Гидроизоляция и пароизоляция, в чем разница?
В большинстве своем люди мечтают о собственном доме. В начале, они ищут подходящий участок, затем проект дома. После этого начинается стройка. И вот основные работы позади, наступает время отделки.
И многие задумываются о том, как сделать свой дом не просто удобным, а комфортным, чтобы несмотря ни на какую погоду в него всегда было приятно возвращаться. Как этого добиться? Для этого понадобятся пароизоляция и гидроизоляция.
Утеплить свой дом при помощи специальных утеплителей, а их на сегодня предлагается различное множество. Давайте посмотрим, как правильно утеплить дом, чтобы используемый в этом качестве материал не пропал и не потерял своих качеств.
Чаще всего для утепления стен, потолков и пола применяются материалы на основе минеральной ваты, она давно зарекомендовала себя как отличный теплоизолятор. Но при всех своих положительных качествах, она обладает и одним отрицательными, и, если не брать его во внимание, то со временем все ваши усилия по утеплению дома станут напрасными.
Минеральная вата отлично впитывает влагу, и вследствие этого теряет все свои свойства по теплоизоляции. И вот здесь важно провести грамотные работы по пароизоляции и гидроизоляции материалов на основе минеральной ваты.
Нужна ли кровле защита?
Начнем с кровли. При строительстве дома этому элементу конструкции уделяется первостепенное значение. Потому что она в первую очередь противостоит воздействию различных природных стихий: обильным осадкам в виде дождя, снега, града, ураганных порывов ветра (ветрозащита), а также защищает дом от палящих лучей солнца. У обоих материалов есть ветрозащита. Кровля стоит на страже нашего комфорта и удобств.
Помимо защиты от внешних воздействий, кровля также не дают теплу выходить из дома наружу. Ведь очень хорошо известно, что теплые потоки воздуха всегда стремятся вверх, поэтому на крышах необходимо всегда устанавливать утеплитель, чтобы сохранить внутренне тепло и не дать внешнему холоду проникнуть внутрь помещений. Но чтобы утеплитель прослужил как можно дольше и не потерял своих товарных качеств, его нужно охранять от любого воздействия влаги, как в виде воды, так и в виде пара.
Сами по себе материалы, из которых устраивается крыша, конечно же, не пропускают влагу и берегут утеплитель от промокания, но они не в силах защитить его от воздействия водяного пара. Для этого необходимо проводить гидроизоляционные мероприятия, которые защитят утеплитель от избыточной влаги.
Некоторые строители в целях экономии или из-за недостатка знаний не делают гидроизоляцию утеплителя устанавливаемого под кровлю. Очень часто покупаются дешевые материалы, а некоторые применяют и вовсе обычную полиэтиленовую пленку для парников, другие предпочитают пользоваться материалами, защищающими только от пара не предавая значения тому, что это совершенно разные товары, обладающие разными свойствами.
Как результат в течение небольшого промежутка времени от монтажа кровли мансарды и утеплителя с неправильной гидроизоляцией, вдруг начинает капать вода, а потолок покрывается пятнами от разводов. В этом случае чаще всего кровельная поверхность подвергается тщательной проверке на наличие повреждений, но не найдя таковых, многие задумываются, что было сделано неправильно.
Объяснение в этом случае довольно простое если вместо гидроизоляционной пленки была установлена пароизоляционная, то вследствие этого утеплитель полностью набрался влаги и создает разводы и «дождь» в помещении. Гораздо хуже если гидроизоляция вовсе не производилась, то в таком случае наполненный влагой утеплитель наносит вред и стропилам, и деревянной обрешетки и даже всей конструкции кровли повреждая при этом и внутреннюю отделку помещений.
Чем отличается гидроизоляция от пароизоляции
Чем отличается пароизоляция от гидроизоляции? В настоящее время на рынке строительных товаров существует огромное множество пленок используемых в качестве материалов для проведения гидроизоляционных работ. В таком количестве предложений от различных производителей не сложно заблудиться.
Главная проблема возникает ввиду непонимания разницы между материалами, которые используются для гидроизоляции или пароизоляции. Некоторые так называемые специалисты или консультанты строительных магазинов и компаний, в силу отсутствия необходимых знаний не делают отличия между этими совершенно разными по потребительским качествам товарам.
Поэтому тем, кто мечтает проживать в комфортном жилье и не страдать от неожиданных сюрпризов связанных с неправильно проведенной гидроизоляцией кровли следует самим расширить свой кругозор и получить необходимые знания в этом вопросе, даже просто для того чтобы контролировать тех, кто будет у вас проводить работы по гидроизоляции кровельного покрытия. Поэтому давайте вначале четко уясним, чем отличается друг от друга гидроизоляционные материалы от пароизоляционных по своим функциональным свойствам.
Что такое гидроизоляция?
Пленку для гидроизоляции в основном используют для того, чтобы предотвратить контакт влаги, которая проникает снаружи, с утеплителем. Можно конечно задаться вопросом, а для чего это нужно? Ведь кровля для того и предназначенная, чтобы защищать внутреннее пространство от высокого уровня влажности. Конечно, если вы осуществляете монтаж кровли над обычным чердачным помещением, то, скорее всего, вы не станете утеплять кровлю и, как следствие не будет проводиться гидроизоляция кровли. А также пароизоляция кровли.
Но когда кровля устанавливается над мансардой, то в этом случае от нее ожидается, что помимо своих основных «обязанностей» по защите жилья от атмосферных осадков, она также защитит от попадания водяных паров, образующихся во время теплых дождей и туманов.
Этот водяной пар, попадая в поры утеплителя на основе минеральной ваты, закупоривает их, снижая его эксплуатационные свойства. А в холодное время года влага, попавшая в утеплитель, замерзает и разрушает его. Ввиду этого теплоизоляционный покров нуждается в защите при помощи гидроизоляционных пленок.
Может быть интересно
Что такое пароизоляция?
Местом применения пароизоляционных пленок является нижняя часть минерального утеплителя. Эта пленка будет защищать его от паров, поднимающихся к потолку из внутренних помещений. Некоторые считают, что в хорошо вентилирующихся комнатах отсутствует излишне парообразование. Но это не так.
В любом жилом помещении всегда происходит образование водяных паров, которые через потолок проникают в кровельный утеплитель и также могут привести к снижению его качеств и даже намоканию с последующими неприятными последствиями. Поэтому установка пароизоляционной пленки важная составляющая по защите кровли.
Отличие гидроизоляции от пароизоляции
В чем заключается отличие пароизоляции от гидроизоляции? Пленки, которые используются в качестве гидроизоляционных мембран, устроены так, что способствуют проникновению влаги только в одном направлении из внутренней части наружу, но защищают от попадания внешней влаги.
Для примера при монтаже пароизоляции над подвалом пленку укладывают под чистовым полом, это делается для того, чтобы пар который всегда движется от тепла к холоду не проник в утеплитель. Но та часть влажного воздуха, которая все-таки в него попадет, выйдет наружу через пленку, пропускающую пар изнутри.
