

    Тепловые потери из стальных труб при различных перепадах температур между трубами и окружающим воздухом:

    • 1 кВт (кДж/с) = 102,0 кпм/с = 859,9 ккал/ч = 3413 БТЕ/ч = 1,360 hk = 1,341 л.с. = 738 фут-фунт/с = 1000 Дж/с = 3,6×10 6 Дж/ч
    • 1 м (метр) = 3,2808 фута = 39,37 дюйма = 1,0936 ярда = 6,214×10 -4 миль

    Для1!

    Nominal bore Heat loss from Fluid inside Pipe
    (W/m)
    Temperature Difference ( o C)
    (mm) (дюймы) 50 60 75 100 110 125 140 150 165 195 225 280
    15 1/2 30 40 60 90 130 155 180 205 235 280 375 575
    20 3/4 35 50 70 110 160 190 220 255 290 370 465 660
    25 1 40 60 90 130 200 235 275 305 355 455 565 815
    32 1 1/4 50 70 110 160 240 290 330 375 435 555 700 1000
    40 1 1/2 55 80 120 180 270 320 375 420 485 625 790 1120
    50 2 65 95 150 220 330 395 465 520 600 770 975 1390
    65 2 1/2 80 120 170 260 390 465 540 465 540 465 54066666666666666666666666666666666666666666666666669нPE0367 1650
    80 3 100 140 210 300 470 560 650 740 860 1090 1380 1980
    100 4 120 170 260 380 585 700 820 925 1065 1370 1740 2520
    150 6 170 250 370 540 815 970 1130 1290 1470 1910 2430 3500
    200 8 220 320 470 690 10.
    Уклон труб отопления при естественной циркуляции: Уклон труб в системе отопления

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *

    Scroll to top