Армирование стены из бетона: Армирование Бетонных Стен: Технология Выполнения Работ

Содержание

Армирование Бетонных Стен: Технология Выполнения Работ

Любая монолитная бетонная стена должна быть усилена внутренним армирующим каркасом

Бетон является наиболее востребованным строительным материалом. Его используют при устройстве фундаментов, строительстве стен и перекрытий. Из бетона изготавливают плитку, которая в дальнейшем применяется при отделке. Такая популярность материала обусловлена значительной прочностью застывшего раствора.

При этом, бетонные конструкции являются довольно хрупкими на изгиб. Для того, чтобы устранить данный недостаток применяются различные способы усиления.

В статье мы расскажем для чего необходимо производить армирование бетонных стен, и как данную процедуру можно произвести самостоятельно. Опишем технологии и материалы для армирования бетона.

Содержание статьи

Для чего нужно усиливать бетон

Зачем армируют бетон, ведь это довольно прочный материал. По факту обычный бетонный блок не усиленный каким-либо образом, является крепким лишь на сжатие.

Любое растяжение, происходящее под действием различных факторов, приводит к его деформации.

Изменить геометрию монолитная конструкция может в следствии:

  • пучения грунта;
  • сейсмической активности;
  • естественной временной осадки здания;
  • проведения работ по надстройке;
  • изменения планировки строения.

При несоблюдении техники армирования или его полном отсутствии, бетон обязательно начнет разрушаться

Достоинства усиленного бетона

Технологически правильное армирование и заливка бетона решают несколько очень существенных задач:

  • Усиление прочности конструкций даже сложной лекальной формы, например, эркеров или забежных полукруглых ступеней.
  • Делают бетонные элементы здания более устойчивыми к воздействию температурных перепадов.
  • Значительно увеличивают срок эксплуатации строения.
  • Повышая прочность, дают возможность увеличения механических нагрузок на несущие конструкции.
  • Предотвращают растрескивание скрытых бетонных элементов, в том числе подвальных стен.

Материалы

Армирование – это усиление бетонного блока изнутри при помощи различных материалов. Могут использоваться прутки или волокна, которые при растяжении блока не позволяют ему растрескиваться.

На практике материалы армирования можно разделить на 3 группы:

  1. металлические прутья,
  2. композитная арматура,
  3. фибра.

Стальные прутки

Норма длины стального прутка для усиления бетонных конструкций — 11,75 м. Арматура может иметь различный диаметр и марку. В зависимости от маркировки прутки в усиливающий каркас соединяются свариванием или вяжутся проволокой.

В массе бетона соединение стальных стержней с раствором достаточно прочное благодаря рифлению на прутке. Стальной остов внутри монолита перераспределяет нагрузки и сдерживает бетон от растрескивания, поскольку металл имеет большее сопротивление на разрыв. При этом бетон в свою очередь защищает металл от коррозии.

Стальной усиливающий каркас

Композитный материал

Такая арматура имеет довольно широкий спектр исходных материалов, увеличивающийся почти ежегодно. К настоящему моменту более или менее используются стеклопластиковые и базальтопластиковые прутки со спиральной накруткой, имитирующей периодичность профиля стальной армации.

Кроме того, на строительном рынке представлена полиэтиленрефталатовая и углеводородная арматура, не получившая пока широкой популярности. Неоспоримым достоинством композита является низкий вес. Но при устройстве фундаментов или подпорных стен данное преимущество имеет мало значения, а вот прочностные характеристики выступают очень важны.

Композитная арматура, как правило, используется в горизонтальных элементах строения, имеющих опору на грунт

Фиброволокно

Мелкодисперсный материал (фибра) добавляется в раствор на этапе замешивания. При этом само волокно может иметь различный диаметр и длину.

Изготавливают фибру из волокна на основе:

  • стали,
  • стекла,
  • полипропиленовых соединений,
  • базальта.

На заметку! Чаще других применяется усиление стекловолокном, по причинам наличия достаточно высоких прочностных характеристик и наиболее доступной стоимости материала.

Фиброволокно для усиления прочности бетона на разрыв

Способы армации

Независимо от усиливающего материала, технология армирования бетона может так же различаться. В строительстве укрепление цементного раствора может быть произведено несколькими способами. На практике применяют монолитное, сеточное или дисперсное усиление.

Монолитное

Стальное или композитное армирование арматурой бетона — наиболее распространенный способ усиления конструкций в частном строительстве. Особенно часто монолит с внутренним усиливающим остовом заливают при строительстве фундаментов, стен или перекрытий.

Прутья связываются или свариваются в несколько уровней, опускаются в опалубку и заливаются бетоном. При этом каркас из прутьев неподвижен и прочен.

Важно! При связывании в одной линии двух прутков, длина нахлеста должна составлять 40 диаметров стержня. Нахлест связывается, как минимум, в трех местах.

Для сохранения большей упругости прутья в каркас связываются, а не свариваются

Сеточное

Армировка бетона с использованием строительной сетки — быстрый и удобный способ. Сетка выполняется из стальной или композитной проволоки. Данный метод весьма эффективен для усиления бетонных стяжек, ремонта небольших участков монолита.

  • Сетка продается в картах длиной 2 м с различной шириной полотна. При этом размер ячейки может быть разным.
  • При выборе сетки лучше отдавать предпочтение композитному или полимерному материалу.
  • Цена их несколько ниже, чем у стальных карт, но при эксплуатации строения значительно снижается риск возникновения коррозии бетона.

Металлическая армирующая сетка в картах

Волоконное

Усиление бетонной заливки фиброволокном называется дисперсной армацией. Фибра вводится в раствор при затворении. Как правило, данный способ используется при необходимости усилить тонкий слой заливки или в качестве дополнительного укрепления конструкций с повышенной механической нагрузкой.

Например, при устройстве железобетонных лестниц, которые зачастую являются несущим элементом здания, кроме укладки в опалубку стальных прутьев, в раствор замешивается фиброволокно. Это делает конструкцию значительно прочнее и продлевает срок её безремонтной эксплуатации.

На заметку! Инструкция по замешиванию, а также пропорции добавления фибры в раствор прописываются заводом — производителем на упаковке.

Фиброволокно чаще используется в качестве дополнительного усиления к основному армированию

Технология армирования опорных стен

Если с использованием стекловолоконной фибры или сетки любого вида всё просто, то монолитное армирование — процесс, требующий строго соблюдения определенных правил. Мы остановимся на армирование стен из бетона, как на наиболее актуальной теме.

  • Заливая фундамент под дом с подвалом, вы практически устраиваете несущие стены, которые будут служить опорой всему зданию.
  • Данные конструктивные элементы требуют качественного усиления, так как они будут испытывать значительные вертикальные и горизонтальные нагрузки: сверху от веса здания, по бокам от грунта.
  • Именно по этой причине, прочность подвальных или фундаментных стен строения очень важна.

Схема деформации опорной стены подвала в результате давления пучинистого грунта

  • Сразу отметим, что в данном случае, специалисты не рекомендуют использовать композитные прутья, а отдают предпочтение стальным стержням.
  • Это придаст дополнительную подвижность конструкции и ещё больше снизит риск возникновения разломов и трещин.

Совет: При армировании опорных стен может использоваться любая марка металлической арматуры, но соединять каркас лучше связыванием, а не сваркой.

Основные правила

Итоговая задача усиления – получить максимально прочную, но упругую конструкцию.

Каких правил следует придерживаться, устраивая армирование в бетон:

  • Металлическая армация связывается вне стен опалубки. Установка каркаса может происходить крупными частями.

Каркас собирают значительными частями, а затем закладывают в опалубку стены

  • В местах пересечения стержней, прутья должны быть связаны, но не жестко. Необходимо сохранить малую подвижность узла, чтобы при растяжении бетона проволока не порвалась и каркас не утратил целостности.

Металлические прутья лучше фиксировать способом связывания

  • Прутья в каркасе должны сохранять строгое направление вертикальное или горизонтальное. Смещение угла наклона прутка приведет к сдвигу распределения нагрузки, а как следствие — к разрушению части бетонной стены.
  • Укладка усиливающего каркаса производится внутрь опалубки без давления почвы. То есть, внешние стены опалубки не должны соприкасаться с грунтом.

Стальной остов внутри опалубки, готовой к закладке раствора

  • Металлический остов закладывается в подготовленную опалубку на специальные грибки. Расстояние от металла до края бетона не должно быть менее 5 см.

Металлические стержни укладываются на специальные «грибки»

  • Оптимальный размер ячейки армирования для подвальной стены от 25 до 35 см, в зависимости от толщины заливки.
  • Для снижения риска возникновения коррозии, в бетон следует добавлять специальные присадки.

Универсальная присадка в бетонный раствор

  • После того, как каркас связан и установлен в опалубку, происходит заливка раствора — его следует залить единовременно по всему объему опалубки.
  • Залитый монолит накрывают пленкой и оставляют до полного схватывания. Для того, чтобы избежать растрескивания, в первые десять дней бетон следует увлажнять.

Для того чтобы более подробно ознакомиться с процессом армирования бетонных стен стальными прутьями, рекомендуем посмотреть видео в этой статье.

На заметку! Данные правила действительны при устройстве металлического усиливающего каркаса в любой конструкции, не исключение и подпорная стенка из армированного бетона.

Устройство подпорной стены обязательно включает металлическое усиление

Советы специалистов

В любом процессе существуют нюансы и тонкости, которые хорошо понятны специалистам, а непрофессионал не уделит этому должного внимания.

При устройстве металлической армации для подпорной или подвальной стены своими руками, обратите внимание на следующие моменты:

  • Категорически нельзя наращивать армирование в уже залитый бетон. Если обнаружилось, что высоты стены фундамента недостаточно, придется разрушить все и собрать заново с требуемыми размерами. В противном случае, в местах стыковки старого и нового фундамент будет ослаблен.
  • Не стоит использовать стержни уже бывшие в употреблении. Металл стареет и теряет свойства, поэтому для такого важного места как фундамент старые прутья не подойдут.
  • Если арматура покрылась ржавчиной, не красьте и не смазывайте её перед укладкой. Подобные действия только ухудшат сцепление металла с бетоном и никак не остановят процесс окисления.
  • Сгибать стержни в углах при помощи высокой температуры также не рекомендуется. Термическая обработка снижает упругость металла. Если нет возможности согнуть прут, обрежьте его до нужного размера и зафиксируйте угол при помощи вязки проволокой.

На фото пример углового соединения стального армирования

Важно! Многие ошибочно полагают, что чем меньше ячейка, тем прочнее получится монолит. В мелкие ячейки с трудом проникает раствор оставляя пустоты, поэтому если мельчить с каркасной сеткой, то эффект получится обратный.

Заключение

Армирование стен из бетона производится с целью упрочнения монолита на изгиб и продления срока эксплуатации здания в целом. Строители советуют в части подвальных, и подпорных стен использовать для армации металлические стержни периодического профиля.

Технология армирования бетона здесь, как нигде, обязательна к точному и скрупулёзному исполнению. И как всегда, если вы не уверены в своих силах и умении, доверьте работу на столь важном участке профессионалам.

Армирование стены из бетона: материалы, этапы работ

Для усиления несущих характеристик выполняется армирование бетонной стены. Материал после застывания и вызревания набирает значительную прочность. Конструкции из такого средства хрупкие при изгибе. В строительной практике применяются разные методики для укрепления монолитных изделий, которые отличаются технологией исполнения и видами применяемого армирующего материала для создания усиливающего каркаса.

Инструменты и материалы

Чтобы выполнить армирование монолитных стен, следует подготовить:

  • Раствор для заливки несущих конструкций. Применяется бетон высокого качества, приготовленный самостоятельно или купленный в специализированной организации по производству и реализации строительных материалов.
  • Арматура. Для создания усиливающего каркаса выбираются стальные прутья, композитные элементы, фиброволокно.
  • Инструменты и материалы для соединения фрагментов каркаса. Сварочный аппарат, вязальная проволока, плоскогубцы с кусачками, вязальный пистолет.
  • Опалубка. Это доска, брус, щиты, элементы.
  • Инструменты для трамбования раствора. Промышленный вибратор, подручные средства.

Главная функция армировочного каркаса — обеспечение прочности и усиление тех частей сооружения, которые подвергаются наибольшим нагрузкам.

Чем армируют?

НаименованиеХарактеристика
Элементы из сталиВыполнены в виде гладких или рифленных прутьев, сеток вязанных и сварных, швеллеров, двутавровых балок, уголков
Имеют различные размеры и параметры прочности
Каркас из металла балансирует внутренние нагрузки и предохраняет конструкции из бетона от растрескивания
Композитные средстваЕсть большой ассортимент: волокна из стекла, базальта, углерода которые погружаются в полимерный материал
Арматура имеет низкий вес и антикоррозийную природу
Применяются при строительстве 1 или 2-х этажных зданий
Фиброволоконная арматураФибра из волокон: стальных, базальтовых, полипропиленовых, стеклянных
Конструкция имеет низкий вес
Строение с таким каркасом обладает низкой несущей способностью

Необходимые расчеты

Минимальная толщина бетонных стен определяется уровнем нахождения почвенных вод:

  • При низком расположении. Нижнюю часть стены можно не усиливать. Она должна на 100 мм выходить за контуры сооружения. Мощность цокольных конструкции при высоте нулевого этажа в 150—250 см находится в диапазоне 200—400 мм.
  • При высоком расположении. Фундаментная плита усиливается арматурным каркасом, ее мощность — в пределах 200 мм. Должна быть вынесена за контур несущей стены на 0,4 м.

Другим параметром, который влияет на толщину монолитных стен, есть расчетная температура климатического пояса. Если сооружение находится на территориях, где минусовые температуры колеблются в зимний период в пределах от -20 С до — 40 С, то рекомендуемая мощность несущих стен составляет 25—45 см. Из этого следует, что бетонные стены имеют меньшую толщину, чем кирпичные.

Этапы работ

Армирование бетонных стен выполняется несколькими методами:

Одним из методов армирования является монолитный способ, при котором каркас монтируется в несколько уровней.
  • Монолитный способ. При такой технологии металлические или композитные арматурины связываются или привариваются в секции из нескольких уровней, монтируются в в опалубке и заливаются бетонным раствором. Такой «скелет» статичный и прочный. Метод распространенный в малом строительстве при сооружении фундамента, несущей стены и элементов перекрытия.
  • Сеточный способ. Метод простой и удобный. Конструкция выполняется из металлических или композитных проволок. Сетка монтируется в «карты» длиной в 200 см, при этом ширина армирующего элемента и величина клеток может подбираться произвольно.
  • Волоконный метод. Укрепление монолита фиброволоконным материалом называют дисперсная армация. Фибра добавляется в состав бетона при его приготовлении, добиваясь равномерного распределения волокна по объему раствора. Так усиливают тонкую заливку или укрепляют сооружения с высокой нагрузкой на несущую конструкцию.

Правило формирования арматурного каркаса — при соединении 2-х прутов в одну линию нахлест элементов должен равняться 40-ка диаметрам металлических стержнев. Связываются арматурины в 3-х местах.

Опалубка для стен

Опалубку сооружают из досок, рассчитывая конструкцию так, чтобы она выдержала тяжесть залитого бетона.

Для сооружения стен из монолитного бетона собирается опалубка. Это временная или постоянная (несъемная) вспомогательная конструкция предает залитому раствору необходимую форму. Съемный вариант строится из доски, фанерных или пластиковых щитов, усиленных брусом и распорками. При построении опалубки на начальном этапе выделяют проемы под окна и двери, а также под места прохождения коммуникационной инфраструктуры дома. После созревания бетона конструкция демонтируется. Можно применить несъемный вариант вспомогательного сооружения — листы пенополистирола. В результате получится 3-слойный стеновой «сендвич», который обеспечит хорошую тепло- и звукоизоляцию дому.

Армирование

Секция из арматурного материала устанавливается в построенную опалубку. Если выполняется строительство малоэтажной усадьбы, то можно воспользоваться металлической сеткой из прутов диаметром 0,8 см. Стержни с рельефной поверхностью хорошо сцепляются с раствором, а на концах гладких выполняются загибы. Чтобы металлический каркас не разрушался коррозией, его не выводят на поверхность монолита. Элементы укрепления конструкции укладывают в поперечном положении на расстоянии 350 мм друг от друга, в продольном — 250 мм. Стыки увязываются проволокой или укладываются внахлест. Проводится дополнительное укрепление проемов.

Заливка раствора

Заполнить бетонным раствором за один раз опалубку не получиться, поэтому выполняется заливка слоями в 500 мм. Монолиту не дают схватиться, сразу заливают следующий слой. Особое внимание придают заполнению углов строения. Выполняют уплотнение бетона вибратором или подручными средствами. Если строительство проходит зимой, то смесь прогревают. В жаркую погоду во избежание растрескивания монолита проводят увлажнение водой.

что такое, под покраску из бетона

Армирование строительных конструкций является неотъемлемой частью создания железобетонных конструктивов, выдерживающие значительные нагрузки. Арматура внутри бетонного массива создаёт своеобразный скелет, повышающий несущую способность железобетона.

Армирование железобетонных стен позволяет сократить расход бетона и одновременно повысить прочность, не увеличивая толщину ограждающих конструкций. Чтобы не возводить ограждения подвала из сборных железобетонных блоков, делают армирование монолитных стен подвалов домов.

Формирование арматурных каркасов

Форма каркаса и количество элементов должны соответствовать нагрузке

Строение каркасов, диаметр стержней периодического профиля и гладкой арматуры определяют на основании специальных расчётов, которые учитывают нагрузку на конструкции. Существует множество методик расчётов, которые снабжены таблицами.

Зная нагрузку на конструкции подвала, по таблице можно определить форму каркаса, количество и диаметр несущих стальных стержней арматуры или проволоки.

Конструкции коробчатой формы

В опалубку монолита помещают металлические каркасы коробчатой формы. При возведении опалубки важно, чтобы стенки её не прикасались к откосам грунта. Металлический каркас не должен касаться внутренних поверхностей опалубки. Минимальный зазор между опалубкой и каркасом должен составлять не менее 20 мм.

Сегодня можно встретить многочисленные советы об устройстве гидроизоляционного покрытия арматуры. Спешим разочаровать сторонников таких методик. Защитный слой бетона полностью перекрывает доступ кислорода к металлу армированного каркаса.Тем самым исключается возникновение каких-либо коррозионных процессов. Коррозия арматуры может возникнуть только в одном случае – в результате разрушения бетона. Тогда потребуется демонтаж всей негодной конструкции.