Могут ли пленки отличаться друг от друга внешне? Пароизоляционные пленки полностью не пропускают влагу с двух сторон. Например, таким материалом является полиэтилен. Но если использовать его в качестве пароизоляции, то со временем, ввиду его качеств, произойдет растяжение, а затем и надрыв пленки, что потребует ее замены. Поэтому лучше всего использовать армированную полимерную пленку.
Хорошими потребительскими свойствами обладают материалы покрытые фольгой, монтаж такой пленки осуществляется такой частью во внутреннее помещение. Благодаря этому тепло, которое вместе с паром также поднимается вверх, отражается от фольги и не покидает помещение. Пароизоляционная пленка производителем маркируется особым образом, поэтому при покупке тщательно ознакомьтесь с описанием товара.
Строение гидроизоляционной пленки
На первый взгляд может показаться, что использование пленки полностью непроницаемой для влаги это то, что нужно, но на самом деле это не так. У пара и гидроизоляции совершенно разные цели и замена одного материала другим ничего кроме разочарования не принесет.
Для чего применяется гидроизоляция:
- защитить утеплитель от проникновения влаги снаружи;
- вывести наружу ту влагу, которая попала в утеплитель.
Возникает вопрос: как в утеплитель может попасть влага, если приняли меры для его защиты?
Это возможно, потому что полной герметизации утеплителя не бывает, влага попадает через зазоры, предназначенные для вентиляции, внутрь утеплителя из помещения. И наша цель ее вывести, для этого применяется гидроизоляционная пленка или мембрана. Она отличается следующими свойствами:
- Стойкость к УФ изучению.
- Устойчивость к перепадам температур.
- Высокая прочность.
- Пористая структура.
Остановимся на этом ее последнем и основном качестве. Благодаря такой структуре, водяной пар, попавший в утеплитель, может из него выйти. По всей поверхности пленки расположены отверстия или поры, которые имеют определенную форму, в виде воронки ее широкая часть направлена внутрь к утеплителю, а узкая наружу, благодаря этому влага с внешней среды не может проникнуть в утеплитель, так как имеет большой размер молекул, пар, наоборот, может беспрепятственно выходить.
Поэтому при монтаже таких мембран очень важно не перепутать соответствующие стороны, та, которая будет направлена к утеплителю и другая наружу.
По конструкции пор мембраны делятся на:
- диффузионные;
- супердиффузионные.
В данном моменте они отличаются числом пор. На диффузной их меньше, укладывая ее на утеплитель следует сделать вентиляционный зазор, так как ворсинки минеральной ваты могут закупорить поры пленки и привести к снижению ее качеств. Применение супердифузных мембран не предусматривает создание вентиляционного зазора.
Стоит помнить, что при применении любых мембран необходимо оставлять пространств между кровлей и мембраной, чтобы водяной пар не скапливался под крышей, а уходил в воздушное пространство.
Важно помнить, что пленки можно применять не со всеми видами кровли. Так металлочерепица может разрушаться под воздействием конденсата, который будет скапливаться под ее не защищенной частью. Здесь используется мембрана, которая скапливает влагу на совершенно два разных материала, своей внутренней стороне и избавляется от нее благодаря вентиляционному зазору.
Пароизоляция и гидроизоляция отличия – мы рассмотрели их. Гидроизоляция пароизоляция – материалы, которые имеют разные цели.
технология укладки пароизоляции своими руками
Произведенные работы по утеплению здания минераловатными плитами или другими пористыми и волокнистыми материалами могут сойти на нет за совсем небольшой срок. Причиной этому является способность утеплителя к поглощению влаги с последующим снижением теплоизолирующих свойств материала. При этом, в большинстве случаев, намокание изоляции происходит не из-за прямого попадания влаги, а в результате конденсации водяных паров воздуха внутри теплоизоляционного слоя.
Назначение и принцип действия пароизоляции
Вообще, обеспечить защиту строительных конструкций от проникновения воздушных водяных паров можно при помощи любого водонепроницаемого материала: стекла, пластика, металла, полиэтиленовой пленки. Однако, такая изоляция не только остановит влагу, но и нарушит естественный воздухообмен. Как результат — застой воздуха, в помещениях появится неприятная и вредная для здоровья затхлость.
Поэтому, чтобы исключить вероятность конденсации влаги внутри тепловой изоляции, ее защищают специальной пленкой мембранного типа, пропускающей водяные пары только в одну сторону, не задерживая молекул воздуха. Именно из-за такой способности пароизоляцию относят к покрытиям мембранного типа, а не к водонепроницаемым гидроизоляционным пленкам.
Классификация пароизоляционных пленок
Мембраны для паровой изоляции классифицируют по принципу действия, конструкции и материалу, из которого они сделаны. По принципу работы различают 4 вида пароизоляции:
- A – пропускает пар в одном направлении, удерживая, при этом, влагу с другой. Используется для отвода влаги из теплоизоляционного слоя. Может применяться только вертикальных и наклонных плоскостях более 35°, чтобы обеспечить свободное скатывание капель по гладкой поверхности мембраны внутри вентиляционного зазора.
- B – такая мембрана способна пропускать воздух и останавливать водяной пар в обоих направлениях. Имеет двухслойную структуру, в которой первый слой не пропускает водяной пар, а второй служит для отвода сконденсированных капель.
- C – такая же пароизоляция, как и тип B, но более прочная и долговечная. Изготавливается из полимерных пленок увеличенной толщины или дополнительно армируется. Применяется в неутепленных скатных кровлях для защиты деревянных конструкций от воздействия влаги.
- D – очень прочная, но и дорогая, полимерная мембрана, одна сторона которой ламинирована и обладает водоотталкивающими свойствами. Рекомендуется к применению в помещениях с повышенной влажностью. Может использоваться как дополнительный слой гидроизоляции.
Пароизоляционные мембраны изготавливают из полиэтилена и полипропилена. По конструкции пароизоляционные покрытия бывают однослойными и двухслойными, где второй слой имеет шершавую наружную поверхность. Это позволяет остановить скатывание капель конденсата и способствует их быстрому испарению.
Кроме этого, на рынке можно приобрести изоляционные материалы с наклеенным слоем алюминиевой фольги. Такое дополнительное покрытие улучшает технические характеристики теплоизоляционных систем за счет активного отражения теплового излучения.
Какой стороной укладывать пароизоляцию
При укладке пароизоляционной пленки требуется правильно расположить ее стороны. Несоблюдение этого правила может нарушить свободное скатывание конденсационных капель и процесс их испарения. Чтобы не ошибиться, какой стороной класть пароизоляцию, следует обращать внимание на нарисованные пиктограммы и логотипы, которые производители материала обычно наносят на внешнюю поверхность. Внимательно изучите прилагаемую к рулону инструкцию. Там этот вопрос обязательно указан.
Как отличить внутреннюю сторону от внешней
Как различить стороны гидроизоляционных мембран? Здесь дадим следующие советы:
- обратите внимание на цвет обеих сторон. Если он отличается, то более светлая будет внутренней и укладывается к теплоизоляции;
- положите рулон на пол и немного раскатайте его — сверху окажется внешняя поверхность;
- внутренняя сторона всегда гладкая, на наружной ощущаются выступы или ворс;
- фольгированный материал укладывается металлом в сторону утеплителя.
Если в упаковке отсутствует инструкция, а на поверхности материала нет логотипов, то это не пароизоляционная мембрана, а полимерная пленка для гидравлической изоляции. В этом случае вопрос, какой стороной крепить пароизоляцию, можно не рассматривать вообще.
Что будет, если уложить не той стороной
Если относиться к изоляции как противоконденсатной защите, то положение сторон не играет существенной роли, поскольку смещение точки росы напрямую зависит от конструкции слоя утеплителя. Исключением является случай укладки материала типа A. Поскольку такая мембрана пропускает водяные пары в одну сторону, то вместо того, чтобы отводить влагу, она направит ее к утеплителю.
Однако расположение сторон пароизоляционной мембраны имеет другое значение. Шершавая поверхность способствует эффективному сбору конденсатных капель и ускоряет их испарение. Гладкая внутренняя сторона обеспечивает скатывание водных капель вниз внутри вентиляционного зазора между тепловой и паровой изоляцией.
Технология укладки пароизоляции
Способ укладки зависит от типа материала и устройства утепляемой строительной конструкции. Различия в том, как правильно класть пароизоляцию, не так велики, но они есть.
Общие рекомендации
Существует несколько простых общих правил укладки, независимо от типа изоляции и вида строительных конструкций:
- соседние полосы мембраны должны быть уложены внахлест друг на друга с перекрытием на 150 мм;
- соединительные стыки, проколы и надрезы следует проклеивать рекомендованным в инструкции материалом;
- между тепловой и паровой изоляции должен оставаться вентиляционный зазор 30-50 мм;
- при частичной укладке материала на прилегающую строительную конструкцию следует оставлять небольшой запас 50-100 мм для окончательного выравнивания и натяжения мембраны.
Не старайтесь сэкономить на покупке клея. Некачественное склеивание приведет к проникновению влаги и порче дорогого утеплителя.
Внутренняя поверхность наружных стен
Для устройства парозащиты утепленных изнутри стен, мембрана типа B закрепляется по обрешетке, внутри которой уже уложен утеплитель. Укладка пароизоляции между теплоизоляционным слоем и стеной не имеет смысла, поскольку доступ водяных паров из помещения останется свободным. Делать же 2 слоя, наружный и внутренний, обходится вдвое дороже. Больше материала по теме в тут и тут.
При утеплении фасада
Технология пароизоляции фасадов зависит от материала конструкции стен. Для деревянных и кирпичных зданий с хорошей воздухопроницаемостью ограждающих конструкций потребуется укладка двух слоев парозащиты. Один, типа C, закрепляется по наружной стене здания, а второй, типа A, в качестве ветрозащиты по обрешетке со стороны улицы. При этом вентиляционный зазор оставляют между вторым слоем и утеплителем. После этого вся конструкция закрывается декоративными панелями.
В зданиях каркасного типа также требуется два слоя пароизоляции. Один по внутренней поверхности стены со стороны помещения, второй со стороны улицы по фасаду. Для бетонных зданий достаточно одного слоя изоляции типа A по обрешетке со стороны улицы.
На пол
Способ создания теплоизоляционной системы для утепления полов и способ укладки пароизоляции зависит от выбранной технологии выравнивания. Она может быть по лагам или предусматривать цементную стяжку.
При устройстве полов по лагам, один пароизоляционный слой типа C просто раскатывается по плите перекрытия с заводом пленки на поверхности примыкающих стен. Поле установки лаг и укладки утеплителя вторая мембрана типа A натягивается по опорным деревянным брускам. При этом рекомендуется и сами лаги обернуть паровой изоляцией в один слой.
В случае устройства цементной или бетонной стяжки пароизоляция укладывается только в случае укладки твердых и прочных утеплителей типа пенополистирола, битумо-пробковой смеси или пенополиэтилена.
Мансарда и скатная кровля
При утеплении чердачных помещений одна паронепроницаемая пленка типа A укладывается по обрешетке, вторая, типа B, изнутри чердака прикрепляется к стропилам. Вентиляционный зазор лучше всего оставить с обеих сторон. Пароизоляционное покрытие должно покрывать все конструкции кровли включая конек и мауэрлат. Фольгированные материалы кладутся металлическим слоем к утеплителю.
Итого, наличие паровой защиты в теплоизоляционных системах увеличивает срок службы утеплителя и сохраняет его эффективность. Однако, следует помнить, что положительные материалы напрямую зависят от соблюдения технологии и обеспечения сплошного покрытия без разрывов, отверстий и неплотных стыков.
Видео по теме
Пароизоляция стен и пола внутри каркасного дома: выбор материала
Пароизоляция каркасного дома — важный этап для такого типа строений. Паробарьер отвечает за теплоизоляцию, сохранность деревянного каркаса.
Смонтированная пароизоляция во внутренних помещениях каркасника Вернуться к оглавлению Содержание материалаЧто такое пароизоляция
Это плёночная мембрана, которая препятствует попаданию влаги во внутренние слои утеплителя, где она может накапливаться.
Каркасник состоит из следующих элементов:
Воздух в своём составе имеет определенный процент паров. Нормальная влажность в теплое время от 30 до 60 %, холодное от 30 до 45 %.
Чертеж пароизоляции и внутренней отделки помещенийУровень содержания влаги зависит от типа помещения. В ванной комнате, на кухне он выше, из-за образующихся паров при купании, приготовлении еды. Влага движется, проникает в малейшие микропоры, в толщу стен, потолков, полов. Чем выше её концентрация в воздухе, тем интенсивнее процесс.
Второй момент, который влияет на влажность стен, потолка –разница температур снаружи и внутри помещения.
Когда зимой поток холодного воздуха проникает снаружи в стены, он встречается с теплым, исходящим изнутри помещения. При их соприкосновении образуется конденсат — «точка росы».
- Утеплитель, накапливая влагу, меняет геометрию, плохо удерживает тепло. Минеральная вата более всего подвержена изменению.
- Концентрация влаги провоцирует появление плесени.
- Каркасные дома без пароизоляции разрушаются, нужно обеспечить выход паров воздуха.
Пароизоляция для стен каркасного дома в комплекте с супердиффузионной мембраной (ветрозащитой) необходимы для регулирования влажности, чтобы уберечь утеплитель от проникновения паров в него.
Плёночная, фольгированная мембрана, установленная поверх утеплителя, изнутри стены, полностью или частично препятствует накопление влаги во внутренних слоях. Супердиффузионная мембрана, которая напротив, пропускает пар, служит для их выведения. Она устанавливается после основного наружного слоя стен, крыши, перекрытий.