Гидроизоляция арматуры ничего кроме лишних финансовых и трудовых затрат не принесёт.

Бетонный монолит стен подвала

Арматуру соединяют сваркой или проволокой

Армирование бетонной стены делают с помощью коробчатых каркасов. Массив железобетонных стен подвальных помещений является одновременно фундаментом дома, поэтому расчёт в потребности арматуры производится на основе показателей нагрузки на фундамент всего здания.

Металлические стержни соединяют в узлах сопряжения электросваркой или вязальной проволокой. Электросварку применяют в особо нагруженных участках подвальных ограждений.

Электросварочные работы значительно повышают затраты на строительство, поэтому самый распространённый метод крепления это соединение несущих стержней вязальной проволокой.

Вяжут арматуру вручную, используя пассатижи. При больших объёмах работ по армированию применяют специальный ручной механизм. Пистолет обхватывает проволочной петлёй узел сопряжения металлических стержней и затягивает жилу прочным узлом.

Чтобы не тратится на приобретение такого прибора, можно взять пистолет в аренду.

Кирпичная кладка

Укрепление кирпичной кладки происходит по-другому. Для этого готовят металлические сетки. Сетки в ширину не должны превышать толщину кирпичной кладки. В основном для кирпича металлические решётки не сваривают, а вяжут.

Профиль и диаметр стержней определяют расчётами, учитывающих проектную нагрузку на стены подвала. Для малоэтажных домов ограждения подвалов армируют проволочными сетками.

Решётку кладут на горизонтальную поверхность кладки и покрывают слоем цемента для следующего ряда кирпичей. Обычно сетки в кладке располагают между 3-4 рядами кирпича.

Ввиду слабой влагостойкости кирпич редко применяют для возведения подвальных помещений.

Другие материалы для армирования бетонных стен

Фиброарматура облегчает вес конструкции

Монолитный бетон укрепляют другим сырьем. Самые распространённые неметаллические материалы для армирования бетонных стен это фиброволокно и полимерные решётки:

Фиброволокно

Известно, что армирование монолита бетона стальными сетками и решётками значительно влияют на увеличение веса конструкции. Для конструкций подвала это не имеет значения.

Утяжеление конструкций здания требует усиления фундамента и стен подвала. Использование фиброволокна существенно делает конструкции легче. Однако следует знать, что такой вид усиления бетона не годится для несущих стен, поэтому фибру используют для перегородок. Подробнеее о добавлении фибры смотрите в  этом видео:

Если пренебречь таким правилом, то можно получить такую картину:

Фиброконструкции более пластичны

Технология получения фибробетона довольна проста. Основывается на том, что он готовится из сухой цементной смеси с добавлением фибры (полимерной, стальной и стеклопластиковой).

Чтобы вязкая масса получилась более эластичной, в неё добавляют различные пластификаторы. Для стен в основном применяют фибру из стекловолокна.

Монолит стены, укреплённый фиброволокном, обойдётся застройщику дешевле, чем армирование сталью.

Композитные полимерные сетки

Пластиковые сетки производят из ПВХ под давлением

Последнее время всё большую популярность приобретают пластиковые решётки для укрепления стен. Полимерная арматура намного легче стальных стержней. Применение пластика в монолите несущих стен должно подтверждаться расчётами проектных организаций, потому что ограждающие конструкции с таким видом усиления строго ограничены лимитом нагрузки.

Пластиковые сетки готовят путем прессования под большим давлением и высокой температурой поливинилхлорида.

В качестве несущих конструкций с пластиковым усилением стены возводят на строительстве одно- и двухэтажных строений.

Композитная полимерная арматура применяется как для усиления бетонного монолита, так и для кирпичной кладки стен.

Полимерные стержни выпускают в основном диаметром от 6 до 12 мм и больше. Пластиковый материал очень гибкий, что немаловажно для формирования арматурного каркаса стен сложной геометрической формы (арочные конструкции, овальные полуколонны).

В продажу композитная арматура поступает в виде длинномерных стержней от 6 до 12 м. Некоторые производители поставляют пластиковую продукцию в скатках.

Материал арматуры для стенДостоинстваНедостатки
1СтальВысокая несущая способностьДороговизна
2ФибраОблегчает конструкциюСлабая несущая способность
3КомпозитМатериал не подвержен коррозииОграниченная несущая способность

Усиление стен в любом случае необходимо делать. Во-первых, это существенно сказывается на экономии основного материала стен. Во-вторых, отпадает необходимость в возведении толстых ограждающих конструкций. В-третьих, усиление стен значительно увеличивает срок службы конструкций (несколько десятилетий и более).

Армирование стен цокольного этажа

Автор Евгения На чтение 32 мин. Опубликовано

Армирование стен цокольного этажа

Строительство цокольного этажа из монолитного бетона

Преимущества бетонных конструкций максимально используются при возведении жилой и нежилой недвижимости. Бетон, уложенный с соблюдением технологии, надежно противостоит действию влаги. Обустройство под зданием цокольного этажа, который создан из монолитного бетона, обеспечивает его крепким фундаментом и дополнительными техническими площадями.

Достоинства цокольного этажа

Частично заглубленная конструкция получает цельный формат, прерываемый только технологическими вводами коммуникаций, и, когда это целесообразно, оконными и дверными проемами (к примеру, при монтаже здания на крутом склоне). На подобных ландшафтах цокольный этаж (фундамент) — единственное правильное решение, так как с одной стороны он целиком размещается в грунте, а противоположная его часть будет размещена открыто. Практически герметичный монтаж обеспечивает цокольным этажам водонепроницаемость, высокую прочность, долговечность.

Сроки строительства ограничиваются только временем набора прочности бетоном. Сухой, теплый и проветриваемый цокольный этаж — это дополнительная площадь, которая может быть занята под баню, гараж, котельную, бассейн, мастерскую и пр. Полное заглубление цокольного монолита (на сухих почвах) снижает затраты на обогрев здания. Прочность и герметичность монолитного цоколя предохранит постройки от деформаций даже на влажных, подвижных грунтах, на которых возводить постройку в несколько этажей нецелесообразно. Оптимальная высота цокольной конструкции обеспечивает поднятие сооружения над уровнем ландшафта.

Как построить?

Формирование цоколя из бетонного монолита включает множество этапов. Среди них: подготовительные работы, отрывка котлована, укладка на песчано-гравийный «пирог» армированного бетонного пола, мероприятия по гидроизоляции. Вслед за этим возводятся монолитные стены цоколя.

Подготовительные мероприятия

Определяется глубина залегания грунтовых вод на участке (идеальный вариант — от 1,5 метра и глубже). Выбирается проект дома с монолитным цоколем, проводятся расчеты его заглубления, ширины стен. Высота подземных помещений и величина заглубления цоколя в грунт определяют, какая толщина монолитных стен и какая ширина подошвы фундамента потребуются (данные представлены в таблице 1).

Предельной считается высота потолков в 250 см. Высокое залегание вод, наличие плывуна потребует обустройства производительной дренажной системы и отвода воды от места будущего котлована, а также последующего обеспечения надежной гидрозащиты фундамента.

Рытье котлована

Место под котлован размечается на местности. Глубина его должна быть ниже уровня промерзания почвы (гарантирует стабильность температуры), определенного для данной местности, и в тоже время глубже, чем нулевая отметка пола в цокольном этаже на 0,5 – 0,6 м. Отрывка грунта делается механизированным способом путем равномерного заглубления. Последние 50 см грунта в глубину выбираются вручную, чтобы сохранить природную плотность почвы, на которой разместится гравийно-песочная «подушка». В противном случае из-за возможной подсыпки грунта может произойти деформация монолита плиты пола в цокольном этаже.

Готовый котлован под фундамент.

Нахождение воды в котловане должно быть исключено. Ровная поверхность котлована засыпается десятисантиметровым слоем щебенки (фракция 50 мм) и слоем песка высотой 100 – 150 мм. Поверхность «пирога» разравнивается, горизонтируется под нивелир, уплотняется и обильно проливается водой 2 – 3 раза.

Время на его окончательную готовность — 12 – 20 дней (в сухую погоду до 7 дней). Затем заливается основание под бетонный пол цоколя (марки бетона от М50 до М100) высотой примерно 50 мм. После набора 70% прочности данная конструкционная гидроизоляция дополнительно покрывается рулонными гидроизоляторами, которые крепятся на мастику, или наплавным методом. Желательно листы уложить в 2 – 3 слоя крест-накрест, создав герметичное покрытие.

Создание опалубки

Формирование опалубки по внешнему периметру позволит залить монолитный пол цоколя, который станет опорным основанием для возведения на нем стеновых конструкций. Высота несъемной опалубки составляет примерно 150 – 200 мм. Для создания используются щиты и брус (толщина от 25 мм). Конструкция собирается на уголках, крепящихся саморезами, с использованием усиливающих распорок, размещенных по периметру. Надежность формы должна обеспечить нагрузку тяжелого бетона.

Укрепление основания и гидроизоляция

Дополнительное укрепление основания — несъемная опалубка, установленная для заливки пола. Геотекстиль может размещаться на внутренней поверхности опалубки, укрепляя ее и создавая гидробарьер для бетонного раствора. Внешняя и внутренняя гидроизоляция выполняется обмазочными, проникающими материалами и пенополистирольными листами, рулонными материалами. Выбор и комплексирование материалов зависят от уровня почвенных вод.

Обычно делается двухслойная гидроизоляция. Ею герметично покрываются вертикальные и горизонтальные поверхности, относящиеся к цокольному этажу, которые соприкасаются с почвой. Проникающие составы применяются внутри цоколя. При нанесении на монолитное основание они меняют внутреннюю структуру камня, сохраняя бетону свойство «дышать» (парообмен).

Снаружи утепление осуществляется плитами пенополистирола, которые крепятся на спецклей (зонтичные дюбели, саморезы). Обмазочные битумные композиции наносятся на монолитные поверхности в горячем состоянии. Рулонные гидроизоляционные материалы наклеиваются на битумные мастики или крепятся наплавным способом.

Армирование

Металлическая арматура формирует двухуровневый объемный каркас, верхнюю и нижнюю грани которого образуют уложенные в продольном и поперечном направлениях (угол 90 град.) стержни арматуры. Шаг укладки арматурных стержней в обоих направлениях 200 мм. Арматурный каркас размещается в опалубке на 2 – 3 см выше основания и ниже на такое же расстояние от уровня заливки поверхности будущей плиты. Используются прутки, поверхность которых имеет продольные и поперечные насечки.

Диаметр стрежней — 100 – 160 мм (необходимый диаметр можно рассчитать). Уложенные на специальные направляющие, прутки в местах пересечений связываются вязальной проволокой, что создает упругость железобетону. На тех участках опалубки, где предусмотрено возведение внутренних и внешних стен, делаются выходы вертикальной арматуры, которая соединит их с арматурой плиты цокольного пола.

Заливка бетона

Марочная прочность цокольными полами обеспечивается при заливке бетонной смеси за один раз. Целесообразно использовать готовый раствор марки от М300, приготовленный на заводе, который имеет высокое качество затворения. Бетонирование порциями снизит показатели характеристик бетона (возможны трещины). Если этого невозможно избежать, стыки фрагментов пола лучше делать вдоль длинной стороны дома.

При заливке слоями перерывы до очередного бетонирования составят 3 – 4 суток (время схватывания предыдущего слоя). Однако появление рабочих швов не способствует набору необходимой прочности камнем. Высота заливки составляет около 200 мм. Раствор обязательно виброуплотняется. При надлежащем и правильном уходе через 28 дней бетону удастся набрать около 70% марочной прочности.

Монтаж монолитных стен

Опалубку для возведения стен цоколя можно начинать создавать через 4 – 5 суток после заливки пола. Она формируется несъемными щитами пенопропилена (утепление) и усиливается временными подпорками. В ней сразу предусматриваются, при необходимости, проемы окон и дверей, технические отверстия. Опалубка выполняется на всю высоту между этажами либо несколькими уровнями.

Заливка предпочтительна единовременная, но может идти и поясами (поэтапно) с перерывами в 3 – 4 дня на схватывание бетона. Последнее предохранит бетон нижнего слоя (не набравший прочность) от разрушения под давление массы последующих порций заливки. Предпочтительно применять тяжелые бетоны марок от М300 и выше. Форму обрешетки для прочности лучше стягивать резьбовыми шпильками, так легко снять нефункциональную опалубку после твердения бетона.

Конструкция внешнего периметра монолитного цоколя усиливается рациональным расположением внутренних перегородок, которые примыкают к нему. Армирование выполняется горизонтальное и вертикальное с шагом до 300 мм. Для связи с армированием стен используются стержни, вертикально выходящие из пола.

Для обеспечения поверхностям упругости арматура не сваривается, а вяжется. На высоту цоколя 2,5 м монтируется до 2-х армировочных поясов (верхняя и нижняя часть), допускается и больше. Набор марочной прочности смесью продолжается в среднем до 28 суток, после чего цоколь сверху перекрывается плитами. Гидроизоляция внешнего периметра конструкции выполняется сплошным слоем мастики и пенополиуретановыми плитами.

Часть поверхности цоколя, которая будет находиться на поверхности грунта, утепляется плитами, крепящимися на зонтичные дюбели. Подземная часть этажа подсыпается вырытым грунтом. Однако его фракции не должны повреждать наружную тепло- и гидроизоляцию. Поэтому предпочтительно использовать песок.

Вывод

При соблюдении технологии работ монолитный бетонный цокольный этаж обеспечит зданию надежность, долговечность, создаст крепкую основу для верхних этажей и дополнительные помещения, которые могут получить различное назначение.

Работы по армированию стен в подвальном помещении

Дачник с 20 летним стажем

Цокольный этаж имеется во множестве частных домов, и зачастую его используют в качестве подвала. Чтобы помещение служило выбранной цели, нельзя забывать ни об одной строительной детали. В том числе и стены подвала должны быть армированы и отделаны правильно.

Какими должны быть стены цоколя: требования

К стенам подвального помещения в цокольном этаже всегда предъявляются особые требования. Это связано с тем, что оно частично заглублено в землю и при этом держит на себе вес всего дома.

Стены подвала должны быть:

  • прочными;
  • защищёнными от влаги;
  • отделанными в соответствии с предназначением помещения.

Существует ряд требований к цоколю

Достигают этих целей с использованием довольно простых строительных технологий, которыми может овладеть практически каждый.

В чём плюсы армирования

Армирование стен цокольного подвала позволяет улучшить их прочностные характеристики без значительного удорожания строительства. Как было отмечено выше, одно из главных требований к опорам цоколя — их способность выдержать довольно большое давление.

Возможный способ, чтобы достичь подобного результата, — увеличение толщины конструкции. Но это приводит к значительному удорожанию работ.

Добавление металлических элементов как в сам строительный материал (если они возводятся из монолитного бетона), так и при отделке позволяет достичь необходимого уровня прочности без сильного увеличения затрат на строительство.

В данном видео вы узнаете, как армировать стены:

Какие материалы нужны

Для армирования подвала можно использовать один из трёх материалов:

Первый из них до сих пор наиболее распространён, но более современные материалы активно наступают ему на пятки. Они выигрывают у металлической арматуры по цене, не особо проигрывая по прочности.

Зачем применяют калёную и арматурную проволоку

Армирование — обязательный этап в отделке конструкции, когда речь идёт о подвале. Именно с этой целью используют арматуру и калёную проволоку.

Арматура может быть в роли как уже готовой сетки, сплетённой из очень толстой стальной проволоки, так и в виде прутьев, которые связываются между собой на определённом расстоянии.

Для связывания прутьев и кусков сетки между собой используют более тонкую, но не менее прочную калёную проволоку. Для армирования стен подвала в цокольном этаже нет необходимости применять наиболее дорогостоящие её варианты.

Зачем необходима геосетка

Геосетка — альтернатива арматурной сетке при армировании стен. Она прочная и при этом довольно лёгкая. Её стоимость на приемлемом уровне. Делают такую сетку из ткани и полимерных материалов. В частности, основной материал — полипропилен. Волокна из него обтягивают резиной и прочным тканым материалом. Лучше всего она подходит для конструкций из пеноблоков.

Куда подойдёт стеклосетка

Стеклопластиковая сетка относится к категории наиболее массовых материалов для армирования, несмотря на то что появилась она относительно недавно. Связано это с её исключительной дешевизной. Лучше всего она подходит для кирпичных конструкций, а также — стяжки пола.

Не забываем следовать инструкциям армирования

Как надо выполнять работы

Правильная отделка стен подвала в цокольном этаже имеет большое значение. Именно от качества выполненных работ зависит, каков будет микроклимат помещения, а значит, и насколько хорошо в нём, например, сохранятся продукты.

Выбор материала для финишной отделки стен цоколя зависит от того, с какой целью он будет использоваться:

  • как погреб для хранения продуктов;
  • как техническое помещение;
  • как жилое помещение.

В первых двух случаях зачастую достаточно ограничиться черновой отделкой или деревом. Правда, дерево используют лишь тогда, когда нет проблем с влажностью, поскольку оно склонно к гниению. Цокольный подвал всегда требует правильного устройства гидроизоляции.

Последовательность работ одинакова независимо от того, какие материалы выбраны:

  • подготовительные работы;
  • гидроизоляция;
  • армирование;
  • покрытие штукатуркой;
  • финишная отделка.

Приступать к эксплуатации помещения обычно можно по истечении месяца с начальной точки работ.

Подготовка

На подготовительном этапе стены очищают от всех видов загрязнения. Для достижения максимального эффекта гидроизоляции и адгезии с отделочными материалами на них должно быть как можно меньше посторонних частиц грязи.

Для очистки можно использовать стандартные строительные инструменты. Кроме того, если стена изготовлена из пенобетона или кирпича, необходимо заделать стыки между блоками. Для этого придётся проделать с помощью специального инструмента штробы глубиной до 4 см, которые тщательно очищаются от грязи. Чистые стыки заделываются специальным составом-гибропломбой.

Внимание! Во время подготовки стен к отделке таким составом необходимо заделать все щели и трещины.

Каковы особенности гидроизоляции

Существует несколько способов гидроизоляции стен подвальных помещений, как в цоколях, так и других конструкциях. Все они выполняются в паре с гидроизоляцией пола, поскольку основная влага проникает именно через него.

Основными материалами, использующимися для защиты погреба или подвала от влаги, являются:

Использование каждого из этих материалов подразумевает специфическую технологию. Так, гидрофобизаторы наносят прямо на подготовленную стену с помощью кисти или специально распылителя.

Важно! Наносить защитный раствор надо максимально равномерным слоем.

Особенность подобных растворов в том, что они вытесняют влагу из бетона, проникая внутрь его структуры.

Мастика или битум — более дешёвый вариант гидроизоляции. Но наносить их надо уже после того, как стены оштукатурены. Битум требует предварительного разогревания. Слой должен быть не меньше 2 мм, поэтому материал наносят в несколько этапов. Для скорейшего высыхания его посыпают песком.

Жидкую резину не так часто используют в изоляционных работах, но это довольно недорогая технология. Она требует предварительного грунтования стен. Смесь, предварительно перемешанную дрелью, наносят кисточкой так, чтобы не допустить неровностей.

Стыки между блоками отдельно защищают от влаги с помощью стеклосетки. Полоски стекловолкна помещают в штробы, заделанные раствором.

Как монтируется армирующий материал

Стены подвала армируют как для их укрепления, так и для установки теплоизоляции. Для этого используют специальную армирующую сетку. Лучше всего подходит рулонный материал из стали с ячейками 3 на 3 см. Он в достаточной мере прочен и стоит недорого.

В зависимости от толщины металла сетку режут на куски необходимого размера болгаркой или ножницами по металлу. Размеры кусков необходимо рассчитать так, чтобы они укладывались с нахлёстом друг на друга. Для связывания концов между собой применяется калёная проволока.

К стене же материал крепят дюбелями, которые вставляют в отверстия, проделанные перфоратором. А вот армирование монолитных стен подвала выполняют ещё на этапе строительства.

Внимание! Нельзя допускать, чтобы сетка торчала. Она должна плотно прилегать к стене.

После того как стены цоколя армированы, их необходимо утеплить. В качестве лучшего утеплителя подойдёт специальный пенопласт или пенополиуретан. Слой утеплителя должен быть не меньше 5 см, но многое зависит от местных климатических условий и желаемой температуры в цокольном подвале.

Как штукатурить стены цоколя

Для оштукатуривания стен используют цементные растворы. Материалы на основе гипса считаются менее подходящими для помещений такого рода.

Замешивать раствор необходимо в соответствии с рецептурой, указанной на его упаковке. Объём одновременно изготавливаемого раствора должен быть таким, чтобы его можно было использовать за раз, а консистенция — чтобы он хорошо держался на сетке или утеплителе.

Если подвал будет использоваться в качестве погреба для хранения продуктов или технического помещения, то в идеально ровной поверхности необходимости нет. Для нанесения штукатурки из инструментов используют лишь шпатель.

Прежде чем приступать к следующему этапу, штукатурке надо дать высохнуть. Процесс может занять до двух недель, но его можно ускорить, используя обогреватели или фен.

Финишная отделка

Финишная отделка стен цоколя может быть самой разнообразной и полностью зависит от предназначения и дизайна помещения. Для придания подвалу необходимого внешнего вида можно использовать:

  • краску;
  • дерево;
  • обои;
  • сэндвич-панели;
  • вагонку из пластика;
  • декоративный кирпич;
  • декоративную штукатурку;
  • плитку;
  • известняк;
  • камень.

Так, покраска оптимальна, если речь о помещении с техническим предназначением, тренажёрном зале или простом погребе. Для винного погреба хорошо подойдут натуральный или искусственный камень, плитка. Дерево неплохо будет служить в роли отделочного материала в погребе для хранения продуктов.

Важно! Перед покраской стены стоит побелить известью.

Заключение

Стены подвала армируются для достижения максимальной прочности с минимумом затрат. Использование того или иного материала зависит от предназначения помещения и бюджета владельца. Эти же принципы применяют к дальнейшим этапам отделки стен.

Армирование цоколя

Цокольное помещение – этаж постройки, заглубленный ниже нулевой отметки, который воспринимает массу строения и должен обладать достаточным запасом прочности. С целью повышения прочностных характеристик здания обязательно армировать цоколь, что позволит значительно увеличить срок эксплуатации объекта.

Способность перекрытия цокольного этажа воспринимать значительные нагрузки очень актуальна. Цокольное помещение является полом первого этажа здания, требует выполнения специального армирования. Ознакомимся более детально с особенностями цокольного строения методами усиления.

Армирование фундамента – обязательный процесс при любом строительстве

Особенности цоколя

Цоколь – ответственный элемент строения, характеризуется следующими моментами:

  • он обеспечивает защиту внутренних помещений строения, стен от проникновения сырости;
  • перекрытие «нулевого» этажа воспринимает значительные усилия;
  • поверхность стен предотвращает проникновение воды внутрь периметра;
  • цокольное помещение является своеобразным буфером, обеспечивающим комфортный температурный режим помещения.

Цокольный этаж представляет собой расположенное ниже нулевой отметки помещение, используемое в качестве:

  • Вместительного подвала.
  • Удобного погреба.
  • Подсобного помещения.
  • Котельной.
  • Домашней мастерской.
  • Гаража.
  • Бани или сауны.
  • Прачечной.
  • Кладовки.

Установка металлических прутьев в основание дома позволяет обезопасить его от эластичности, что исключает неравномерную усадку постройки

Площадь цоколя позволяет разместить в нём подсобные помещения или использовать для жилых целей. Высота составляет не менее двух метров, что позволяет полноценно использовать удобное и практичное пространство по усмотрению хозяев. Цоколь позволяет существенно увеличить площадь постройки.

Расположение цокольных помещений

Осуществляя строительство цокольного этажа своими руками, выберите вариант расположения цоколя, который может быть:

  • Заглубленным ниже нулевой отметки. Надежно защищает фундамент и стены постройки от воздействия влаги и положительно влияет на продление срока эксплуатации сооружения.
  • Выступающим, применяемым для зданий, стены которых имеют недостаточную толщину. Если планируется использование «нулевого» этажа для жилых целей, то в данном варианте это возможно.
  • Расположенным на одной отметке с фундаментом, что является не самым лучшим вариантом, так как стены основания требуют усиленной гидроизоляции и выглядят недостаточно эстетично.

Независимо от выбранного варианта, армирование цоколя – обязательно!

Актуальность усиления цоколя

Осуществляя строительство цокольного этажа своими руками, важно обеспечить высокую прочность, использовать теплоизоляционные, гидроизоляционные материалы, которые надежно защитят основание здания от грунтовых вод и перепадов температуры.

Выполнение армирования цоколя увеличивает срок эксплуатации дома

Армирование цоколя – обязательная операция при выполнении строительных работ. Наличие в цоколе здания каркаса усиления обладает следующими положительными моментами:

  • значительно повышает прочностные характеристики;
  • предотвращает непропорциональную усадку строения;
  • затрудняет образование трещин;
  • не допускает деформаций, связанных со смещением почвы или ее вспучиванием;
  • существенно повышает срок эксплуатации строения.

Какие поверхности подлежат усилению?

При строительстве «нулевого» этажа необходимо обеспечить армирование следующих элементов конструкции:

  • основания цокольного помещения;
  • боковых поверхностей стен;
  • армопояса;
  • перекрытия.

Остановимся детально на каждом из этапов работ.

Специфика устройства и армирования основания

Предварительно, до выполнения работ по армированию основания, выполните следующий комплекс работ:

  • Установите дренаж, отводящий грунтовые воды.
  • Выведите дренажные магистрали за пределы котлована.

После того как опалубка была произведена, и цокольный будущий этаж готов к дальнейшим работам, устанавливаются и вертикальные прутья арматуры

  • Спланируйте поверхность.
  • Произведите подсыпку гравийно-песчаным составом, обеспечив толщину слоя не менее 10 см.
  • Уплотните массив, пропитайте водой.
  • Залейте легким бетоном основание, обеспечив толщину гидроизоляционного массива порядка 5 см.
  • Уложите в 2 слоя гидроизоляцию, в качестве которой может использоваться рубероид.
  • Положите элементы арматурного каркаса плиты основания, применяя стальные стержни диаметром более 12 мм, расположенные продольно и поперечно.
  • Свяжите конструкцию проволокой.
  • Заполните объем бетоном толщиной не менее 20 см.
  • Уплотните, спланируйте поверхность.
  • Обеспечьте возможность выдержки на протяжении 4 недель.
  • После затвердевания приступайте к возведению опалубки для стен.

Усиление стен

Строительство основания здания в большинстве случаев осуществляется на базе монолитного бетона. Его отличает высокий запас прочности, технологичность, способность предотвращать проникновение влаги.

Крайне важно помнить, что действительно необходимо произвести все работы качественно, так как от этого и зависит надежность и долговечность будущего дома

При заливке стен цоколя произведите следующие операции:

  • Установите вертикальные арматурные стержни, которые будут являться основой армированного пояса.
  • Привяжите двумя ярусами продольные стержни арматуры к вертикально расположенным прутьям.
  • Установите стальные швеллера или металлические трубы в зонах проемов, зафиксируйте их, что позволит сохранить целостность монолита.
  • Соберите опалубку, используя пластиковые щиты, которые обеспечат дополнительную герметизацию стен нулевого этажа.
  • Заполните бетоном объем опалубки. Старайтесь производить заполнение в один прием.
  • Уплотните массив, применяя вибратор.
  • Дайте бетону застыть.

Армопояс

Армированный пояс обеспечивает привязку строительных конструкций верхнего яруса с цокольной постройкой, равномерно распределяет усилия от массы строения, действующие на основание и почву. Для обеспечения прочностных характеристик достаточно вверху цокольного этажа установить армированный пояс толщиной до 250 мм, усилить каркасной конструкцией, состоящей из трех стальных прутков диаметром 14 мм. Основой армирования служат вертикальные прутки, расположенные в монолитных стенах, к которым привязаны продольные арматурные стержни.

Армопояс устанавливается в деревянную опалубку, соответствующую высоте, изготовленную из древесины толщиной 30 мм. Весь объем опалубки заливается раствором, уплотняется для удаления воздушных пузырей.

Чаще всего для постройки цокольного этажа используют монолитный бетон

Формируя пояс усиления, скрепите проволокой стенки опалубки, обеспечьте их герметичность, чтобы не вытекало цементное молочко. Увлажняйте поверхность водой на протяжении недели.

Виды цокольных перекрытий

Армирование цоколя производится для любых оснований зданий, перекрытие которых может быть:

  • цельным, представляющим собой монолитную железобетонную поверхность, залитую в процессе строительства;
  • сборным, собранным из отдельных, изготовленных в промышленных условиях, плит;
  • монолитно-сборным, сочетающим использование готовых строительных конструкций, расположенных между опорными балками перекрытия. Дополнительно производится бетонирование и усиление всей поверхности.

Монолитная поверхность: заливка и усиление

Конструкция позволяет обеспечить максимальную прочность перекрытия цоколя и применяется для любых помещений, расположенных на уровне нулевой отметки независимо от их назначения.

Сначала возводят фундамент и заливают плиту перекрытия

Монолитные конструкции перекрытия заливайте и усиливайте следующим образом:

  • Установите стойки с интервалом до 1,5 м, с закрепленными в торцах опорными вилками.
  • Зафиксируйте балки в ложементах.
  • Соберите опалубку, используя доски, фанерные щиты или листовой металл.
  • Пропитайте древесину влагоотталкивающим составом, закройте полиэтиленовой пленкой.
  • Обеспечьте горизонтальность поверхности, регулируя высоту опорных стоек.
  • Выполните армирование путем укладки усиленного каркаса, изготовленного из стальных стержней диаметром до 16 миллиметров. Располагая прутки перпендикулярно, свяжите их вязальной проволокой или сварите, обеспечив квадратную форму ячейки стороной 15 сантиметров. Диаметр арматуры должен соответствовать сортаменту прутков, используемых в фундаменте постройки. Армирование в два слоя позволит обеспечить дополнительный запас прочности, который будет не лишним.
  • Зафиксируйте каркас в опалубке, обеспечив гарантированный интервал от металлической конструкции до бетонной поверхности на уровне 5 сантиметров.
  • Залейте массив послойно бетоном, уплотняя каждый слой с применением вибраторов, что положительно влияет на прочностные характеристики массива.
  • Выполните нарезку швов, которые компенсируют внутренние напряжения.
  • Обеспечьте возможность твердения массива на протяжении месяца, что достаточно для приобретения бетоном эксплуатационной прочности.
  • Демонтируйте опалубку и опорные элементы.

Правильное выполнение технологических операций позволит получить прочную конструкцию, в качестве которой вы можете быть уверены.

Проволока должна не просто держать конструкцию вместе, чтобы та не упала или не отделились лишние фрагменты, а должна стягивать прутья друг к другу, крепко закрепляя в единую конструкцию

Сборная конструкция

Перекрытие основания здания с помощью сборных плит позволяет использовать промышленно произведенные железобетонные изделия, которые армированы в производственных условиях.

Положительной особенностью такой конструкции является:

  • гарантированный запас прочности железобетонных изделий пустотелого и сплошного типа;
  • возможность ускоренного монтажа;
  • отсутствие необходимости армирования, так как каркас усиления установлен в готовых железобетонных изделиях.

Однако имеется ряд серьезных недостатков:

  • Необходимость использования тяжелой грузоподъемной техники.
  • Увеличенные расходы на строительство.
  • Возможность применения только стандартных плит, что ограничивает размеры цокольного помещения.

Монолитно-сборная поверхность

Устройство перекрытия сборно-монолитного типа осуществляется путем монтажа готовых блоков между поперечными балками с последующим заполнением бетонным раствором всей поверхности, что позволяет придать целостность конструкции. Перекрытие данного типа включает в себя следующие составные части:

  • железобетонные балки, воспринимающие массу всей конструкции;
  • стандартные газосиликатные, бетонные или керамические блоки, устанавливаемые в зазор между балками из железобетона;
  • сетчатый арматурный каркас;
  • монолитный бетонный массив.
  • Отсутствие необходимости в грузоподъемных устройствах.
  • Возможность выполнить монтаж самостоятельно.
  • Ограниченное время выполнения работ.

Строительные мероприятия выполняются в следующей последовательности:

  • установите железобетонные балки, соблюдая интервал между ними 0,6 м;
  • уложите в зазор блоки стандартного размера;
  • выполните армирование основания, используя стальные прутки необходимого диаметра;
  • залейте тонким слоем бетонного раствора поверхность, спланируйте ее.

Заключение

Надежное усиление стальной арматурой цокольного этажа своими руками не представляет больших сложностей. Просто соблюдайте рекомендации специалистов и выполняйте технологические операции в необходимой последовательности.

Немного аккуратности, терпения, строительного опыта – и цокольная постройка, построенная и усиленная собственноручно, будет на протяжении десятилетий выполнять свое функциональное назначение. Главное, чтобы при выполнении работ применялись только качественные строительные материалы.

Как правильно армировать бетонные стены цокольного этажа и как избежать ошибок

Как правило, создание цокольного этажа в своем загородном доме стало на сегодняшний день крайне распространенным явлением, так как технологии строительства уже давным-давно позволяют произвести нечто подобное даже самостоятельно!

Но, создание цокольного этажа это также большая вероятность появления ошибок, которые в результате могут иметь крайне плачевные последствия, ведь именно цокольный этаж и станет, по сути, основой Вашего дома.

Где именно допускаются ошибки

Чаще всего, ошибки допускаются именно в процессе армирования бетонных стен, из-за чего, они просто не имеют достаточной устойчивости и надежности, что действительно является крайне серьезной проблемой.

Список основных материалов, которые понадобятся

Для правильного армирования стен, Вам понадобится:

  1. Бетон – Как и должно, было стать понятным, без него не обойдется ни одна стройка, но необходимо отметить, что он обязательно должен быть высокой марки! Помните, что именно на цокольном этаже стоит весь дом и если же, грубо говоря, отнестись к его созданию с халтурой, последствия могут быть самыми разными;
  2. Стальные прутья – используются для армирования – также крайне важно, чтобы они были тоже высокой марки!
  3. Пластиковые счеты;
  4. Проволока – Любая, но рекомендовано использовать именно стальную!

Пошаговое армирование стен, что нужно знать и как делать

Для начала, подготавливается, разумеется, сама территория (то есть, создается фундамент) сразу, после чего, заливается и плита перекрытия, но, перед этим, в обязательном порядке устанавливается опалубка.

Опалубка должна обладать крайне высокой надежностью и качеством её создания, так как она, так и останется несъемной.

Для этого, ОБЯЗАТЕЛЬНО используют рифленые арматурные прутья, которые после установки (проблем с которой всё же не возникнет) надежно связываются обычной проволокой (алюминиевой или другой), Обратите внимание, что связывать тоже нужно ОБЯЗАТЕЛЬНО надежно и крепко!

Проволока должна не просто держать конструкцию вместе, чтобы ты не упала или не отделились лишние фрагменты, а должна стягивать прутья друг к другу, крепко закрепляя в единую конструкцию! Учтите, что связывать прутья нужно в каждом месте, где они соприкасаются, ведь только так можно добиться максимального качества работы.

После установки опалубки

После того как опалубка была произведена, и цокольный будущий этаж готов к дальнейшим работам, устанавливаются и вертикальные прутья арматуры (в местах где будет осуществляться заливка стен), которые должны быть также надежно закреплены.

Данный этап является одним из самых важных, так как правильно армировать бетонные стены цокольного этажа нужно именно уже после полной подготовки данных пошаговых инструкций.

Данные этапы были направлены именно на подготовку армирования цокольного этажа, которое будет производиться именно на установленные вертикальные прутья.

Сразу же после завершения всех указанных работ, основание заливается бетоном и при этом, помните, что крайне важно сделать это за один подход. Когда это сделано, от создания и армирования цокольного этажа нужно на время «оторваться», так как залитый бетон ОБЯЗАТЕЛЬНО должен крепко схватится (ждать нужно не менее трех дней).

Даже если Вам кажется, что бетон уже достаточно затвердел, всё равно рекомендовано подождать данный срок времени, так как важно, чтобы он действительно был полностью готов к последующим действиям.

После трехдневного периода ожидания

Так как бетон уже затвердел, можно сразу же переходить к установке самого армирования. Для этого, в первую очередь устанавливается опалубка уже для создания стен.