Пароизоляции для каркасного дома работает в сочетании с системой вентиляции, лучше принудительной. По западным стандартам в строениях каркасного типа должен быть установлен рекуператор. Циркуляция воздушных масс снижает концентрацию паров, препятствует их застою.
Вернуться к оглавлениюКак выбрать материал
Чтобы знать какую пароизоляцию выбрать для стен каркасного дома, нужно изучить основные виды паробарьеров.
Конструкция каркасной стены в разрезеВсе материалы разделяют на пленочные и мембраны. Главное отличие в том, что между плёнкой и отделочным слоем необходим вентиляционный зазор из реек. Он позволяет накопившейся влаге постепенно испаряться. По технологии мембраны устанавливают на утеплитель каркасника.
Среди них выделяют паробарьеры:
С абсолютной пароизоляцией
Пленка совсем не пропускающая пары. Это могут быть полиэтиленовые однослойные плёнки и фольгированный материал. Такой пароизоляционный материал лучше использовать в помещениях с повышенной влажностью и влагонепроницаемым финишным покрытием.
К примеру, в ванной, выложенной плиткой, для межкомнатных внутренних перегородок, так как они находятся в зоне устойчивого температурного режима.
Фольгированные мембраны
Хороший материал для влажных помещений, бань, саун — фольгированный паробарьер. Он препятствует проникновению влаги в стены.
Процесс крепления фольгированной мембраны к потолкуАлюминиевое покрытие отталкивает от себя тепловое излучение, сохраняя его. Цена материалов варьируется, фольгированный паробарьер дороже в разы полиэтиленовой пленки. Монтаж пароизоляции с абсолютной непроницаемостью требует хорошей вентиляции в помещении, так как сначала влага будет скапливаться на поверхности отделки.
Схема устройства вентиляции в каркасном строенииЕсли она не испарится, то через швы, микропоры начнёт проникать и накапливаться между плёнкой и отделкой, что приведет к отслаиванию отделочного материала.
Паробарьер с ограниченной проницаемостью
Материалы, которые частично удерживают и пропускают влагу, большей частью представлены двухслойными мембранами.
Материалы с переменной паропроводимостью
По этой технологии выпускают пароизоляционные рулонные материалы с переменной проводимостью. Когда воздух сухой, они не пропускают пар. При повышенной концентрации влаги открываются микропоры, которые частично пропускают влагу. К ним относятся армированные плёночные мембраны. Это надёжный материал.
Так выглядит рулонная пароизоляцияПароизоляционный барьер необходимо устанавливать в комплекте с ветрозащитной мембраной, которая выводит конденсат. Если пары проникли внутрь, то они должны найти выход, поэтому устанавливают диффузную мембрану перед наружным слоем.
Выбирайте в качестве пароизоляции хорошие, пусть и более дорогие материалы.
Небольшой срок службы дешевых материалов, обычно их маркируют классом «В», приводит к ранему разрушению плёнки. От взаимодействия с кислородом, к нарушению целостности барьера, который препятствует проникновению влаги.
Как укладывать пароизоляцию
Плёночный паробарьер имеет слоистую структуру: с одной стороны, гладкую поверхность, с другой — шершавую.
Все мембраны укладывают только изнутри дома на утеплитель, гладкой стороной. Шершавая сторона удерживает конденсат, он постепенно испаряется.
Монтаж и установка паробарьера несложный процесс, но требующий аккуратности, тщательной заделки всех швов и стыков. Мембраны укладывают по площади всей поверхности помещения: на стены, потолки, перекрытия, крышу.
Пароизоляция стен
Выбор материала зависит от степени влажности в помещении. Для крепежа используют строительные скобы, которые пристреливают степлером. На стыках делают пароизоляцию внахлёст.
Монтаж последовательность:
- Материал раскатывают по поверхности утеплителя, прикрепляют степлером.
- Стыки, уложенные внахлёст, проклеивают скотчем. Ещё один способ, в местах состыковки набивают деревянные планки, предварительно их можно проклеить скотчем. Этот вариант оптимален для плёночной пароизоляции, потому что одновременно образуется вентиляционную щель.
- Вокруг розеток, коммуникационных выводов можно дополнительно промазать отверстия вокруг них мастикой.
Сделанная по такой технологии пароизоляция, обеспечит надежный барьер.
Пароизоляция перегородок
Для внутренних перегородок пароизоляцию можно не делать. Она необходима в стенах помещений с повышенной влажностью. Лучше устанавливать её с одной стороны. Вид мембраны зависит от отделочного материала внутри влажного помещения.
Чтобы изолировать комнату от пыли во время технической усадки утеплителя, в сухих помещениях, с двух сторон на него укладывают диффузные мембраны (гидроизоляцию).
Пароизоляция межэтажного перекрытия
Монтаж пароизоляции пола в каркасном доме и перегородок делают в такой последовательности:
Последовательность укладки материалов для утепления и пароизоляции полаВыбор параизоляционного материала зависит от места его применения. В полу лучше использовать более толстую армированную изоляцию. В межэтажные перекрытия можно уложить более тонкий слой, дешевле. Монтаж пароизоляции можно сделать самому, так можно быть уверенным, что она установлена надёжно.
Вариант конструкции пола в каркасном коттеджеВернуться к оглавлениюСоветы экспертов
Специалисты обращают внимание на то, что к укладке гидро- и пароизоляции нужно отнестись ответственно. От качества укладки зависит сохранность материалов внутри каркасного строения, уровень теплопроводности утеплителя.
Паробарьер межкомнатных перекрытийДля экономии можно более толстый паробарьер установить на внешних стенах, на полу первого этажа. Более дешевый — в межкомнатных перекрытиях.
Не стоит экономить на теплоизоляции помещений с повышенной влажностью. Хорошая принудительная приточно-вытяжная вентиляция с паро- и гидро- барьерами обеспечит длительный срок службы.
Устройство вентиляционных каналов в зданииХотя мембранные материалы, в отличие от плёночных, не требует монтажа вентиляционного зазора, его наличие станет дополнительным страховочным элементом конструкции дома. Смотрите в видео как сделать умную пароизоляцию частного дома.
Вернуться к оглавлениюЗаключение
Режим циркуляции воздушных масс и пара в каркасном доме — залог его долголетия, так как большая часть конструкции состоит из дерева и пиломатериалов.
Пароизоляция стен при постройке домаДаже при условии пропитки их антисептиками, которые препятствуют появление грибка, плесени, когда влага долгое время не выпаривается из слоёв каркасного дома, начинаются деструктивные процессы. Утеплитель, пропитанный влагой, теряет свои свойства и качества.
Разница между воздушной преградой и пароизоляцией
Разница между воздушной преградой и пароизоляцией
Задача пароизоляции — предотвращать диффузию пара, а задача воздушного барьера — предотвращать утечку воздуха из-за разницы в давлении воздуха. Стеновая система должна иметь одну пароизоляцию, но может иметь много воздушных преград. Пароизоляция может действовать как очень эффективный воздушный барьер, но воздушный барьер не всегда (и не должен) останавливать диффузию пара.
Шерстяной свитер, например, является хорошим выбором естественного утеплителя. Он согреет вас, когда нет движения воздуха, но позволит ветру выть сквозь него. Шерстяной свитер с плащом сохранит тепло, но будет удерживать влагу внутри и пропитать утеплитель. Шерстяной свитер с ветровкой согреет вас, не даст ветру украсть ваше тепло, но позволит влаге проникнуть сквозь него.
Так что подумайте о ветровке как о воздушном барьере, а о плаще как о пароизоляции.Это примерно насколько я могу протянуть аналогию между человеком и домом, надеюсь, это поможет.
Поскольку теплый воздух расширяется, между его молекулами остается больше места по сравнению с холодным воздухом. Водяной пар находится в этом пространстве. Когда теплый воздух охлаждается, проходя сквозь стены, он сжимается и выдавливает влагу, оставляя вас с конденсатом.
Чтобы предотвратить образование конденсата, на теплой стороне теплоизоляции следует установить пароизоляцию, чтобы не допустить конденсации теплого влажного воздуха на холодной поверхности внутри стены.
В холодном климате, например в Канаде, большую часть года пароизоляция должна находиться на внутренней стороне изоляции. В жарком климате, например, на юге США, пароизоляция должна быть установлена на внешней стороне изоляции, особенно там, где используется кондиционер для предотвращения конденсации и плесени.
В обоих случаях задача пароизоляции — не допустить, чтобы теплый влажный воздух терял влагу при встрече с прохладной поверхностью, независимо от того, в каком направлении он движется.
Самое важное, что нужно понимать, это то, что не существует фиксированного правила относительно пароизоляции. Строительные методы всегда должны определяться климатом, в котором вы строите.
Как перемещается водяной пар:
Есть два основных способа прохождения влаги через стены, о которых вам следует беспокоиться: утечка воздуха и диффузия пара. Это две совершенно разные вещи с двумя совершенно разными решениями.
Диффузия пара — это процесс прохождения влаги через воздухопроницаемые строительные материалы, такие как гипсокартон и изоляция.Есть пароизоляция, чтобы этого не произошло.
Утечка воздуха возникает из-за разницы в давлении воздуха в помещении и на улице, в результате чего воздух проходит через любые отверстия в воздушном барьере.
Где возникает проблема:
Точка росы в стене — это точка, в которой падение температуры заставляет воздух сжиматься, а водяной пар превращается в жидкость. Поскольку чем теплее воздух, тем больше влаги он может удерживать, поэтому точка росы на стене определяется разницей температуры в помещении и на улице и количеством влаги в воздухе (RH — относительная влажность).
Задача как воздушных, так и пароизоляционных барьеров заключается в предотвращении образования влаги в этой критической точке, просто они делают это совершенно по-разному.
Пароизоляция
Правило установки пароизоляции в холодном климате заключается в том, чтобы он располагался внутри помещения, при этом не менее 2/3 вашей изоляции снаружи пароизоляции. С другой стороны, воздушные барьеры могут быть в виде домашней обертки (WRB), плотно закрытой обшивки, изоляции, замедляющей воздушный поток, и хорошо запечатанной гипсовой плиты (гипсокартона).
Чтобы объяснить это далее, гипсокартон (гипсокартон) паропроницаем, но останавливает поток воздуха. Это означает, что водяной пар может диффундировать через него, но воздух не может проходить через него. Таким образом, если бы у вас был дом без окон и без пароизоляции, а просто герметичный гипсокартонный ящик со всех сторон, у вас был бы герметичный уплотнитель, не допускающий попадания влаги через воздушный транспорт.
Ключевым фактором здесь является то, что количество молекул пара, которые пройдут через эту коробку из гипсокартона, незначительно по сравнению с влагой, которая пройдет через нее, если вы прорежете в ней всего одно маленькое отверстие и в ней будет разница давления воздуха.
Потребность в надлежащих воздушных уплотнениях в домах сильно недооценивается, и слишком много веры и внимания уделяется пароизоляции. По данным Министерства энергетики США, «движение воздуха составляет более 98% всего движения водяного пара в полостях зданий».
Если вы думаете о том, как устанавливается полиэтиленовая пароизоляция, ее разрезают, скрепляют скобами и заклеивают лентой, затем через нее вставляют гвозди и шурупы для установки обвязки и гипсокартона, а также пробоины из-за электрических проводов и коробок.В большинстве случаев пароизоляция будет перфорирована тысячи раз в процессе строительства.
А вот перфорированный пароизоляционный слой на самом деле не будет проблемой, если у вас есть плотный воздушный затвор. Как и в случае с коробкой из гипсокартона, количество водяного пара, которое может пройти через порванный и порванный пароизоляционный слой, незначительно, пока воздушный затвор не поврежден.
Может ли дом быть слишком герметичным? Нет, не может.
К сожалению, воздушным барьерам не уделяется должного внимания по отношению к оболочке здания.В больших жилых комплексах воздушные преграды часто даже не попадают в поле зрения. Бригады приходят и уходят, и в интересах массового производства некоторые стандартные методы могут отрицательно сказаться на производительности окончательной системы стен.
Правильный воздушный барьер — один из самых важных элементов успешного ограждения здания, и один из самых недооцененных. Учитывая количество потерь тепла из-за пропускания воздуха и потенциальное повреждение влаги из-за утечек воздуха, воздушным барьерам следует уделять гораздо больше внимания, чем они есть.
Откройте для себя альтернативные воздушные барьеры, такие как внутренняя обшивка OSB в качестве воздухо- и пароизоляции для домов, наружные воздухонепроницаемые мембраны, способы выбора и установки WRB (атмосферостойкие барьеры), а также все об экологически безопасном и энергоэффективном строительстве дома в Ecohome страницы руководства.
Пароизоляция или замедлитель диффузии пара
Вы здесь
Замедлители диффузии пара, установленные в подвале, могут быть частью общей стратегии контроля влажности в вашем доме.
Деннис Шредер, NREL
В большинстве климатов США пароизоляция или, точнее, замедлители диффузии пара должны быть частью стратегии контроля влажности в доме. Пароизоляция или замедлитель диффузии пара — это материал, который снижает скорость, с которой водяной пар может проходить через материал.Старый термин «пароизоляция» все еще используется, хотя термин «замедлитель диффузии пара» является более точным.