Но на этот раз, в качестве основного материала для создания опалубки необходимо использовать пластиковые счета, который также нужно плотно установить и который станут ещё одной крайне весомой защитой будущего цокольного этажа, делая его крепче, утепляя и добавляя также другие просто необходимые свойства.

Теперь же, так как всё готово, будет правильно армировать бетонные стены цокольного этажа сразу после срока ожидания того, чтобы бетон схватился. Для этого, используются всё те же армированные прутья, которые устанавливаются в стандартном, продольном направлении (как и можно было догадаться самостоятельно).

Как и в случае первого этапа. Вся конструкция снова закрепляется вместе обычной проволокой, но, как и тогда, важно именно сжать её, превратив в единое целое.

При этом, крайне важным является то, что ОБЯЗАТЕЛЬНО нужно осуществить два пояса обвязки (обычный стандарт для цокольных этажей высотой два с половиной или три метра, что также, чаще всего, является стандартом).

Другие работы

На этом, само армирование заканчивается, так как сразу после обвязки, производиться заливка бетона (также, важно чтобы данный процесс тоже был выполнен с одного подхода, так как это сделает стены намного крепче, чем при заливке в несколько).

Однако в дополнение, необходимо просто знать, что именно сейчас, осуществляются и другие работы, такие как:

  1. Создание дверного проема;
  2. Окон;
  3. Установка труб под сантехнику;
  4. Другие коммуникации.

Крайне важно помнить, что действительно необходимо произвести все работы качественно, так как от этого и зависит надежность и долговечность будущего дома.

Как бы там ни было, но именно при создании цокольного этажа лучше и вовсе не экономить, использовать только высококачественные материалы и при этом, не спешить. Лучше уж чтобы постройка затянулась, чем её наносить вред её качеству.

Особенности армирования монолитных стен подвального помещения

Если вам необходимо армировать стены подвала, то можно справиться с работой и самостоятельно, не прибегая к дорогостоящим услугам. Главное – знать технологию и особенности армирования монолитных стен.

Армирование – это строительный процесс, при котором металлическая арматура используется в качестве одной из составляющих материала для повышения его прочности. Армирование увеличивает сроки службы конструкции, а также улучшает ее рабочие и эксплуатационные характеристики.

С помощью добавления арматуры простой бетон превращается в более прочный и надежный железобетон. При устройстве несущих конструкций (таких, как стены здания) применяется именно второй вариант. Для того чтобы построить стену с нужными техническими характеристиками из обычного бетона, его потребуется очень много. А возводить стены большой толщины не рационально и дорого. Использование арматуры позволяет усилить бетонный слой, не делая его слишком толстым.

Армирование также используется в тех случаях, когда предполагается высокая механическая нагрузка на бетонную конструкцию.

Также нельзя не отметить, что армирование очень хорошо помогает увеличить прочность и устойчивость кирпичной кладки или стены из газобетонных блоков (и их аналогов). Арматура в таких случаях не проходит вертикально сквозь всю стену, а укладывается поясами через каждые несколько рядов. Когда делают бетонную стяжку пола, для армирования обычно пользуются проволокой. Очень важно укрепить стяжку в тех местах, где на нее будет ложиться максимальная нагрузка (например, у входа).

Арматурная конструкция для стены подвала

Стены подвала нуждаются в качественном армировании, так как на них сверху будет давить вес конструкций дома, а по бокам – окружающий постройку грунт.

Для стен небольшого частного подвала вязка арматуры может быть произведена своими руками, без привлечения специалистов.

Правильная вязка стержней.

В случае с подвальными стенами необходимо сделать такую арматурную сетку, которая будет обладать одним важным качеством – упругостью. Лучше использовать именно вязку, а не сварку. Если фундамент здания будет двигаться из-за осадки или пучения грунта, то с вязаной арматурной сетью ничего не произойдет, а сварная может развалиться, если осадка слишком значительна.

Впрочем, устройство монолитных стен подвала может предусматривать и сварной, и вязаный вариант арматурной сетки. Какой именно метод выбрать, следует уточнить у специалистов, ответственных за проектирование сооружения.

Арматурный каркас не должен соприкасаться со стенками опалубки.

Вязка арматуры для стен подвала происходит в местах пересечения стержней. Для этого необходимо будет дополнительно приобрести проволоку, которая используется для скрепления стержней. В большинстве случаев, диаметр этой проволоки составляет несколько миллиметров.

Чтобы связать арматуру, потребуются кусачки или специальное устройство, которое облегчит и ускорит работу. Такое приспособление можно найти только у профессионалов, поэтому можно взять его в аренду в ближайшей строительной фирме. Вне зависимости от того, какой метод армирования буде выбран, прочность стены подвала в любом случае повысится. При заливке бетона очень важно уделить повышенное внимание узлам конструкции.

Как только вы свяжете или же сварите арматурную сеть, необходимо очистить установленную заранее опалубку от грязи и пыли, после чего разметить на ней будущее расположение сетки. Только после проведения всех расчетов можно укладывать арматуру внутрь конструкции.

Укладка арматуры и устройство опалубки для монолитной стены должны производиться без воздействия давления грунта. Иными словами, нужно с обеих сторон от опалубки освободить пространство для нормального проведения работ.

Засыпка грунта производится только после того, как арматурная сеть будет установлена в опалубку и залита цементным раствором. Использование вынутого грунта не всегда оправдано. Для обратной засыпки также пользуются специально подготовленным песком или глиной. Все зависит от типа грунта и особенностей здания.

Особенности укладки арматуры

Армирование монолитных бетонных стен – ответственный процесс, который требует определенных умений и навыков. Стены подвала будут испытывать большую нагрузку, поэтому крайне важно правильно уложить арматуру, снизив до минимума риск разрушения сетки при эксплуатации.

Какие основные правила укладки арматуры можно выделить?

  1. Необходимо проследить за тем, чтобы арматура – проволока и другие ее элементы – даже близко не касались опалубки и были расположены на некотором расстоянии. Если это соприкосновение допустить, то в момент, когда вы будете убирать опалубку, вы вполне сможете повредить арматурную сеть, хотя вероятность этого относительно невысока. Если опалубка не снимаемая, то через это соприкосновение к стальному стержню будет проникать нежелательная влага.
  2. Ячейки арматурной сети должны быть определенного размера. Для подвальных стен оптимальной будет ширина в 25-35 см.
  3. Для пущей надежности и прочности конструкции, получаемой после армирования монолитных стен, рекомендуется уменьшать размер ячеек, предусматривая нагрузку, исходящую от перекрытия (если перекрытие также бетонное). Одновременно с этим, делать размер ячеек меньше 5 см не стоит, потому что цементный раствор в этом случае утратит проникающие свойства, и в процессе бетонирования поверхности начнут образовываться нежелательные пустоты.
  4. Дополнительно следует предусмотреть защиту арматуры от коррозии. Для этого используются специальные добавки в заливаемый бетон. Помимо этого, от поверхности стены арматура должна быть отделена слоем бетона толщиной не менее 15-20 мм. Неважно, выполняете ли вы армирование монолитных стен подвала самостоятельно или с помощью наемных работников – всё нужно тщательно проконтролировать и проверить.
  5. Следует также проследить за тем, чтобы арматурные стержни стояли в опалубке максимально прямо, без каких-либо отклонений (в противном случае давление грунта может привести к негативным последствиям). Конечно, незначительные отклонения (до нескольких миллиметров) допускаются, однако, лучше всего обойтись без них. Для проверки ровности монтажа арматурной сети рекомендуется использовать лазерный или традиционный строительный уровень.

Пример армирования плитного фундамента и монолитных бетонных стен.

По завершении укладки арматуры, необходимо лишний раз проверить правильность установки и монтажа всей конструкции. Главное, чтобы всё соответствовало проекту (если он имеется). Только после этого можно начать заливку раствора.

Тонкости армирования и типичные ошибки

Разумеется, когда домовладелец самостоятельно армирует стены подвала, он может не предусмотреть какие-то моменты и допустить ошибки. Чтобы при эксплуатации подвального помещения не возникало проблем, стоит заранее учесть некоторые факторы:

  • Не стоит пользоваться для создания арматурной конструкции теми стальными стержнями, которые ранее эксплуатировались в других местах. Такая арматура может не выдержать новой нагрузки (давление грунта и перекрытий), поэтому от нее стоит отказаться.
  • Если на новых стержнях перед их установкой вы обнаружили следы ржавчины, то знайте, что их удалять и закрашивать не нужно. Проведение этих мероприятий только ухудшит сцепление стержней с цементным раствором при армировании монолитных стен.
  • Когда вы будете соединять стержни в сеть, то их нужно будет разрезать или сгибать. Для резки подходит традиционная болгарка. А вот для гибки стали, стержень порой предварительно разогревают в целевом месте. Этот подход не является правильным, потому что при нагревании материал будет изменять свою структуру, в результате чего может произойти его разрушение. Отчасти поэтому многие строители не рекомендуют использовать сварку. Конечно, нет ничего страшного, что стержень сломается при эксплуатации в стене небольшого отдельно стоящего подвала, но если такое произойдет в испытывающем высокую нагрузку фундаменте?
  • Ни в коем случае нельзя укладывать арматурную сетку в ту опалубку, куда уже был залит бетон. Если не получилось по каким-либо причинам соблюсти правильную последовательность действий, то необходимо все работы начать сначала. То есть надо убрать залитый раствор, демонтировать опалубку, очистить ее и поставить снова, уложив в нее готовый каркас.
  • Если вы хотите нарастить сделанную арматурную сеть по высоте или длине, то делать это крайне не рекомендуется, потому что при сильной нагрузке в местах наращивания может произойти разрыв. Когда вы уверены, что стены погреба большой нагрузки испытывать не будут, то можно попытаться максимально качественно нарастить каркас, если на то есть необходимость.

При армировании стен подвала нужно учитывать тот момент, что давление грунта с внешней стороны, скорее всего, будет значительным. Поэтому необходимо выбирать качественную арматуру стандартных размеров и связывать ее специальной проволокой. Сварку для скрепления стержней можно использовать только в том случае, если давление грунта не настолько высокое, чтобы оказывать на стену ощутимое воздействие.

В тех случаях, когда дом будет давать осадку, давление грунта также придется принимать во внимание.

Специальный пистолет для вязки стержней.

Очень важно на этапе создания монолитной бетонной стены подвального помещения предусмотреть с ее внешней стороны наличие теплоизоляционного и гидроизоляционного слоя.

Кроме того, выше уже было сказано, что арматурные стержни рекомендуется защитить от коррозии с помощью специальных добавок в бетон.

Самостоятельное выполнение работ

Из всего вышесказанного можно сделать вывод о том, что выполнить армирование монолитной стены можно своими руками и без привлечения специалистов. Однако следует обязательно обратиться за помощью к профессионалам, если вы не можете рассчитать давление грунта, вычислить необходимую толщину стержней, выбрать тип проволоки для обвязки, а также хотите уточнить какие-либо важные нюансы.

Главный редактор сайта, инженер-строитель. Окончил СибСТРИН в 1994 году, с тех пор отработал более 14 лет в строительных компаниях, после чего занялся собственным бизнесом. Владелец компании, занимающейся загородным строительством.

Армирование монолитных стен из бетона в подвале: арматура для стен цоколя

При строительстве частного дома или иного сооружения часто возникает необходимость построить подвал для использования в качестве подсобного помещения. С точки зрения функциональности это очень удобно, к тому же такой цоколь размещается по площади всего дома, что обеспечивает сохранность конструкции здания при воздействии неблагоприятных условий.

 Загрузка …

Для надежности и долговечности постройки необходимо обеспечить грамотное расположение несущих конструкций. Все работы с фундаментом дома в целях безопасности должны проходить непременно с соблюдением строительных нормативов с поправкой на особенности климата региона.

Требования к стенам цокольного этажа

Если предполагается использовать цоколь, как дополнительное жилое помещение, то ещё на стадии проекта следует задуматься о выборе материалов. Монолитные подземные стены обладают высочайшей прочностью и низкой водонепроницаемостью, в то время как кирпичи или блоки не могут обеспечить подобный уровень гидроизоляции за счет наличия швов и стыков.

Бетонная стена для монолитного погреба  или подвала сама по себе обладает достаточно высоким уровнем прочности, но для достижения технических характеристик прочности по нормативу потребуется очень большое количество бетона, что приведет к неизбежному удорожанию строительства.

Добавление металлических элементов в раствор позволит усилить слой бетона без избыточного утолщения.

Особенности технологии армирования монолитных стен

Армирование представляет собой процесс добавления металлической арматуры в бетон для повышения прочности самого материала и продления срока эксплуатации.

Это способно укрепить и значительно повысить прочность конструкции из любого материала, будь то кирпичная кладка или блоки. При стяжке пола также применяют армирующую сетку, используя проволоку, особенно в тех местах, где нагрузка предполагается максимальной.

Таким образом, главная задача армирования – повышение прочности и укрепление тех элементов конструкции, на которые приходится наибольшая нагрузка.

И если для того, чтобы грамотно составить проект лучше привлечь сторонних проектировщик, обладающих достаточным опытом и знающих специфику отдельного вида работ, то для того, чтобы провести армирование монолитных стен подвала не требуется ничьей помощи. Изучив тонкости работы с металлической арматурой, все работы вполне доступно провести самостоятельно.

На стены цокольного этажа ложится дополнительная нагрузка в виде давления грунта снаружи. Именно по этой причине необходимо уделить особе внимание укреплению стен и качеству используемых материалов.

Как правило, стена подвала создается с использованием арматурной сетки, главная особенность которой – упругость. При её создании специалисты рекомендуют применять метод вязки, а не сварки, поскольку в случае нарушения положения фундамента (смещения, повреждения) вязаная арматурная сетка сможет сохранить целостность, в то время как сварная конструкция не выдерживает в местах крепления элементов друг к другу.

Каждый метод изготовления сетки для армирования стен подвала должен быть в обязательном порядке согласован с проектировщиками, отвечающими за расчет нагрузки всего здания.

Типовая последовательность выполнения работ по армированию монолитных стен подвала

Приобрести специальную проволоку диаметром 0,3 см для того чтобы грамотно выбрать материал сетки, необходимо сориентироваться в существующем многообразии. Существуют следующие основные современные виды выполнения сетки:

Каленая или арматурная проволока

Арматурная сетка обычно продается в рулонах и имеет наибольшую распространенность. Чаще всего используется для армирования стен и стяжки пола. Проверенная временем, она надежно укрепит стены от негативных воздействий неизбежной усадки грунта.

Геосетка

Геосетка выполнена из полимеров и ткани. В ее составе входит полипропилен, обтянутый резиной или тканью, или другие геотекстильные материалы. Чаще такая сетка используется для укрепления кладки или отделки поверхности пеноблоков.

Стеклосетка

Стеклопластиковая армировочная сетка – наиболее дешевый и простой вариант для внутренних отделочных работ. Она отлично зарекомендовала себя при кирпичной кладке, стяжке пола, отделке стен и потолка, но неприменима для стяжки фундамента или отмостки.

Подготовить инструмент, ускоряющий работу с проволокой

Как правило, для создания армированных конструкций используют кусачки и проволока. Но современные методы работы с проволокой делают доступными для работы и новые инструменты. В частности, пистолет для вязки арматуры — несложное по своей конструкции устройство, обеспечивающее высокую скорость изготовления каркаса.

В основе работы пистолета для вязки арматуры лежит электродвигатель, который запускает протяжку проволоки. В процессе работы проволока движется по направляющим с катушки. Необходимый участок проволоки отрезается встроенным ножом, после чего срабатывает скрутка. Весь процесс длится до 2 сек.

Провести требуемые расчеты толщины подвальных стен

Расчет толщины стен проводится с учетом уровня залегания грунтовых вод.

В случае если грунтовые воды достаточно далеко от основания, то рекомендуется придерживаться следующих требований: нижняя стена может быть не силовой и на 10 см выступать за контур строения, а толщина подвальных стен при глубине размещения на 1,5-2,5 метра может составлять от 20 до 40 см.

Если же цоколь располагается ниже уровня подземных вод, то плита основания должна быть усилена армированием, иметь толщину от 20 см и выходить за стены на 40 см.

Зачистить опалубку

Один из самых простых этапов, не требующий особых трудозатрат. Суть выполняемых работ сводится к удалению следов грязи и строительной пыли.

Изготовить сетку для армирования стены

При изготовлении сетки важно правильно определить размер ячейки. Для подвальных стен это значение может колебаться от 25см до 35 см. Причем важно знать, что чем мельче звено (ячейка), тем надежнее и прочнее будет эффект от укрепления.

Учитывая особенности цементного раствора, важно помнить, что его проникающая способность при заливке не позволяет делать ячейки менее 5 см, в противном случае возможно возникновение пустот и снижение прочности конструкции.

Заложить внутрь существующей опалубки арматурную сетку

Необходимую и достаточную прочность стене обеспечит армирование сеткой в два слоя, причем диаметр проволоки должен быть не менее 1,2 см, а шаг по горизонтали и вертикали не должен превышать 40см. Оба слоя сетки соединяют в шахматном порядке через каждую пару ячеек при помощи проволоки того же диаметра.

Важно! Арматура и все составляющие ее элементы должны не соприкасаться с опалубкой, а размещаться на небольшом расстоянии от нее. В противном случае при демонтаже опалубки есть риск повредить армирующую сетку.

Проверить правильность монтажа сетки подвальных стен

При монтаже стержневой арматуры важно уделить особое внимание их строго вертикальному расположению. Отклонение допускается только в 1-2 мм.

Это связано с давлением, которое грунт с внешней стороны оказывает на стены. При использовании сетки можно проверить правильность её расположения лазерным или строительным уровнями.

Залить раствор в опалубку и засыпать грунт возле стен цоколя

Важным моментом при заливке является обеспечение антикоррозийной защиты арматуры. Для этого в бетон добавляют специальные растворы и отделяют от стены слоем не менее 2 см.

Перекрытия из железобетонных плит можно укладывать на стены подвала не ранее чем через три-четыре недели, но не откладывать этот этап на следующий строительный сезон во избежание наклона стен внутрь здания под действием внешнего давления грунта.

Армировать монолитные стены подвала можно и самостоятельно, зная основные принципы армирования и этапы работ. Но к помощи профессионалов все же следует прибегнуть на стадии расчетов давления на грунт, вычисления нужной толщины стен и стержней для армирования, выбора типа и диаметра проволоки для обвязки или создания сетки.