Способность материала замедлять диффузию водяного пара измеряется в единицах, известных как «проницаемость» или «проницаемость». Международный жилищный кодекс описывает три класса замедлителей парообразования:
Замедлители парообразования класса I (0,1 перм или менее):
- Стекло
- Листовой металл
- Полиэтиленовый лист
- Резиновая мембрана
Замедлители парообразования класса II (больше чем 0.1 и меньше или равно 1,0):
- Необлицованный пенополистирол или экструдированный полистирол
- 30-фунтовая бумага с асфальтовым покрытием
- Фанера
- Крафт-бумага с битумным покрытием
Замедлители парообразования класса III (больше 1,0 и менее не менее 10 штук):
- Гипсокартон
- Стекловолоконная изоляция (без облицовки)
- Целлюлозная изоляция
- Доска пиломатериалов
- Бетонный блок
- Кирпич
- 15-фунтовая бумага с асфальтовым покрытием
- Домашняя пленка
Замедлители диффузии пара могут помочь контролировать влажность:
- Подвалы
- Потолки
- Полы
- Полы
- Плиточный фундамент
- Стены
Эффективный контроль влажности в этих областях и во всем доме также должен включать воздух — герметизация зазоров в конструкции, а не только использование замедлителя диффузии пара.Как, где и нужен ли вам замедлитель диффузии пара, зависит от климата и конструкции вашего дома.
Типы замедлителей диффузии пара
Замедлители диффузии пара обычно доступны в виде мембран или покрытий.Мембраны, как правило, представляют собой тонкие гибкие материалы, но также включают более толстые листовые материалы, иногда называемые «структурными» замедлителями диффузии пара. Такие материалы, как изоляция из жесткого пенопласта, армированный пластик, алюминий и нержавеющая сталь, относительно устойчивы к диффузии водяного пара. Эти типы замедлителей диффузии пара обычно крепятся и герметизируются механически в стыках.
Более тонкие мембраны выпускаются в рулонах или как составные части строительных материалов. Общие примеры включают полиэтиленовую пленку и изоляцию из стекловолокна с алюминиевым или бумажным покрытием.Другой вид — стеновые плиты на фольгированной основе. Большинство покрытий, похожих на краску, также замедляют диффузию пара.
Установка замедлителей диффузии пара для нового строительства
В мягком климате таких материалов, как окрашенные гипсовые плиты и штукатурные покрытия для стен, может быть достаточно, чтобы препятствовать диффузии влаги.В более суровых климатических условиях для нового строительства рекомендуется использовать замедлители диффузии пара с более высокой проницаемостью. Они работают лучше всего, когда устанавливаются ближе всего к теплой стороне конструкции — по направлению к внутренней части здания в холодном климате и к внешней стороне в жарком / влажном климате.
Установка замедлителя диффузии пара должна быть непрерывной и как можно более близкой к идеальной. Это особенно важно в очень холодном, жарком и влажном климате. Обязательно полностью закройте все разрывы, отверстия или проколы, которые могут возникнуть во время строительства.Закройте все подходящие поверхности, иначе вы рискуете сконденсироваться влажным воздухом внутри полости, что может привести к отсыреванию изоляции. Термическое сопротивление влажной изоляции резко снижается, а продолжительные влажные условия будут способствовать появлению плесени и гниения древесины.
Установка замедлителей диффузии пара в существующих домах
За исключением масштабных проектов реконструкции, сложно добавить в существующий дом такие материалы, как листовой пластик, в качестве замедлителя диффузии пара.Проведение энергетического аудита и тщательное устранение любых обнаруженных утечек — очень эффективная стратегия замедления движения влаги в вашем доме и из него.
Вашему дому может не понадобиться более эффективный замедлитель диффузии пара, чем многочисленные слои краски на его стенах и потолках, если только вы не живете в экстремально северном климате. Краски «Пароизоляция» могут быть эффективным вариантом для существующих домов в более холодном климате. Если на этикетке не указана степень химической стойкости краски, найдите формулу краски.В формуле краски обычно указывается процент пигмента. Чтобы быть хорошим замедлителем диффузии пара, он должен состоять из относительно высокого процента твердых частиц и толщины при нанесении. Глянцевые краски обычно являются более эффективными замедлителями диффузии пара, чем плоские краски, а акриловые краски обычно лучше латексных. В случае сомнений нанесите больше слоев краски. Лучше всего использовать краску, обозначенную как замедлитель диффузии пара, и следовать инструкциям по ее нанесению.
Комбинированные воздушные барьеры / замедлители диффузии пара
Воздушный барьер / замедлитель диффузии пара пытается выполнить диффузию водяного пара и управление движением воздуха с помощью одного материала.Этот тип материала наиболее подходит для южного климата, где крайне важно не допустить попадания влажного наружного воздуха в полости здания в период охлаждения.
Во многих случаях воздушные барьеры / замедлители диффузии пара состоят из одного или нескольких из следующих материалов:
Воздушные барьеры / замедлители диффузии пара обычно размещаются по периметру здания непосредственно под внешней отделкой, или они могут фактически быть внешняя отделка. Ключом к их эффективной работе является постоянная и тщательная герметизация всех швов и проходов, в том числе вокруг окон, дверей, электрических розеток, водопроводных труб и вентиляторов.
Пропущенные зазоры любого размера не только увеличивают потребление энергии, но и повышают риск повреждения дома влагой, особенно в период охлаждения. Воздушный барьер / замедлитель диффузии паров также следует тщательно проверять после установки, прежде чем его покроют другие работы. Если обнаружены небольшие дыры, их можно отремонтировать герметиком, полиэтиленом или лентой из фольги. Области с более крупными отверстиями или разрывами следует удалить и заменить. Заплаты всегда должны быть достаточно большими, чтобы покрывать повреждения и перекрывать любые прилегающие деревянные конструкции.
Контроль влажностиКонтроль влажности может сделать ваш дом более энергоэффективным, менее дорогостоящим для обогрева и охлаждения и более комфортным.
Учить большеПодписаться на обновления Energy Saver
Подпишитесь, чтобы получать обновления от Energy Saver, включая новые блоги, обновленный контент и сезонные советы по экономии энергии для потребителей и домовладельцев.
Воздушных барьеров в зданиях | WBDG
Введение
В этом документе рассматриваются проблемы, возникающие при проникновении и эксфильтрации в зданиях, а также соображения по проектированию системы воздушного барьера для контроля этих проблем. Он объясняет давление воздуха в зданиях, основы управления этим давлением, требования к материалам воздушного барьера, сочетание «воздухо- и пароизоляции», а также требуемые свойства систем воздушных барьеров.Будут рассмотрены конкретные конструкции и сравнены воздушные и пароизоляционные барьеры на теплой стороне и системы на холодной стороне. Также обсуждаются сложности «подхода к герметизации гипсокартона» или «ADA» (Lstiburek and Lischkoff, 1986). Наконец, в документе будут рассмотрены концепции воздушного барьера на крыше.
Описание
Фиг.1
Проникновение и выход воздуха в зданиях имеют серьезные последствия, поскольку они неконтролируемы; проникающий воздух не подвергается очистке и поэтому может уносить в здания загрязнители, аллергены и бактерии.Сопутствующее изменение давления воздуха может нарушить хрупкие отношения давления между пространствами, которые системы HVAC создают по дизайну, в таких зданиях, как больницы, где инфекционный контроль и сама жизнь пациентов могут зависеть от поддержания этих отношений, и лабораториях, где контроль загрязняющих веществ имеет важное значение. . Нарушение отношений атмосферного давления может перемещать загрязнители из помещений, где они должны содержаться, в другие пространства, где они нежелательны. Например, загрязнители могут перемещаться из таких мест, как складские помещения или гаражи под зданиями, в жилые или рабочие помещения и вызывать проблемы с качеством воздуха в помещении.Другим серьезным последствием проникновения и утечки через ограждение здания является конденсация влаги из выходящего воздуха в северном климате и проникновение горячего влажного воздуха в южном климате, вызывающее рост плесени, гниение и коррозию, которые вызывают проблемы со здоровьем и проблемы с долговечностью. преждевременный износ здания. В отличие от механизма переноса влаги при диффузии, перепады давления воздуха могут переносить в сотни раз больше водяного пара через утечки воздуха в помещении за тот же период времени (Quirouette, 1986).Этот водяной пар может концентрироваться внутри корпуса в концентрированном виде, когда воздух ударяется о поверхность внутри сборки, температура которой ниже точки росы (рис. 2).
Утечки воздуха через ограждение здания могут иметь одну из нескольких форм:
- Диафрагма
- Диффузный поток
- Канал потока
Дроссельный поток возникает, когда вход и выход воздуха проходят по линейному пути, например, в трещине между грубым проемом окна и его рамой (рис.1).
Рис. 2: Поток в канале
Диффузный поток возникает, когда в ограждении используются материалы, которые неэффективны для контроля инфильтрации и эксфильтрации воздуха из-за множества трещин или их высокой проницаемости для воздуха, например, ДВП или бетонный блок без покрытия. Канальный поток, вероятно, является наиболее распространенным и серьезным из всех типов утечек воздуха и показан на рис. 2. Точки входа и выхода воздуха удалены друг от друга, что дает воздуху достаточно времени для охлаждения ниже точки росы и осаждения влаги. в ограждении здания.
Наконец, инфильтрация и эксфильтрация воздуха являются причиной ненужного потребления энергии в зданиях из-за дополнительных нагрузок на отопление и охлаждение, а также необходимого дополнительного увлажнения или осушения (Emmerich, McDowell, Anis, 2005).
Давление воздуха, вызывающее инфильтрацию и эксфильтрацию
Есть три основных давления воздуха в зданиях, которые вызывают инфильтрацию и эксфильтрацию:
- Давление ветра
- Давление стояка (иногда называемое эффектом дымохода или плавучестью)
- Давление вентилятора HVAC
Ветер
Среднее годовое давление ветра на здания имеет важное значение при расчете утечки воздуха в зданиях, связанной с энергией или влажностью.При усреднении в течение года оно составляет около 10-15 миль в час (0,2-0,3 фунта на фут) (10-14 Па) в большинстве мест в Северной Америке. (Ветер и давление воздуха на ограждающую конструкцию здания) Давление ветра имеет тенденцию оказывать положительное давление на здание на фасаде, на который оно ударяется, и когда ветер проходит за угол здания, он создает кавитацию и значительно ускоряется, создавая особенно сильное отрицательное давление на фасаде. углы и менее сильное отрицательное давление на остальные стены и крышу здания (рис.3 и 4), (Hutcheon and Handegord, 1983).
Давление в штабеле
Фиг.5
Давление в дымовой трубе (или эффект дымохода) вызывается разницей атмосферного давления в верхней и нижней части здания из-за разницы в температуре и, следовательно, разницей в весе столбов воздуха в помещении и на улице в помещении. зима. Эффект стека в холодном климате может вызвать инфильтрацию воздуха внизу здания и утечку вверху, как показано на рис.5. Обратное происходит в теплом климате с кондиционированием воздуха.
Давление вентилятора
Давление вентилятора возникает из-за повышения давления в системе HVAC, обычно положительного, что нормально в теплом климате, но может вызвать дополнительные проблемы с корпусом из-за ветра и давления в дымовой трубе в условиях нагрева. Инженеры HVAC обычно делают это, чтобы уменьшить проникновение (и, как следствие, загрязнение) и нарушение взаимосвязи проектных давлений системы HVAC. На рис. 6 показано каждое из этих давлений по отдельности и комбинированная диаграмма.
Национальный институт стандартов и технологий сообщает, что дополнительная энергия для обогрева и охлаждения зданий из-за инфильтрации и эксфильтрации может составлять от 10% в холодном климате до 42% в жарком климате (NISTIR 7238).
Идея состоит в том, чтобы выбрать воздухонепроницаемый компонент стены или крыши и намеренно сделать его герметичным «узлом» путем герметизации стыков и проемов. Этот набор материалов соединяется с соседними сборками или компонентами, такими как окна, двери или элемент воздушного барьера на крыше, путем герметизации или соединения воздухонепроницаемого компонента сборки A с воздухонепроницаемым компонентом сборки B.Система воздушного барьера над уровнем земли также соединяется с фундаментными стенами и плитами подвала, чтобы завершить систему воздушного барьера здания. Воздушная герметизация стен и перекрытий под землей предотвращает попадание опасных газов, таких как радон, и загрязняющих веществ от сельскохозяйственной деятельности и заброшенных земель за счет разгерметизации помещений с их ограждением, контактирующим с почвой.
Важными характеристиками системы воздушного барьера в здании являются: непрерывность, структурная поддержка, воздухонепроницаемость и долговечность.
Непрерывность
Для обеспечения непрерывности каждый компонент, выполняющий свою роль в сопротивлении проникновению, такой как стена, оконный блок, фундамент или крыша, должен быть соединен между собой, чтобы предотвратить утечку воздуха в стыках между материалами, компонентами, узлами и системами и проходы через них, такие как трубопроводы и трубы.
Несущая конструкция
Эффективная структурная опора требует, чтобы любой компонент системы воздушного барьера выдерживал положительные или отрицательные структурные нагрузки, которые налагаются на этот компонент ветром, эффектом дымовой трубы и давлением вентилятора HVAC, без разрыва, смещения или чрезмерного отклонения.Затем эта нагрузка должна быть безопасно перенесена на конструкцию. При проектировании необходимо определить адекватную устойчивость к этим давлениям крепежных деталей, лент, клеев и т. Д.