Соблюдение этих нехитрых правил обеспечит долговечность и удобство использования подвала как подсобного помещения.

Полезное видео

А видео ниже на примере покажет, что такое армирование стен подвала и какие работы необходимо произвести для осуществления данной задачи:

этапы, видео (зачем армировать монолитные стены)

Армирование является одним из основных видов бетонных работ. Технологический процесс заключается в применении металлической арматуры, которая выступает в качестве основного составляющего материала.

Данную технологию используют, когда необходимо произвести армирование монолитных стен подвала.

Это позволяет не только упрочнить конструкцию, но и сэкономить материал, в частности бетон, которого потребуется значительно меньше, при этом стены будут иметь небольшую толщину.

Зачем нужно армировать монолитные стены?

Для усиления бетонной конструкции используется металлический каркас, который изготавливается из стальной арматуры диаметром от 6 до 12 мм. Толщина стальных прутов зависит от предполагаемых нагрузок и эксплуатационных характеристик подвального сооружения.

Результатом армирования монолитных стен погреба является создание надежного и сверхпрочного железобетонного сооружения с высокими физико-механическими показателями и увеличенными сроками эксплуатации. Рекомендуем предварительно ознакомится видами армирующей сетки. Необходимость в армировании возникает и в случае, когда предусмотрена большая механическая нагрузка на железобетонную конструкцию.

Давление происходит в нескольких направлениях:

  1. Сверху нагрузку создает конструкция здания.
  2. С боков давит грунт, который окружает строение по всему периметру.

Именно эти неблагоприятные воздействия и должна выдерживать конструкция погреба.

Как осуществляется процесс армирования?

При создании арматурной сетки, применяется методика связывания или сваривания соединений. Оптимальные размеры ячеек – 25-35 см.

Если применить первый вариант, то такая каркасная конструкция будет обладать необходимой упругостью, которая обеспечит хорошую устойчивость к любым движениям, происходящим в стенах погреба из-за большого количества осадков или при пучении грунта.

Сварная конструкция может получить серьезные разрывы, которые повлекут за собой разрушения. Про анкеровку арматуры в бетоне читайте тут.

Армирование монолитных стен осуществляется в несколько этапов:

  • монтируется опалубка и очищается от грязи и пыли;
  • устанавливается каркас металлический внутрь конструкции так, чтобы прутки не соприкасались с опалубкой, а между ними было достаточное пространство для проведения бетонных работ (5-7 см). В случае их соприкосновения при удалении опалубки будет нарушена целостность армирующего слоя, а через полученный дефект откроется доступ вредной для железобетонной конструкции влаги:
  • когда каркас полностью установлен и закреплен – заливается бетон, и на этом этапе уделяется повышенное внимание соединениям каркаса.

Правила укладки арматуры в ленточный фундамент читайте на этой странице. Как происходит в реальности армирование монолитных стен, можно увидеть на видео, в статье ниже.

https://www.youtube.com/watch?v=u0NDyTl8t_Y

Перед тем как приступить к армированию стен погреба производятся тщательные расчеты на количество материала (опалубку, арматуру, бетон) в соответствии с проектом. Только при правильных расчетах можно получить надежное и прочное сооружение, которое прослужит долгий период, на протяжении которого не будет подвергаться воздействиям со стороны грунта. Зачем используют фибру для бетона можно узнать перейдя по ссылке.

Армирование монолитных стен СНИП — МастерСам

СТЕНЫ ИЗ МОНОЛИТНОГО БЕТОНА

5.82. Наружные и внутренние стены из монолитного бетона при применении переставных опалубок возводятся одновременно или последовательно (сначала внутренние стены, а затем наружные или наоборот).

Внутренние монолитные стены рекомендуется проектировать однослойными. Наружные стены могут быть однослойными или слоистыми.

5.83. Для возведения несущих стен из монолитного бетона рекомендуется применять тяжелые бетоны класса не ниже В7,5 и легкие бетоны класса не ниже В5. В зданиях высотой четыре и менее этажей допускается в несущих стенах применять легкие бетоны класса В3,5. Для внутренних стен плотность легких бетонов должна быть не ниже 1700 кг/м 3 .

5.84. Монолитные однослойные наружные стены рекомендуется проектировать из легкого бетона плотной структуры. При межзерновой пористости бетона не более 3 % и класса бетона не ниже В3,5 в нормальной и сухой по влажности зонах допускается наружные стены проектировать без защитно-декоративного слоя. Наружные легкобетонные стены без защитно-декоративного слоя следует окрашивать гидрофобными составами.

Наружные однослойные стены рекомендуется проектировать из легких бетонов с плотностью не более 1400 кг/м 3 . При технико-экономическом обосновании в однослойных наружных стенах допускается применять легкие бетоны плотностью более 1400 кг/м 3 .

5.85. Слоистые наружные стены можно проектировать из двух или трех основных слоев. Двухслойные наружные стены могут иметь утепляющий слой с наружной или внутренней стороны. В трехслойных наружных стенах утепляющий слой располагается между бетонными слоями.

5.86. Двухслойные наружные стены с утеплителем с наружной стороны могут быть монолитными и сборно-монолитными.

Монолитные стены возводят в два этапа. На первом этапе в переставных опалубках из тяжелого бетона возводят внутренний слой стены, на втором – наружный слой из теплоизоляционного легкого монолитного бетона.

Сборно-монолитная стена состоит из внутреннего монолитного слоя, выполняемого из тяжелого бетона, и наружного слоя – из сборных элементов.

5.87. Двухслойная наружная стена с утеплением с внутренней стороны состоит из наружного монолитного бетонного слоя, внутреннего утепляющего слоя – из газобетонных блоков толщиной не более 5 см или из жестких плитных утеплителей (например, из пенополистирола) толщиной не более 3 см и внутреннего отделочного слоя (рис. 26, а).

Ограничение толщин утепляющих слоев связано с обеспечением нормального тепловлажностного режима стен.

Тяжелый бетон целесообразно применять при расчетных зимних температурах, не превышающих минус 7°С. В остальных случаях необходимо применять легкие бетоны.

Рекомендуется два варианта возведения наружных монолитных стен с утеплением с внутренней стороны:

сначала на внутреннем щите опалубки укладывают слой утеплителя, затем опалубку собирают и бетонируют слой из монолитного бетона. При этом можно применять некалиброванные по толщине плиты утеплителя;

плиты утеплителя устанавливают после бетонирования стен.

При этом необходимо применять калиброванные по толщине плиты утеплителя.

При проектировании двухслойных стен с утеплителем с внутренней стороны следует учитывать, что возведение таких стен проще, чем стен с утеплителем с наружной стороны, но их применение ограничивается условием отсутствия точки росы в пределах толщины утепляющего слоя.

5.88. Трехслойные наружные стены рекомендуется проектировать сборно-монолитными, состоящими из внутреннего несущего слоя монолитного тяжелого бетона и утепленной сборной панели-скорлупы, устанавливаемой с наружной стороны. Панель-скорлупу можно устанавливать до и после возведения монолитной части стены (рис. 26, б).

Допускается трехслойные наружные стены проектировать с наружными и внутренними слоями из монолитного бетона и утепляющим слоем из жестких плитных утеплителей (рис. 26, в).

Рис. 26. Наружные стены монолитных зданий

а – двухслойная; б – трехслойная с наружным слоем из сборной панели скорлупы; в – то же, с внешними слоями из монолитного бетона

1 – блочная опалубка; 2 – панель-скорлупа; 3 – монолитный бетон стены; 4 – рабочие подмостки; 5 – крепежная система панели-скорлупы; 6 – утеплитель; 7 – связь; 8 – щиты опалубки; 9 – бадья; 10 – рассекатель; 11 – бетон

5.89. Конструктивное армирование стен следует предусматривать двух типов в зависимости от напряженного состояния стены:

если от расчетных нагрузок в сечении стены возникают растягивающие напряжения или в полностью сжатом сечении стены минимальные сжимающие напряжения в бетоне s £ 1 МПа (10 кгс/см 2 ), то конструктивное армирование рекомендуется принимать по всему полю стены, при этом количество вертикальной и горизонтальной арматуры должно быть не менее 0,025 % соответствующего поперечного сечения стены;

в остальных случаях конструктивную арматуру устанавливают только по контуру стены, а в пересечениях несущих стен, в местах резкого изменения толщин стен, у граней дверных и оконных проемов и у граней отверстий устанавливают вертикальную арматуру площадью сечения не менее 1 см 3 .

Вертикальную конструктивную арматуру рекомендуется проектировать в виде гнутых (Г-образных) каркасов.

Стыкование вертикальных каркасов по высоте здания рекомендуется производить в уровне перекрытий внахлестку без сварки. Величина перепуска определяется расчетом. При конструктивном армировании стен величина перепуска принимается не менее 200 мм независимо от диаметра вертикальной арматуры. При сборных перекрытиях стыкование арматурных каркасов рекомендуется производить сдельными стержнями, устанавливаемыми между торцами плит перекрытий.

Роль горизонтальной конструктивной арматуры в случае применения неразрезных монолитных, а также сборных и сборно-монолитных перекрытий, опертых по контуру или трем сторонам, выполняет конструктивная арматура в перекрытиях, расположенная параллельно стенам. В случае применения сборных балочных перекрытий рекомендуется устанавливать дополнительную горизонтальную арматуру в местах сопряжения их с монолитными стенами.

5.90. Расчетное армирование стен из монолитного бетона на внецентренное сжатие из плоскости рекомендуется выполнять арматурными блоками, собираемыми из Г-образных каркасов на строительной площадке. Следует предусматривать дифференцированное расчетное армирование по высоте здания в соответствии с изменением усилий в конструкциях.

Уменьшение расчетного армирования по высоте здания следует осуществлять за счет более редкого расположения вертикальных каркасов и (или) уменьшения диаметра вертикальных стержней.

5.91. Повышение трещиностойкости монолитных стен (ограничение по трещинообразованию или ширине раскрытия трещин) может быть достигнуто за счет выбора рациональных конструктивных систем и конструктивно-технологического решения стен; рационального применения материалов в наружных и внутренних стенах в соответствии с указаниями пп. 5.92-5.93.

5.92. Для предотвращения образования сквозных вертикальных температурно-усадочных трещин рекомендуется назначать отношение длины стены к высоте этажа не более двух.

В случае, если длина стены превышает вдвое высоту этажа, то в глухих участках стен рекомендуется устраивать вертикальные технологические швы.

5.93. Для ограничения раскрытия наклонных трещин во внутренних стенах верхних этажей зданий перекрестно-стеновой конструктивной системы с несущими наружными стенами разность D перемещений сопрягаемых участков наружной и внутренней стен не должны превышать величин, приведенных в табл. 7.

Армирование ленточного фундамента по СНиП

Армирование ленточного фундамента: СНиП

Вес любого здания через фундамент передается на грунт. Основание здания не позволяет строению разрушиться. Все требования к фундаментам и информация о них собрана в сборники правил СНиП. Руководствуясь этими документами можно сделать вывод, что армированный ленточный фундамент является самым распространенным при возведении зданий в местах неглубоко промерзающих почв.

Цель армирования

Ленточный фундамент имеет не обычную конструкцию: его длина во много раз больше, чем ширина и глубина. Вследствие такого устройства основы здания почти все нагрузки, которые на него действуют, распределяются вдоль.

Самостоятельно бетонный монолит не может выдержать это давление. И, чтобы сгладить силы, действующие на разрыв, применяется укрепление бетонного фундамента стальной арматурой. Этот процесс и получил название армирование.

Основным нагрузкам подёргается верхняя часть фундамента (сжатие) и нижняя(растяжение), поэтому следует усиливать именно эти части основания. Для середины основания это не имеет смысла, потому что там не наблюдается повышенных нагрузок.

Требования

Основные проекты и условия возведения конструкций из железобетона указаны в СНиП 52-01-2003 «Бетонные и железобетонные конструкции». Данный эталон устанавливает, как правильно монтировать стальную арматуру. Основные условия, предъявляемые к процессу:

  1. • Размеры основания не должны мешать правильному положению арматуры в траншее.
  2. • Зашитый покров над арматурой должен предохранять арматуру от воздействия внешней среды и надежно сопротивляться нагрузкам.
  3. • Расстояние между отдельными прутьями не должно препятствовать правильной состыковке и заполнению бетоном.

При усилении фундамента следует использовать арматуру только высокого качества. Монтирование каркасных сеток для ленточных фундаментов должно происходить в строгом соответствии со СНиП 3.03.01-87 «Несущие и ограждающие конструкции».

Основные принципы

Перед заливкой ленточного фундамента бетоном необходимо грамотно скомпоновать армированный пояс с помощью стальной арматуры. Толщина и глубина основания зависит от будущих нагрузок на здание и используемых материалов для стен.

Ленточный фундамент можно обустроить двумя способами:

  • • использовать готовые блоки заводского изготовления;
  • • залить на месте в готовую траншею.

При использовании заводских блоков можно выделить слабое место: скрепление изделий между собой. Их соединяют армированным бетоном, что не очень надежно. А при заливке бетонным раствором получится надежный и прочный монолитный фундамент.

Монтаж каркаса из арматуры на месте строительства требует соблюдения ряда важных условий:

  1. • Арматура должна находится на расстоянии не менее 5 см от края опалубки.
  2. • Забиваются вертикальные прутки, к которым потом привязываются горизонтальные ряды. Можно и приварить с помощью сварки – это увеличит темп армирования. Но при нагреве металл теряет свою прочность и лучше все-таки вязать мягкой проволокой.
  3. • Один горизонтальный пояс способен сдерживать вертикальную деформацию примерно в пространстве 30-35 см. То есть, для основы высотой в 70 см достаточно двух поясов, а если высота больше, то и количество рядов нужно увеличивать.
  4. • Очень важное значение имеет монтаж армирования в углах фундамента, так как на них приходится самая большая часть нагрузок. При угловом соединении лучше согнуть свободные концы буквой «Г» и прикрепить их к вертикальным пруткам: внутренние к внутренним, а внешние – к внешним.

При проектировании и армирование фундаментов возникает множество вопросов, и чтобы избежать проблем при изготовлении армированного каркаса своими руками, нужно внимательно изучить все нормы и требования ГОСТов, и СНиП.

Армирование ленточного фундамента – правила, схемы, инструкции

Возведение фундаментного основания зданий это важнейший этап строительства, который определяет дальнейшую надежность и долговечность постройки. Поэтому при выполнении этой работы не допустима непродуманная экономия на расходах материалов и самовольные изменения проектных решений принятых специалистами.

Ленточные фундаменты пользуются заслуженной популярности при строительстве объектов индивидуальной застройки. Это объясняется возможностью универсального применения для самых различных зданий на большинстве распространенных типов грунтов.

Они отличаются высоким уровнем надежности и возможностью выполнения монтажа своими руками. Ленточные фундаменты нельзя применять для строительства зданий на неустойчивых грунтах, в заболоченной местности и на вечной мерзлоте.

Описание конструкции ленточного фундамента

Несущее основание этого типа представляет собой заглубленную в землю железобетонную монолитную ленту. Она монтируется под все несущие стены и тяжелые перегородки. Глубина заложения фундамента определяется в зависимости от следующих исходных параметров:
  • общий вес строительных конструкций здания с учетом снеговых нагрузок, мебели и установленного оборудования;
  • тип и строение грунтов на участке;
  • глубина залегания грунтовых вод;
  • нижняя точка промерзания грунта в холодное время года.

В результате фундамент небольших легких зданий домов быть мелкозаглубленным и иметь нижнюю опору на глубине 500-800 мм. Для тяжелых больших зданий и при наличии подвала подошва монолитной конструкции должна находиться ниже точки промерзания грунта более чем на 400 мм.

Ширина фундаментной ленты в ее верхней части зависит от толщины возводимых стен и должна превышать ее более чем на 100 мм, но в любом случае не мене 300 мм. В нижней части может быть предусмотрено наличие более широкой опорной подошвы, которая устраивается при большом весе строительных конструкций или слабых грунтах. Однако правильный расчет такой опоры довольно сложная инженерная задача. Данные о поперечном сечении фундаментной ленты и об общей массе строительных конструкций позволяют правильно рассчитать конструкцию армирующего каркаса.

Расчет фундамента должен быть выполнен на профессиональном уровне

Наличие армирующего каркаса повышает прочность фундаментного монолита и позволяет более равномерно распределить весовую нагрузку на грунт. При проектировании элементов здания всегда учитываются реальные данные, на основании которых получают результат способный обеспечить долговечность и надежность постройки.

На основании этого можно сделать вывод, что для разработки проекта необходимы специальные знания и опыт подобных работ. Поэтому выполнение расчетов и определение проектных схем рекомендуется поручить специалисту, а вот монтажные работы можно выполнять самостоятельно. Если только вы не собираетесь построить небольшой сарай, баньку, хозяйственные постройки или легкий гараж.

Расчет необходимого количества материалов

При определении нужного количества арматуры следует учитывать, что продольные струны и поперечные прутки имеют разный диаметр и цену. Имея проект подсчитать количество необходимого для армирования материала не сложно. Только следует предусмотреть запас 7-10% на остатки в виде коротких обрезков и на нахлесты при соединении прутов на длинных участках.

Если вы производите расчеты самостоятельно, то рекомендуется принять:

  • диаметр арматуры 10 мм для продольных участков длиной до 3-х метров;
  • 12 мм на участках более 3-х метров;
  • поперечная арматура с гладкой поверхностью диаметром 8 мм.

Кроме этого не забудьте приобрести вязальную проволоку (сварка прута для железобетона запрещена), а так же фиксаторы «звездочка» и «опора», которые устанавливаются на каждый крайний прут через каждые 3 метра.

Общее количество продольных армирующих струн определяется по суммарному сечению. Согласно СНиП общая площадь сечения арматуры должна быть не менее 0,1% от поперечного сечения фундаментной ленты. Если в результате вы определите, что для армирования достаточно всего 2-х прутов, то эту количество необходимо увеличить до 4-х. При этом принимая минимальное сечение прутов в 10 мм. Поперечные прутки никаких нагрузок не несут и считаются фиксирующими элементами.

Шаг поперечных прутков (хомутов) должен быть не более трех четвертей высоты фундаментной ленты и меньше 500 мм. В местах примыкания двух прямых конструкций и на углах шаг должен уменьшаться вдвое. Существует много специально разработанных схем вязки углов элементов и примыкающих участков. Перед началом работы рекомендуем с ними ознакомиться.

Что нужно знать про арматуру

Для ленточных фундаментов обычно применяют горячекатаную арматуру классов A-II и A-III с диаметром от 10 мм с периодическим профилем (рифленую), который обеспечивает надежное сцепление металла с бетоном. Пруты класса A-I с гладкой поверхностью и сечением 8-10 мм применяют для изготовления связующих хомутов и перемычек.Adblock
detector

Проектирование железобетонной стены

🕑 Время считывания: 1 минута

Железобетонная стена спроектирована как элемент сжатия. Железобетонная стена используется в том случае, если балка не предусмотрена, а нагрузка от плиты велика или когда толщина стены кладки ограничена. Стена из железобетона классифицируется как .
  • Обычная бетонная стена при армировании <0,4%
  • Стена железобетонная, при армировании> 0,4%
Нагрузка от плиты передается на стену как осевая нагрузка.Когда глубина большая, ее называют железобетонной стеной. Конструкция аналогична ж / б колонне, ширина равна толщине стены, а глубина — 1м. Стена ПКК спроектирована как:
  • Стенка с осевой нагрузкой
  • Осевое нагружение с одноосным изгибом

Классификация бетонных стен
  1. Обычная бетонная стена
  2. Стена железобетонная
В простой бетонной стене армирование составляет менее 0,4% ц / с. В железобетонной стене процентное содержание стали больше 0.4% и спроектирован аналогично железобетонным колоннам. Коэффициент гибкости равен наименьшему из (l / t или h / t), где l — эффективная длина стены, h — эффективная высота стены, t — толщина стены. Если> 12, стена тонкая.

Стены из железобетона и железобетона Связанные: если для стен предусмотрены поперечные стены, способные выдерживать боковую нагрузку и 2,5% вертикальной нагрузки, тогда стена укрепляется. В противном случае стена называется стеной без подпорок.Примечание: другие стены в особых случаях: i) Консольная стена ii) Сдвиговые стены — для восприятия боковых нагрузок [Обратите внимание на изгиб, возникающий из-за боковой нагрузки на конструкцию, глубина обеспечивается в поперечном направлении]

Руководство по проектированию железобетонных стен 1. Предельная гибкость (), если таковая имеется, для необвязанной стены составляет 30, а для подпорной стены — 45. 2. Для коротких железобетонных стенок (<12),

P u = 0,4 x f ck x A c + 0.67 x f y x A st

3. Для короткой свободной железобетонной стены , наряду с указанной выше осевой нагрузкой P и , момент, обусловленный минимальным эксцентриситетом, проверяется на e min = t / 20 или 20 мм, где M = P x e. Для указанных выше осевой нагрузки и момента железобетонная стенка спроектирована аналогично колонне железобетонной конструкции, подверженной осевой нагрузке и одноосному моменту. 4. Стенка с тонкими подпорками (<45): Учитывается дополнительный момент из-за дополнительного эксцентриситета согласно таблице 1 SP16.Где дополнительный эксцентриситет, Дополнительный момент из-за эксцентриситета складывается с моментом на колонне и моментом на стене. Стена рассчитана на осевую нагрузку с одноосным моментом. 5. Для тонкой стены без подпорок [ограничено 30]: применяется процедура, аналогичная случаю 4.

6. Детализация арматуры [Руководство IS 456]:

  • Для гладкой бетонной стены минимальный размер вертикальной стали составляет 0,12% для стержней HYSD и 0,15% для стержней из низкоуглеродистой стали.
  • Для железобетонной стены минимальное вертикальное армирование равно 0.4% к / сек
  • В гладкой бетонной стене поперечная сталь не требуется
  • В стене ЖБИ поперечная сталь не требуется (не менее 0,4%)
  • Максимальное расстояние между стержнями составляет 450 мм или 3 т, в зависимости от того, что меньше
  • Толщина стены ни в коем случае не должна быть меньше 100 мм
  • Если толщина больше 200 мм, двойная сетка армирования предусмотрена по обеим сторонам.

7. Детализация арматуры (рекомендации BS 8110):
  • Горизонтальная арматура такая же, как IS456
  • Вертикальное армирование не более 4%
  • Когда сжатая сталь составляет более 2% вертикальной арматуры, горизонтальная арматура 0.Предусмотрено 25% для стержней HYSD или 0,3% для стержней MS. [Согласно IS456, он составляет 0,2% для стержней HYSD и 0,3% для стержней из мягкой стали].
  • Диаметр поперечных стержней (по горизонтали) должен быть не менее 6 мм или.
  • Звенья предоставляются, когда сжатие стали больше 2%. Горизонтальные звенья предусмотрены для толщины менее 220 мм. Диагональные звенья предусмотрены, если толщина превышает 220 мм. Расстояние между звеньями должно быть менее 2т, а диаметр звеньев — не менее 6 мм или.

Условия опоры для эффективной длины стены:
  1. Оба конца зафиксированы (ограничены от вращения и смещения)
  2. На шарнирах с обоих концов
  3. Один конец фиксированный, другой конец
  4. Один конец фиксированный, другой конец шарнирный

Страница не найдена для классификации_бетонных_стен

Имя пользователя*

Электронное письмо*

Пароль*

Подтвердить Пароль*

Имя*

Фамилия*

Страна Выберите страну … Аландские острова IslandsAfghanistanAlbaniaAlgeriaAndorraAngolaAnguillaAntarcticaAntigua и BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelauBelgiumBelizeBeninBermudaBhutanBoliviaBonaire, Санкт-Эстатиус и SabaBosnia и HerzegovinaBotswanaBouvet IslandBrazilBritish Индийского океана TerritoryBritish Virgin IslandsBruneiBulgariaBurkina FasoBurundiCambodiaCameroonCanadaCape VerdeCayman IslandsCentral африканского RepublicChadChileChinaChristmas IslandCocos (Килинг) IslandsColombiaComorosCongo (Браззавиль) Конго (Киншаса) Кук IslandsCosta RicaCroatiaCubaCuraÇaoCyprusCzech RepublicDenmarkDjiboutiDominicaDominican RepublicEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFalkland IslandsFaroe IslandsFijiFinlandFranceFrench GuianaFrench PolynesiaFrench Южный ТерриторииГабонГамбияГрузияГерманияГанаГибралтарГрецияГренландияГренадаГваделупаГватемалаГернсиГвинеяГвинея-БисауГайанаГайтиОстров Херд и острова МакдональдГондурасХо нг КонгВенгрияИсландияИндияИндонезияИранИракОстров МэнИзраильИталия Кот-д’ИвуарЯмайкаЯпонияДжерсиИорданияКазахстанКенияКирибатиКувейтКиргизияЛаосЛатвияЛебанЛезотоЛиберияЛибияоЛихтенштейнЛихтенштейнЛитва ЮжныйAR, ChinaMacedoniaMadagascarMalawiMalaysiaMaldivesMaliMaltaMarshall IslandsMartiniqueMauritaniaMauritiusMayotteMexicoMicronesiaMoldovaMonacoMongoliaMontenegroMontserratMoroccoMozambiqueMyanmarNamibiaNauruNepalNetherlandsNetherlands AntillesNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorfolk IslandNorth KoreaNorwayOmanPakistanPalestinian TerritoryPanamaPapua Новый GuineaParaguayPeruPhilippinesPitcairnPolandPortugalQatarRepublic из IrelandReunionRomaniaRussiaRwandaSão Tomé и PríncipeSaint BarthélemySaint HelenaSaint Китса и NevisSaint LuciaSaint Мартин (Голландская часть) Сен-Мартен (французская часть) Сен-Пьер и MiquelonSaint Винсент и GrenadinesSan MarinoSaudi ArabiaSenegalSerbiaSeychellesSierra LeoneSingaporeSlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSouth Грузия / Sandwich ОстроваЮжная КореяЮжный СуданИспанияШри-ЛанкаСуданСуринамШпицберген и Ян-МайенСвазилендШвецияШвейцарияСирияТайваньТаджикистанТанзанияТаиландТимор-ЛештиТогоТокелауТонгаТринидад и ТобагоТунисТурция ТуркменистанТуркс и Острова КайкосТувалуУгандаУкраинаОбъединенные Арабские ЭмиратыВеликобритания (Великобритания) США (США) УругвайУзбекистанВануатуВатиканВенесуэлаВьетнамУоллис и ФутунаЗападная СахараЗападное СамоаЙеменЗамбияЗимбабве

Captcha *

Регистрируясь, вы соглашаетесь с Условиями использования и Политикой конфиденциальности.*

Страница не найдена для Guide_for_design_of_reinforced_concrete_wall

Имя пользователя*

Электронное письмо*

Пароль*

Подтвердить Пароль*

Имя*

Фамилия*

Страна Выберите страну … Аландские острова IslandsAfghanistanAlbaniaAlgeriaAndorraAngolaAnguillaAntarcticaAntigua и BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelauBelgiumBelizeBeninBermudaBhutanBoliviaBonaire, Санкт-Эстатиус и SabaBosnia и HerzegovinaBotswanaBouvet IslandBrazilBritish Индийского океана TerritoryBritish Virgin IslandsBruneiBulgariaBurkina FasoBurundiCambodiaCameroonCanadaCape VerdeCayman IslandsCentral африканского RepublicChadChileChinaChristmas IslandCocos (Килинг) IslandsColombiaComorosCongo (Браззавиль) Конго (Киншаса) Кук IslandsCosta RicaCroatiaCubaCuraÇaoCyprusCzech RepublicDenmarkDjiboutiDominicaDominican RepublicEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFalkland IslandsFaroe IslandsFijiFinlandFranceFrench GuianaFrench PolynesiaFrench Южный ТерриторииГабонГамбияГрузияГерманияГанаГибралтарГрецияГренландияГренадаГваделупаГватемалаГернсиГвинеяГвинея-БисауГайанаГайтиОстров Херд и острова МакдональдГондурасХо нг КонгВенгрияИсландияИндияИндонезияИранИракОстров МэнИзраильИталия Кот-д’ИвуарЯмайкаЯпонияДжерсиИорданияКазахстанКенияКирибатиКувейтКиргизияЛаосЛатвияЛебанЛезотоЛиберияЛибияоЛихтенштейнЛихтенштейнЛитва ЮжныйAR, ChinaMacedoniaMadagascarMalawiMalaysiaMaldivesMaliMaltaMarshall IslandsMartiniqueMauritaniaMauritiusMayotteMexicoMicronesiaMoldovaMonacoMongoliaMontenegroMontserratMoroccoMozambiqueMyanmarNamibiaNauruNepalNetherlandsNetherlands AntillesNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorfolk IslandNorth KoreaNorwayOmanPakistanPalestinian TerritoryPanamaPapua Новый GuineaParaguayPeruPhilippinesPitcairnPolandPortugalQatarRepublic из IrelandReunionRomaniaRussiaRwandaSão Tomé и PríncipeSaint BarthélemySaint HelenaSaint Китса и NevisSaint LuciaSaint Мартин (Голландская часть) Сен-Мартен (французская часть) Сен-Пьер и MiquelonSaint Винсент и GrenadinesSan MarinoSaudi ArabiaSenegalSerbiaSeychellesSierra LeoneSingaporeSlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSouth Грузия / Sandwich ОстроваЮжная КореяЮжный СуданИспанияШри-ЛанкаСуданСуринамШпицберген и Ян-МайенСвазилендШвецияШвейцарияСирияТайваньТаджикистанТанзанияТаиландТимор-ЛештиТогоТокелауТонгаТринидад и ТобагоТунисТурция ТуркменистанТуркс и Острова КайкосТувалуУгандаУкраинаОбъединенные Арабские ЭмиратыВеликобритания (Великобритания) США (США) УругвайУзбекистанВануатуВатиканВенесуэлаВьетнамУоллис и ФутунаЗападная СахараЗападное СамоаЙеменЗамбияЗимбабве

Captcha *

Регистрируясь, вы соглашаетесь с Условиями использования и Политикой конфиденциальности.*

СТАЛЬНОЕ УКРЕПЛЕНИЕ ДЛЯ БЕТОННОЙ КЛАДКИ

ВВЕДЕНИЕ

Армирование стен из бетонной кладки увеличивает прочность и пластичность, увеличивает сопротивление приложенным нагрузкам, а в случае горизонтального армирования также обеспечивает повышенное сопротивление растрескиванию при усадке. Этот TEK предназначен для арматуры без предварительного напряжения для бетонных кладок. Предварительно напряженная сталь обсуждается в Пост-натянутом бетонном стеновом блоке, TEK 3-14 (ref.1). Если не указано иное, информация основана на Международном строительном кодексе (IBC) 2003 г. (ссылка 2). Что касается проектирования и строительства кладки, IBC ссылается на «Требования к строительным нормам для каменных конструкций и спецификации для каменных конструкций» (Кодекс и спецификации MSJC) (ссылки 4, 5). В некоторых случаях IBC принимает положения, отличные от положений MSJC. Эти случаи были отмечены в соответствующих случаях.

МАТЕРИАЛЫ

Арматура, используемая в кирпичной кладке, — это в основном арматурный стержень и изделия из холоднотянутой проволоки.Стеновые анкеры и стяжки обычно изготавливаются из проволоки, металлических листов или полос. В таблице 1 перечислены применимые стандарты ASTM, регулирующие стальную арматуру, а также номинальный предел текучести для каждого типа стали.

Таблица 1 — Армирование, используемое в кладке

Арматурные стержни

Арматурные стержни доступны в США в одиннадцати стандартных размерах стержней, обозначенных No.С 3 по 11, № 14 и № 18 (M № 10-36, M № 43, M № 57). Размер арматурного стержня обозначается цифрой, соответствующей его номинальному диаметру. Для стержней с номерами от 3 до 8 (M # 10-25) число указывает диаметр в восьмых долях дюйма (мм), как показано в таблице 2.

Чтобы помочь решить потенциальные проблемы, связанные с скоплением арматуры и уплотнением раствора, IBC ограничивает диаметр арматурного стержня до менее одной восьмой номинальной толщины элемента и одной четвертой наименьшего размера ячейки, участка или воротника, в котором он размещен.Для типичных одинарных стен это соответствует максимальному размеру стержня № 8, 9 и 11 для 8-, 10- и 12-дюймовых стен соответственно (M № 25, 29 и 36 для 203, 254 и 305-мм стены). Кроме того, действуют следующие ограничения:

  • максимальный размер стержня — № 11 (M # 36),
  • площадь вертикального армирования не может превышать 6% площади пространства для цементного раствора (т. Е. Около 1,26 дюйма ², 1,81 дюйма ² или 2,40 дюйма ² вертикальной арматуры для 8-, 10- и 12-дюймового бетона. кладка соответственно (815, 1170 или 1550 мм² для блоков 203, 254 и 305 мм соответственно) и
  • для кладки, спроектированной с использованием процедур расчета прочности, максимальный размер стержня составляет No.9 (M # 29), а максимальная площадь армирования составляет 4% площади ячейки (т. Е. Около 0,84 дюйма², 1,21 дюйма² или 1,61 дюйма² вертикальной арматуры для 8-, 10- и 12- бетонная кладка, соответственно (545, 781 или 1039 мм² для блоков диаметром 203, 254 и 305 мм, соответственно).

Указанные выше ограничения размеров арматуры связаны со строительством. Дополнительные проектные ограничения для предотвращения чрезмерного армирования и хрупких разрушений также могут применяться в зависимости от используемого метода проектирования и выдерживаемых расчетных нагрузок.На арматурных стержнях производители указывают размер прутка, обозначение стана и тип стали (см. Рисунок 1). Обратите внимание, что размер полосы указывает размер в единицах СИ в соответствии со стандартами ASTM.

Стандарты ASTM включают минимальные требования к различным физическим свойствам, включая предел текучести и жесткость. Хотя не все арматурные стержни имеют четко определенный предел текучести, модуль упругости E s примерно одинаков для всех арматурных сталей и для целей проектирования принимается равным 29 000 000 фунтов на квадратный дюйм (200 ГПа).

При проектировании методом расчета допустимого напряжения допустимое растягивающее напряжение ограничивается до 20000 фунтов на квадратный дюйм (138 МПа) для арматурных стержней класса 40 или 50 и 24000 фунтов на квадратный дюйм (165 МПа) для арматурных стержней класса 60. Для арматурных стержней, заключенных в стяжки, например, в колонны, допустимое напряжение сжатия ограничено 40% от заданного предела текучести с максимальным значением 24 000 фунтов на кв. Дюйм (165 МПа). Для расчета прочности номинальный предел текучести арматуры используется для определения размера и распределения стали.

Таблица 2 — Номинальные характеристики арматурного стержня
Рис. 1 — Стандартные маркировочные знаки ASTM

Проволока холоднотянутая

Холоднотянутая проволока для армирования швов, стяжек или анкеров варьируется от W1.От 1 до W4,9 (от MW7 до MW32), причем наиболее популярным размером является W1,7 (MW11). В таблице 3 показаны стандартные размеры и свойства проводов. Поскольку IBC ограничивает размер арматуры шва половиной толщины шва, практический предел диаметра проволоки составляет 3 / 16 дюйма (W2,8, 4,8 мм, MW18) для дюйма (9,5 мм). ) кровать стык. Проволока для кладки гладкая, за исключением того, что боковые проволоки для усиления швов деформируются накатными кругами.

Деформационные характеристики арматурной проволоки были определены с помощью обширных программ испытаний.Мало того, что предел текучести холоднотянутой проволоки близок к ее пределу прочности, но и местоположение предела текучести четко не указано на кривой зависимости напряжения от деформации. ASTM A 82 (ссылка 15) определяет текучесть как напряжение, определенное при деформации 0,005 дюйма / дюйм. (мм / мм).

Таблица 3 — Свойства проволоки для кладки

ЗАЩИТА ОТ КОРРОЗИИ

Блоки для раствора, раствора и кирпичной кладки обычно обеспечивают адекватную защиту встроенной арматуры при соблюдении минимальных требований к покрытию и зазору.Армирование с умеренным количеством ржавчины, прокатной окалины или их комбинации разрешается использовать без очистки или нанесения кистью, при условии, что размеры и вес (включая высоту деформаций) очищенного образца не меньше, чем требуются применимым стандартом ASTM. Когда необходима дополнительная защита от коррозии, арматура может быть оцинкована или покрыта эпоксидной смолой.

Арматура стыков

Углеродистая сталь может быть защищена от коррозии путем покрытия ее цинком (гальваника).Цинк защищает двумя способами: во-первых, в качестве барьера, отделяющего сталь от кислорода и воды, и, во-вторых, в процессе коррозии цинк жертвуется до того, как сталь подвергнется разрушению. Увеличение толщины цинкового покрытия улучшает защиту от коррозии.

Требуемый уровень защиты от коррозии увеличивается с увеличением степени воздействия. При использовании в наружных стенах или во внутренних стенах, подверженных средней относительной влажности более 75%, арматура стыков из углеродистой стали должна быть оцинкована горячим способом или покрыта эпоксидной смолой, либо должно использоваться усиление стыков из нержавеющей стали.При использовании во внутренних стенах, подверженных средней относительной влажности менее или равной 75%, он может быть оцинкован методом прокатки, оцинкован горячим способом или из нержавеющей стали. Соответствующие минимальные уровни защиты:

  • Мельница оцинкованная — ASTM A 641 (ссылка 16) 0,1 унции / фут² (0,031 кг / м²)
  • Горячее цинкование — ASTM A 153 (ссылка 17), класс B, 1,5 унции / фут² (458 г / м²)
  • Эпоксидное покрытие — ASTM A 884 (ссылка 18), класс A, тип 1 ≥ 7 мил (175 мкм) (ссылка 3). Обратите внимание, что коды IBC 2003 и 2002 MSJC неправильно определяют арматуру швов с эпоксидным покрытием класса B, тип 2, что не применимо для строительства каменной кладки.

Кроме того, арматура стыков должна быть размещена таким образом, чтобы продольные проволоки были заделаны в строительный раствор с минимальным покрытием ½ дюйма (13 мм), когда они не подвергаются воздействию погодных условий или земли, и ⅝ дюйма (16 мм) при воздействии погодных условий. или земля.

Арматурные стержни

Для защиты стали от коррозии требуется минимальное количество кладки поверх арматурных стержней. Это покрытие кладки измеряется от ближайшей внешней поверхности кладки до самой внешней поверхности арматуры и включает толщину облицовки кладки, раствора и раствора.Применяются следующие минимальные требования к покрытию:

  • кирпичная кладка, подверженная воздействию погодных условий или земли
    стержней больше № 5 (M № 16) …………………… .2 дюйма (51 мм)
    стержней № 5 (M № 16) или меньше …… ……………… 1½ дюйма (38 мм)
  • кладка, не подверженная воздействию погодных условий или земли… 1½ дюйма (38 мм)

РАЗМЕЩЕНИЕ

Требования к установке арматуры и стяжек помогают гарантировать, что элементы размещены так, как предполагается в проекте, и что характеристики конструкции не будут нарушены из-за неправильного расположения.Эти требования также помогают минимизировать коррозию, обеспечивая минимальное количество кладки и покрытия из раствора вокруг арматурных стержней и обеспечивая достаточный зазор для раствора и раствора вокруг арматуры и аксессуаров, чтобы можно было должным образом передавать напряжения.

Арматурные стержни

Допуски на установку арматурных стержней:

  • отклонение от d для стен и наружных элементов:
    d ≤ 8 дюймов (203 мм) ………………………. ± ½ дюйма (13 мм)
    8 дюймов (8 дюймов)(203 мм) < d ≤ 24 дюйма (610 мм) ± 1 дюйм (25 мм)
    d > 24 дюйма (610 мм) ……………………. ± 1¼ дюйма (32 мм)
  • для вертикальных стержней в стенах ……… .. ± 2 дюйма (51 мм) от указанного места по длине стены.

Кроме того, должно сохраняться минимальное расстояние между арматурными стержнями и прилегающей (внутренней частью ячейки) поверхностью кирпичной кладки, составляющее ¼ дюйма (6,4 мм) для мелкозернистого раствора или ½ дюйма (13 мм) для крупнозернистого раствора. так что раствор может растекаться по решеткам.

РАЗРАБОТКА

Строительная длина или анкеровка необходимы для адекватной передачи напряжений между арматурой и раствором, в который она заделана. Арматурные стержни могут быть закреплены с помощью длины заделки, крюка или механического устройства. Арматурные стержни, закрепленные по длине заделки, зависят от блокировки при деформациях стержня и достаточного покрытия кладки для предотвращения раскола от арматурного стержня до свободной поверхности.Подробная информация и требования к разработке, стыковке и стандартным крюкам содержатся в TEK 12-6 «Требования к детализации армирования для бетонной кладки» (ссылка 19).

Список литературы

  1. Конструкция бетонных стен после натяжения, TEK 3-14. Национальная ассоциация бетонщиков, 2002.
  2. Международный Строительный Кодекс 2003. Международный Совет Кодекса, 2003.
  3. Международный Строительный Кодекс 2006.Совет Международного кодекса, 2006.
  4. Строительные нормы и правила для каменных конструкций, ACI 530-02 / ASCE 5-02 / TMS 402-02. Сообщено Объединенным комитетом по стандартам кладки, 2002 г.
  5. Спецификация для каменных конструкций, ACI 530.1-02 / ASCE 6-02 / TMS 602-02. Сообщено Объединенным комитетом по стандартам кладки, 2002 г.
  6. Стандартные технические условия на деформированные и плоские стальные стержни из заготовок для армирования бетона, ASTM A615 / A615M-00. ASTM International, Inc., 2000.
  7. Стандартные технические условия на деформированные и плоские стержни из низколегированной стали для армирования бетона, ASTM A706 / A706M-01.ASTM International, Inc., 2001.
  8. Стандартные технические условия на оцинкованные (оцинкованные) стальные стержни для армирования бетона, A767 / A767M-00b. ASTM International, Inc., 2000.
  9. Стандартные технические условия на стальные арматурные стержни с эпоксидным покрытием, A775 / A775M-01. ASTM International, Inc., 2001.
  10. Стандартные технические условия на деформированные стержни из рельсовой стали и осевой стали для армирования бетона, A996 / A996M-00. ASTM International, Inc., 2000.
  11. Стандартные спецификации для армирования швов каменной кладки, ASTM A951-00.ASTM International, Inc., 2000.
  12. Стандартные технические условия на проволоку из нержавеющей и жаропрочной стали, ASTM A580-98. ASTM International, Inc., 1998.
  13. Стандартные технические условия на стальную проволоку деформированную для армирования бетона, A496 / A496M-01. ASTM International, Inc., 2001.
  14. Руководство по стандартной практике, MSP 1-01. Институт железобетонной стали, 2001.
  15. Стандартные технические условия на стальную проволоку, гладкую, для армирования бетона, ASTM A82-01. ASTM International, Inc., 2001.
  16. Стандартные технические условия для оцинкованной проволоки из углеродистой стали, ASTM A641-98. ASTM International, Inc., 1998.
  17. Стандартные технические условия на цинковое покрытие (горячее погружение) на железо и стальную арматуру, ASTM A153-01a. ASTM International, Inc., 2001.
  18. Стандартные технические условия на стальную проволоку с эпоксидным покрытием и сварную проволочную сетку для армирования, ASTM A884 / A884M-99. ASTM International, Inc., 1999.
  19. Требования к детализации арматуры для бетонной кладки, TEK 12-6.Национальная ассоциация бетонщиков, 2007.

NCMA TEK 12-4D, редакция 2006 г.

Заявление об ограничении ответственности: Несмотря на то, что прилагаемая информация была максимально точной и полной, NCMA не несет ответственности за ошибки или упущения, возникшие в результате использования данного TEK.

Анализ бетонных стен на сдвиг ACI318-14

Код

Строительные нормы и правила для конструкционного бетона (ACI 318-14) и комментарий (ACI 318R-14)

ссылку

усиленный Механика и дизайн бетона, 7 th Edition, 2016, James Wight, Пирсон, Пример 18-2

Расчетные данные

f c = бетон нормального веса 4000 фунтов на кв. Дюйм

f y = 60 000 фунтов на кв. Дюйм

Плита толщина = 7 дюймов.

Толщина стенки = 10 дюймов

Длина стены = 18 футов

Вертикальное армирование: # 5 стержней на 18 дюймов по центрам на каждой грани (A s, вертикальный = # 5 @ 18 дюймов)

Горизонтальная арматура: # 4 стержня на 16 дюймов по центрам на каждой грани (A s, горизонтальный = # 4 @ 16 дюймов)


ACI 318-14 (2.2)

ACI 318-14 (11.6.2 (б))

ACI 318-14 (11.7.3.1)

ACI 318-14 (2.2)

ACI 318-14 (11.6.2 (а))

ACI 318-14 (11.6.2 (а))

ACI 318-14 (11.7.2.1)


Коэффициент нагрузки для силы ветра на уровне силы = 1.0

ACI 318-14 (уравнение 5.3.1f)

ACI 318-14 (Таблица 22.2.2.4.3)

Предположим, что эффективная глубина изгиба ( d ) равна приблизительно равно 0,8 л w = 173 дюйма ACI 318-14 (11.5.4.2)

ACI 318-14 (Таблица 21.2.2)


С учетом приложенной осевой силы и суммирования момент силы относительно силы сжатия (C), моментная способность может быть рассчитывается следующим образом:

Так как ϕM n является больше чем M u , стена имеет достаточную прочность на изгиб.

Для дальнейшего подтверждения момента мощности адекватно с детальным учетом осевого сжатия, диаграмму взаимодействия с помощью spColumn можно легко создать, как показано ниже для секции стены. Расположение нейтральной оси, максимальное растяжение деформации, и фактор phi также можно проверить из spColumn выходные параметры результатов модели. Как видно из диаграммы взаимодействия a полный обзор поведения стены при любой комбинации осевой силы и прикладной момент.

Для усредненной оси и момента 207 тысяч фунтов и 4670 тысяч фунтов на фут. диаграмма взаимодействия показывает коэффициент мощности 1,139 ( ϕM n = 5,320 тысяч фунтов на фут для ϕP n = P u ), см. Рисунки 11 и 12.


ACI 318-14 (Таблица 11.5.4.6)

Где M u / V u соотношение, используемое в уравнение (e) рассчитывалось в критическом сечении над основанием стены. (см. рисунок 1).

ACI 318-14 (11.5.4.7)

Фактор момента на конечном сечении равен:

ACI 318-14 (Таблица 21.2.1)

Таким образом, расчет дополнительного сдвига не требуется. прочность, обеспечиваемая горизонтальной арматурой ( В с )

Начиная с 0.5 ϕV c является менее В u , ρ l должно быть не менее больше из уравнения 11.6.2 в Кодексе и 0,0025, но не должно превышать ρ t , требуемого уравнением 11.5.4.8. и ρ т должны быть при не менее 0,0025. ACI 318-14 (11.6.2)

(Эти требования были проверено на шаге 1).


spWall — программа для анализа и проектирование железобетонных стен, откидных, сборных и утеплить стены из бетонной опалубки.Он использует графический интерфейс, который позволяет пользователь может легко создавать сложные модели стен. Графический пользовательский интерфейс предусмотрено для:

Геометрия стены (включая любое количество проемов и ребер жесткости)

Материал свойства, включая коэффициенты растрескивания

Стеновые нагрузки (точка, линия и площадь),

Служба поддержки условия (включая поступательные и поворотные пружинные опоры)

spWall использует Finite Элементный метод для структурного моделирования, анализа и проектирования тонких и не тонкие железобетонные стены, подверженные статическим нагрузкам.В стена идеализирована в виде сетки из прямоугольных пластинчатых элементов и прямой линии элементы жесткости. Стены неправильной геометрии идеализированы, чтобы соответствовать геометрия с прямоугольными границами. Свойства пластин и ребер жесткости могут быть разными. от одного элемента к другому, но программа предполагает, что они единообразны в пределах каждый элемент.

Шесть степеней свобода существует в каждом узле: три перевода и три вращения, относящиеся к три декартовых осей.Внешняя нагрузка может существовать в направлении каждого степеней свободы. Достаточное количество узловых степеней свободы должно быть сдержанным, чтобы добиться устойчивости модели. Программа собирает глобальная матрица жесткости и векторы нагрузки для конечно-элементной модели. Затем он решает уравнения равновесия, чтобы получить прогибы и повороты. на каждом узле. Наконец, программа рассчитывает внутренние силы и внутренние моменты в каждом элементе. По желанию пользователя программа может выполнять вторую заказать анализ.В этом случае программа учитывает влияние силы в плоскости при отклонении от плоскости с любым количеством отверстий и ребра жесткости.

В spWall требуется армирование на изгиб рассчитывается на основе выбранного стандарта проектирования (ACI 318-14 используется в этом примере), и пользователь может указать один или два уровня армирование стен на сдвиг. В элементах жесткости и граничных элементах spWall рассчитывает требуется стальная арматура на сдвиг и кручение.Прочность бетона стены на сдвиг (в плоскости и вне плоскости) рассчитывается для приложенных нагрузок и сравнивается с кодом допустимой прочности на сдвиг.

Для иллюстраций и В целях сравнения на следующих рисунках представлен образец входных данных. модули и результаты, полученные из модели spWall, созданной для железобетонная стена сдвига в этом примере.

Рисунок 2 Определение Нагрузки для Стена сдвига ( spWall )

Рисунок 3 Назначение Граничные условия для стены сдвига ( spWall )

Рисунок 4 Фактор Осевые силы Контур перпендикулярно Поперечное сечение стены со сдвигом ( spWall )

Рисунок 5 Сдвиг Контур бокового смещения стены ( spWall )

Фиг. 6 Сдвиг Диаграмма осевой нагрузки на стену ( spWall )

Рисунок 7 В плоскости Диаграмма сдвига ( spWall )


Рисунок 8 Сдвиг Диаграмма момента стены ( spWall )


Фигура 9 Стенка сдвига по вертикали Арматура ( spWall )

Рисунок 10 Прочность бетона на сдвиг и сдвиг Усилия в поперечном сечении стены ( spWall )

Таблица 1 Сравнение анализа стенок сдвига и Результаты проектирования

Решение

Усилия поперечного сечения стены

Прочность

Требуется A с

Предоставляется A s

M u

(тысячи фунтов на фут)

N u

(тысячи фунтов)

В u

(тысячи фунтов)

M u @ критическая секция

(тысячи фунтов на фут)

ϕV c

(тысячи фунтов)

A s, вертикальный

(дюйм. 2 )

A s, вертикальный

(дюймы 2 )

Рука

4 670

207

121

3,580

161

Управляемый по Мин.

7,44

Номер ссылки

4 670

207

121

3,580

161

Управляемый по Мин.

7.44

spWall

4,665

207

121

3,576

164

Управляемый по Мин.

7,56

Результаты всех раздач расчеты и использованная ссылка, проиллюстрированная выше, полностью совпадают. с автоматизированными точными результатами, полученными с помощью программы spWall.Стоит отметить, что минимальная площадь стали регулируется минимальным коэффициентом усиления, предусмотренным по коду. То же самое можно увидеть в spWall выход для элементов с 9 по 18.

В ручных расчетах и ​​справке упрощенная была использована процедура расчета номинальной прочности на изгиб (A. E. Cardenas и другие.). В этой процедуре сделано несколько общих предположений, чтобы избежать утомительного детальные расчеты:

Вся сталь в зона растяжения поддается растяжению.

Вся сталь в зона сжатия уступает при сжатии.

Сила натяжения действует на средней глубине зоны растяжения.

Общая сила сжатия (сумма вкладов стали и бетона) действует на средней глубине зоны сжатия.

Для исследования точной стенки сдвига пропускная способность поперечного сечения, можно легко создать подробную схему взаимодействия автор: spColumn в соответствии с положениями Силы Методика расчета и единые проектные положения со всеми условиями прочности удовлетворяющие применимым условиям равновесия и совместимости деформаций.

Для иллюстраций и В целях сравнения на следующих рисунках представлены образцы входных и выходных данных. точных результатов, полученных с помощью модели spColumn, созданной для железобетонная стена сдвига в этом примере. spColumn вычисляет точные значения деформации в каждом слое стали (в зонах растяжения и сжатия) с точным расположение общих сил растяжения и сжатия, приводящее к точному значению для номинальные и расчетные прочности (осевая и изгиб).

Рисунок 11 Взаимодействие со стенкой сдвига Диаграмма (ось X, в плоскости) (spColumn)

Рисунок 12 Выходная нагрузка и момент от spКолонка

Рисунок 13 Взаимодействие со стенкой сдвига Диаграмма (ось Y, вне плоскости) (spColumn)

Рисунок 14 Взаимодействие секций стены Диаграмма 3D (spColumn)

Использование вывода результатов spColumn, дальнейшее сравнение можно сделать для параметров прочности стенки на сдвиг, как указано ниже:

Таблица 2 Сравнение прочности на изгиб на основе метода решения

Метод решения

c, дюйм.

ε t , дюйм / дюйм.

ϕM n , тыс. Фунтов-фут

(расчетное / точное) Вместимость

Рука

19,80

4 670

88%

Номер ссылки

19.80

4 670

88%

spWall

5,344 *

100%

spColumn

20.73

0,02811

5,319

100%

* Рассчитано из армирование плиты spWall путем суммирования пропускной способности каждого элемента вдоль поперечное сечение стены

Последний столбец в таблице выше сравнивает рассчитанную вручную емкость, оцененную приблизительными методами, с точные значения, генерируемые spWall и spColumn.Влияние упрощающих допущений показано на рисунке ниже. показывая ценность включения точной стоимости и местоположения стали и конкретные напряжения и силы.

Рисунок 15 Деформации, силы и моменты Оружие для упрощенных и актуальных методов

Вертикальное армирование

Вертикальное армирование используется в кирпичных стенах, чтобы противостоять растягивающим напряжениям, которые могут возникать из-за изгибных и поперечных нагрузок.Кладочные колонны и пилястры также укрепляются по вертикали для повышения устойчивости к осевым нагрузкам.

Типы и размеры

Деформированные арматурные стержни (арматура) должны соответствовать стандарту ASTM A 615. Наиболее распространена арматура класса 60 с пределом текучести 60 000 фунтов на квадратный дюйм; на некоторых рынках также может быть доступен класс 40 (предел текучести 40 000 фунтов на квадратный дюйм).

Требования Строительных норм и спецификация для каменных конструкций, представленные Объединенным комитетом по стандартам каменной кладки (MSJC), разрешают использование арматуры размером до # 11 (1 3/8 дюйма в диаметре) при строительстве каменной кладки, но редко можно увидеть стержни больше, чем # 8 (диаметр 1 дюйм).Когда кладка проектируется с использованием положений по расчету прочности (Требования строительных норм и спецификации для каменных конструкций, глава 3), максимальный размер стержня ограничивается меньшим из стержней № 9, 1/8 номинальной толщины стены или чистого размера. армируемой ячейки, хода или воротникового соединения. Общая площадь армирования, помещенного в ячейку, не может превышать 4% площади ячейки (8% в местах соединения внахлест). Для 8-дюймовых блоков каменной кладки площадь ячеек составляет примерно 32 квадратных дюйма, из которых максимум 1.Можно разместить 3 квадратных дюйма арматуры.

Как установлен

Вертикальное армирование обычно помещается путем опускания стержня в пустые ячейки после постройки стены. Хорошей строительной практикой является наличие вертикального армирования перед заливкой швов. Требования и спецификации Строительных норм и правил для каменных конструкций требуют, чтобы арматура была на месте перед затиркой (см. Требования Строительных норм и спецификации для каменных конструкций, раздел 3.2 E). Запрещается втыкать стержни в свежеуложенный раствор, так как это не позволяет инспектору проверить правильность размещения арматуры.
Другой вариант — использовать блоки открытого типа «A» или «H». У этих блоков удалены одна или обе концевые перемычки, и их можно разместить вокруг вертикальной арматуры, выступающей из фундамента или предыдущей заливки раствора.

Содержание клеток в чистоте

Следует проявлять особую осторожность при возведении стен из армированной кирпичной кладки, чтобы предотвратить чрезмерное скопление мусора, налетов строительного раствора и т. Д., от попадания в армированную ячейку. Небольшое количество раствора и мусора допустимо, если соединение цементного раствора не сильно затруднено. Строительный раствор, выступающий более чем на ½ дюйма в залитую раствором ячейку, должен быть удален перед заливкой раствора (Требования строительных норм и спецификация для каменных конструкций, спецификация 3.3 B. c.), Чтобы он не препятствовал течению раствора.

Соединение внахлест

Соединения внахлест используются для обеспечения непрерывности армирования по высоте стены. Часть арматуры остается выступающей из верхней части каждой заливки раствора, чтобы перекрыть арматуру при следующей заливке раствора.Напряжения растяжения передаются от одного стержня к другому за счет сцепления с окружающим раствором. Нет необходимости, чтобы стержни соприкасались друг с другом в местах соединения внахлестку, и согласно Строительным нормам и техническим условиям для каменных конструкций соседние стержни могут быть разделены на расстояние до 8 дюймов для бесконтактного соединения внахлест.

Длина перекрытия рассчитывается инженером, но будет варьироваться в зависимости от прочности кладки и диаметра стержня. Более длинные нахлесты также требуются для стержней, размещаемых близко к стене.

Позиционеры штанги

Позиционеры для стержней могут иметь разные формы, но часто их периодически заделывают в швы по высоте стены. После того, как стена построена, арматура подается вниз через позиционер, чтобы стержень удерживался в нужном месте.

Старые строительные нормы и правила требовали, чтобы стержни удерживались позиционерами на месте во время заливки швов. Текущие требования и спецификации Строительных норм и правил для каменных конструкций явно не требуют позиционирования стержней, но подрядчик несет ответственность за «поддержку и скрепление арматуры вместе для предотвращения смещения» во время заливки раствором (Раздел 3.4 В).

Допуски размещения

Размещение арматуры имеет решающее значение для обеспечения достаточной прочности стены, чтобы выдерживать расчетные нагрузки. Неправильная установка стержней всего на ½ дюйма может серьезно повлиять на способность стены выдерживать нагрузки.

Допуски по размещению арматуры перечислены в Требованиях Строительных норм и Спецификации для каменных конструкций, Раздел 3.4 B 7. Требуются жесткие допуски: стержни должны быть размещены в пределах ± ½ дюйма от указанного места для большинства конструкций (расстояние d 8 дюймов или меньше).Размещение по длине стены должно быть в пределах ± 2 дюймов от указанного расстояния.

Клиренс

Размещение арматуры должно быть спроектировано таким образом, чтобы вокруг стержня было достаточно места для правильного потока раствора. Между соседними планками и любой поверхностью кладки должно быть оставлено минимум дюйма (для тонкого раствора) или ½ дюйма (для крупнозернистого раствора). Допускается, чтобы стержни соприкасались друг с другом на стыках внахлест.

Защита

Армирование кладки закладывается глубоко в стены и защищается от атмосферных воздействий лицевой панелью кладки и слоем раствора.При строительстве кирпичной кладки не используется никакой специальной защиты от коррозии. Армирование из эпоксидной, оцинкованной или нержавеющей стали иногда может использоваться в суровых условиях, например, в морских дамбах, на химических заводах и на некоторых предприятиях пищевой промышленности.

Экономичный дизайн и расстояние

Проектирование железобетонных стен —

Проектирование железобетонных стен во многом похоже на колонны.

Они выдерживают вертикальные нагрузки и чувствительны к незначительному изгибу оси.

Они часто действуют как основные элементы систем поперечной устойчивости конструкции и, таким образом, подвергаются воздействию высоких изгибающих сил в плоскости.

Стена — это вертикальный или почти вертикальный элемент, ширина / длина которого превышает его толщину более чем в 4 раза.

Хотя минимальная толщина стены может составлять 150 мм, рекомендуется 180–250 мм для облегчения детализации и строительства.

Стены тоньше 250 мм могут вызвать проблемы с уплотнением бетона из-за скопления арматуры, особенно вблизи проемов.

Толщина стены определяется исходя из сил, которым она подвергается, требуемой огнестойкости, прочности и способности строительства.

Существует три типа воздействия на железобетонную стену: осевые силы, изгиб и сдвиг по малой оси, изгиб и сдвиг по большой оси.

Воздействие, которому стены наиболее уязвимы, — это изгиб, и данное руководство в основном касается этой формы напряжения. То, как стены сопротивляются воздействию этих воздействий, зависит от геометрии стены.

Другими аспектами, которые могут повлиять на конструкцию стены, являются ее расчетный срок службы и противопожарная защита. Оба устанавливают параметры прочности бетона стены, ее толщины и покрытия арматурой.

Этапы проектирования железобетонной стены можно резюмировать следующим образом:

  • Определить расчетный срок службы конструкции, частью которой должна быть стена
  • Определить воздействия на стену и их комбинации
  • Выбрать бетон прочность на основе требований к долговечности
  • Определить покрытие арматуры и толщину на основе требований противопожарной защиты
  • Расчет силы сдвига и изгибающих моментов, действующих на стену
  • Проверка гибкости
  • Расчет необходимого количества стальной арматуры на основе приложенных сил
  • Проверьте минимальные и максимальные области армирования и расстояние между стержнями.

На толщину железобетонных стен влияет класс огнестойкости конструкции, частью которой они должны быть.

* Расстояние между осями измеряется от поверхности бетона до осевой линии основных арматурных стержней; минимальное покрытие арматуры должно составлять 20 мм.

Тонкость стены определяется отношением эффективной высоты к толщине стены. Когда стена тонкая, ее сопротивление изгибающим моментам и осевым силам уменьшается.

Можно упростить процесс определения гибкости бетонных стен, удовлетворив следующее выражение:

M 1z и M 2z — меньшие и большие изгибающие моменты малой оси на рассматриваемом пролете.

— это функция приложенной расчетной осевой нагрузки (N Ed ) на метр длины стены.

Где

или 0,003 f yk / f ck

f yk предел текучести на растяжение или характеристический предел текучести арматуры, который обычно составляет 500 Н / мм2.

f ck характеристическая прочность бетона на сжатие цилиндра.

h толщина стены.

A s Площадь вертикального армирования стены.

l 0z эффективная высота стены по малой оси.

Коэффициенты, применяемые к высоте стены по малой оси для определения ее эффективной высоты

Условие 1 : Стена монолитно соединена с плитами, толщина которых не меньше толщины стены.В случаях, когда стена крепится к фундаменту, эта подконструкция

должна быть спроектирована так, чтобы выдерживать изгибающие моменты, а также осевые и поперечные силы.

Условие 2 : Стена монолитно соединяется с плитами, толщина которых составляет не менее половины толщины стены, но не меньше общей толщины стены.

Условие 3 : Стена соединена с элементами, которые обеспечивают номинальное ограничение вращения.

Если стена оказывается тонкой, она должна быть спроектирована так, чтобы выдерживать повышенные изгибающие моменты по малой оси — приложенные моменты, которые были увеличены, чтобы учесть тонкое состояние стены. Эти измененные моменты.

M 2 или M zi + N Ed (e 2z + e a ), в зависимости от того, что больше.

Расчетный изгибающий момент стены по малой оси на средней высоте больше одного из следующих значений:

0,6M 2 +0.4M 1 или 0,4M 2

Где M 1 — меньший конечный момент на малой оси стены, полученный из анализа

M 2 — больший конечный момент на малой оси стены получено из анализа

M zi — приложенный изгибающий момент малой оси, полученный из анализа

E 2z — прогиб стенки по малой оси из-за проектных действий с осевым коэффициентом

E 2z = f yk (l 0z / d) 2 10 -6 в мм

d — эффективная глубина арматуры (мм) внутри стены по ее малой оси

e a — эксцентриситет приложенной расчетной осевой силы из-за того, что стена находится вне вертикального положения во время строительства = где условное отклонение стены, как предусмотрено (в мм).

Условный наклон стен

Следует обратить внимание на условные обозначения изгибающих моментов внутри стен. В зависимости от расположения эксцентриситета приложенной осевой силы к стене, выражение N Ed (e 2z + e a ) может оказаться меньшим из двух.

При расчете сил, действующих на стену, необходимо сделать определенные предположения относительно того, как они моделируются.При рассмотрении изгиба по главной оси все элементы, которые входят в него, должны иметь простую опору.

Изгибающие моменты, возникающие из-за боковых сил, таких как ветер, должны предполагать, что стена действует как консоль от ее фундамента. Что касается изгиба по малой оси, все элементы, обрамляющие стену, следует считать монолитными с соответствующим уровнем полной фиксации, например если эти элементы тоже бетонные, то полный изгибающий момент передается от горизонтального элемента к стене.

Перед установкой необходимого количества арматуры необходимо рассчитать величину напряжений, возникающих из-за приложенных воздействий.

Обычно стену разделяют на полосы по 1 м, что упрощает конструкцию арматуры внутри стены.

Каждый из них может рассматриваться как подверженный только осевому сжатию и изгибу по малой оси, с расчетом армирования, основанным на экстремальных напряжениях волокон ( f t ) в каждом идеализированном 1-метровом сегменте стены.

Все соответствующие осевые силы и изгибающие моменты применяются к каждому рассматриваемому сегменту, и каждая единица длины рассматривается как столбец для целей проектирования.

Крайние напряжения волокна

Н — расчетное осевое усилие в полосе стены 1 м

L — общая длина стены

h — общая толщина стены

М — приложенная расчетный изгибающий момент по главной оси на участке стены.

Полученное напряжение затем умножается на толщину стенки (h), чтобы получить напряжение на метр длины.Затем можно определить арматуру, используя методологию проектирования колонн, в которой применяется изгиб по малой оси, а также осевые напряжения, возникающие как из-за изгиба по главной оси, так и осевых сил.

Упрощенный подход к определению требуемой величины сжатия и растяжения арматуры.

Может применяться только в тех случаях, когда к стене не прилагаются значительные изгибающие моменты малой оси, например когда опорные плиты одинакового пролета и глубины находятся по обе стороны от стены, тогда упрощенное выражение изгибающего напряжения малой оси.

Для сжимающих сил: f t h равное или меньшее 0,43 f ck h + 0,67 f yk A sc

f t — сила сжатия или растяжения, приложенная к стене.

A sc — площадь арматуры в мм2 на метр длины стены.

Для сил растяжения: A s = f t h L t / 0,87f yk

L t — длина стены, подверженной растяжению.

Вся натяжная арматура должна быть установлена, по крайней мере, в зоне, измеряемой на 0,5L t от конца стены. Однако принято размещать такое количество арматуры по всей длине стены для облегчения строительства.

Область требований к армированию можно резюмировать как:

  • Минимум 0,002A c разделения между обоими слоями для вертикального армирования, ближней и дальней стороны.
  • Максимальная площадь вертикального армирования установлена ​​на 0.04A c
  • Для горизонтального армирования минимум составляет 25% от предусмотренного вертикального армирования или 0,001 A c , в зависимости от того, что больше.
  • Минимальный размер стержня для горизонтальной арматуры составляет 0,25 диаметра вертикальной арматуры.

A c — это общая площадь поперечного сечения стены

Расстояние между вертикальными стержнями не должно превышать 300 мм или 3-х кратную толщину стены, в зависимости от того, что меньше, хотя могут быть продиктованы более строгие требования по способу строительства, т.е.грамм. для формирования шликера.

Считается оптимальной практикой, чтобы горизонтальные стержни не располагались дальше 300 мм друг от друга, чтобы ограничить термическое растрескивание в раннем возрасте, хотя допускается расстояние до 400 мм.

С точки зрения размера арматурные стержни должны быть не менее 0,25 диаметра вертикальных стержней.

Если вертикальная арматура превышает 2% площади поперечного сечения в пределах любого сегмента стены шириной 1 м, должны быть предусмотрены перемычки.

Рабочий пример

А высотой 20м, 3.Срезанная стена длиной 5 м является одновременно боковой и вертикальной опорой для 4-этажного здания.

Между ним и следующей поперечной стенкой 6 колонн.

Спроектируйте арматуру стены в ее основании и на средней высоте. В него входят плиты перекрытия с шагом 3,2 м и толщиной 200 мм.

Фундамент стены не рассчитан на то, чтобы выдерживать изгибающие моменты по малой оси.

Здание имеет огнестойкость 60 минут, расчетный срок службы 50 лет, прочность арматуры на растяжение 500 Н / мм2.

Стена подвергается воздействию внешней среды с одной стороны. Расчетные воздействия (факторные нагрузки), приложенные к стене:

Осевое расчетное усилие у основания 3000 кН

Осевое расчетное усилие на средней высоте 1800 кН

Расчетные изгибающие моменты 2200 кНм (главная ось в основании)

1200 кНм (большая ось на средней высоте)

80 кНм / м (малая ось) на пол

Геометрия стены L = 3500 мм H = 3200 мм b = 1 м

Попробуйте h = 200 мм стена из бетона C35 / 40

f ck = 35N / мм 2

f yk = 500N / mm 2

Воздействие огня, дождя и влаги

Минимальная толщина возгорания h min = 130 мм меньше h = 200.000 мм

Долговечность Класс воздействия XC4 50 лет Расчетный срок службы S4 Структура

Div = 10 мм

Вертикальная полоса = 20 мм

Горизонтальная полоса = 10 мм

Следовательно, C мин. = 30 мм;

Следовательно, d = h- (C мин + Div + (V бар /2) + h бар ) = 140,000 мм

В основании

N = 3000 кН

M y = 2200 кНм

@ Основание стены; f t1 = (N / (L * h)) + (6 * M y / (h * L * L)) = 9.673 Н / мм 2

& f t2 = (N / (L * h)) — (6 * M y / (h * L * L)) = -1.102 N / мм 2

f t = max (f t1 , f t2 ) = 9,673 Н / мм 2

Следовательно, усилие / мм на основании f t * h = 1934,694 Н / мм;

Проверка гибкости

@ Основание стены M 2z = 80 кНм

M 1z = 0 кНм

= 0,003 * f yk / f ck = 0.043

Следовательно, @ base = 0,69 * Sqrt ((1+ (2 *)) * (1000 * h * f ck ) / (f t * h * 1000)) = 1,368 равно или больше чем 1

Предел коэффициента гибкости 4,38 * (1,7- M 1z / M 2z ) = 10,183

Условие 1 вверху и 3 внизу

Следовательно, коэффициент C ef = 0,9

Следовательно, L 0z = C ef * H = 2880,000 мм

Коэффициент гибкости S r = L 0z / h = 14.400 ; Больше, чем предел коэффициента гибкости 4,38 * (1,7- M 1z / M 2z ) = 10,183

Следовательно, стена тонкая на уровне Base 1 st .

Из-за гибкости стены на основании необходимо учитывать дополнительные изгибающие моменты

Модифицированный изгибающий момент из-за гибкости:

M 2z = 80,000 кНм Усилие / мм на основании f t * h = 1934,694 Н / мм

e z2 = f yk * (L 0z / d) ^ 2 * 1 мм / МПа / 1000000 = 0.212 мм

T hita = 1/400 = 0,003 из таблицы

e a = T hita * L 0z /2 = 3.600 мм

M base = M 2z + f t * h * (e z2 + e a ) * 1m = 87,374 кНм

Расчет армирования

Использование расчетных таблиц колонн для определения количества армирования в стене

@ Основание стены

d / h = 0.700

M основание / (b * h * h * f ck ) = 0,062

f t / f ck = 0,276

На средней высоте

N = 1800 кН

M y = 1200 кНм

на средней высоте стены; f t1 = (N / (L * h)) + (6 * M y / (h * L * L)) = 5,510 Н / мм 2 & f t2 = (N / (L * h)) — (6 * M y / (h * L * L)) = -0,367 Н / мм 2

f t = max (f t1 , f t2 ) = 5.510 Н / мм 2

Следовательно, усилие / мм при средней высоте f т * h = 1102.041 Н / мм

при средней высоте стены; M 2z = 80 кНм

M 1z = -80 кНм

= 0,003 * f yk / f ck = 0,043

Следовательно, @ base = 0,69 * Sqrt ((1+ (2 *) ) * (1000 * h * f ck ) / (f t * h * 1000)) = 1,812 равно или больше 1

Предел коэффициента гибкости 4,38 * (1,7-M 1z / M 2z ) * = 21.429

Условие 1 наверху и 1 на низе

Следовательно, коэффициент C ef = 0,75

Следовательно, L 0z = C ef * H = 2400,000 мм

Коэффициент гибкости S r = L 0z / h = 12.000 Не выше предела коэффициента гибкости 4,38 * (1,7- M 1z / M 2z ) = 21,429

Следовательно, стена не тонкая при средней высоте.

Армирование стены из бетона: Армирование Бетонных Стен: Технология Выполнения Работ

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Scroll to top