Воздухонепроницаемость
Материалы, выбранные в качестве части системы воздушного барьера, следует выбирать с осторожностью, чтобы избежать выбора материалов, которые являются слишком воздухопроницаемыми, например, ДВП, перлитовая плита и бетонные блоки без покрытия. Воздухопроницаемость материала измеряется с использованием протокола испытаний ASTM E 2178 и выражается в литрах / секунду на квадратный метр при давлении 75 Па (куб. Фут / м² при 0.3 дюйма вод. Ст. Или 1,57 фунта на квадратный дюйм). Канадские нормы и нормы IECC и ASHRAE 90.1 учитывают 0,02 л / см² 75 Па (0,004 кубических футов в минуту / фут² 1,57 фунтов на квадратный дюйм), что соответствует воздухопроницаемости листа ½ дюйма неокрашенной гипсовой стены. доска, как максимально допустимая утечка воздуха для материала, который может использоваться как часть системы воздушного барьера для непрозрачного корпуса; такое же количество требуется в Advanced Buildings Core Performance (New Buildings Institute) и ASHRAE SP 102 (Advanced Energy Design Guide: Small Office Buildings).Американская ассоциация воздушных барьеров считает этот номер отраслевым стандартом для материалов для создания воздушных барьеров.
Эта максимально допустимая воздухопроницаемость для материалов более герметична, чем требования для окон и навесных стен, но следует помнить, что окна и навесные стены представляют собой совокупность материалов, а также эти материалы более устойчивы к повреждениям из-за конденсации, чем обычные строительные материалы. . Ожидается, что, когда достаточно герметичные материалы будут собраны вместе с помощью уплотнения, закручивания винтов и т. Д., что сборка будет пропускать больше воздуха, чем исходный материал, который используется в качестве основного материала. ASTM E 2357 — это испытание на утечку воздуха и долговечность сборки; IECC и ASHRAE 90.1 устанавливают 0,2 л / см² при 75 Па (0,04 куб. Фут / м² при 1,57 фунт / кв. Дюйм) как максимально допустимую утечку воздуха в сборке. Сборка определяется стандартом ASTM E 2357. Кроме того, когда эти сборки объединяются в одно целое здание, ограждение здания будет пропускать больше воздуха, чем отдельные сборки, изначально соединенные вместе.
Для достижения приемлемого конечного результата основные материалы, выбранные для изготовления воздушной преграды, должны быть достаточно воздухонепроницаемыми. Инженерный корпус армии США (USACE) и Командование военно-морских объектов (NAVFAC) установили 0,25 куб. Футов / фут² при 1,57 фунт / кв. в соответствии с протоколом испытаний на утечку воздуха USACE / ABAA (который включает ASTM E 779), тогда как ВВС США и Международный кодекс экологического строительства (IgCC) указывают 0.4 кубических футов в минуту при давлении 11,57 фунтов на квадратный дюйм ((2,0 л / см² при 75 Па), разделенных на площадь границы давления корпуса). В недавнем исследовании ASHRAE, 1478 RP, измерялась герметичность всего шестнадцати зданий средней и высокой этажности, построенных после 2000 года; Исследование показало, что восемь из этих зданий были жестче, чем стандарт герметичности USACE.
Прочность
Материалы, выбранные для системы воздушного барьера, должны выполнять свои функции в течение ожидаемого срока службы конструкции; в противном случае они должны быть доступны для периодического обслуживания, например, для нанесения эластомерных красок на бетонные блоки.
Таким образом, требования норм системы воздушного барьера могут потребовать:
Необходимо проследить непрерывную плоскость герметичности по всему ограждению здания, причем все подвижные соединения должны быть гибкими и герметичными.
Альтернативы контролю утечки воздуха:
Материал воздушного барьера в непрозрачном корпусе должен иметь воздухопроницаемость, не превышающую 0,004 куб. Фут / м² при 0,3 дюйма вод. Ст. (1,57 фунт / кв. Дюйм) [0,02 л / см² при 75 Па].
Воздушный барьер в сборе должен иметь воздухопроницаемость, не превышающую 0,2 л / с.м² 75 Па (0,04 кубических футов в минуту / квадратный фут 1,57 фунтов на квадратный дюйм) при испытании в соответствии с ASTM E 2357. Зарегистрированный специалист по проектированию должен определить испытательное давление воздуха, соответствующее смоделировать расчетные условия для расположения объекта.
Скорость утечки воздуха во всем здании не должна превышать 2 л / с м² 75 Па (0,4 куб. Фут / кв. Фут 1,57 фунт / фут) при испытании в соответствии с ASTM E779.
Система воздушного барьера должна выдерживать максимальное расчетное положительное и отрицательное давление воздуха и передавать нагрузку на конструкцию.
Воздушный барьер не должен смещаться под нагрузкой или смещать соседние материалы.
Используемый материал воздушного барьера должен быть прочным или доступным для обслуживания.
Соединения между кровельным воздушным барьером, стеновым воздушным барьером, оконными рамами, дверными коробками, фундаментом, перекрытиями над подвесными пространствами, потолками под чердаками и между стыками зданий должны быть гибкими, чтобы выдерживать движения здания из-за термических, сейсмических изменений, изменений содержания влаги и ползучести; соединение должно выдерживать такое же давление воздуха, что и материал воздушного барьера, без смещения.
Проходы через воздушный барьер должны быть закрыты.
Необходимо предусмотреть воздушный барьер между помещениями, которые имеют существенно разные требования к температуре или влажности.
Фиг.8
Осветительные приборы должны быть специальными, герметичными при установке через воздушный барьер, или воздушный барьер должен быть спроектирован вокруг светильника.
Для управления передачей давления из дымовой трубы в ограждение лестничные клетки, шахты, желоба и лифтовые холлы должны быть отделены от этажей, которые они обслуживают, путем обеспечения дверей, соответствующих критериям утечки воздуха для наружных дверей, или двери должны быть уплотнены прокладками (рис.8).
Функциональные проходы через ограждение, которые обычно не работают, такие как жалюзи лифтовой шахты и системы дымоудаления атриума, должны быть заглушены и закрыты герметичными моторизованными заслонками, подключенными к системе пожарной сигнализации, чтобы открываться по вызову и выходить из строя в открытом положении.
Кроме того, другие перепады давления в зданиях следует контролировать следующими методами:
Разделение и герметизация гаражей под зданиями с герметичными стенами и тамбур в точках доступа в здания.
Разделение помещений с отрицательным давлением, таких как котельные, и обеспечение подпиточного воздуха для горения.
Рис. 9 и Рис. 10: Воздухозаборники, подключенные к внешнему кожуху, могут пропускать влажный воздух через эти узлы.
Рис. 11: Конвенция влажного воздуха в корпусах может вызвать проблемы.
Отсоединение напольных и потолочных пленумов подачи или возврата от внешнего шкафа. Если эти утечки воздуха, возникнут серьезные последствия, которые следует учитывать; внешние стены превращаются в каналы, через которые проходит воздух, что может вызвать сильную конденсацию, рост и порчу микробов (рис.9 и 10).
Управление конвекционными потоками внутри кожухов, вызванных соединением воздуха на холодной стороне с воздухом на теплой стороне изоляции или с внутренним воздухом путем герметизации внутренней части (рис. 11). Это типичный механизм образования плесени в утепленных подвалах, когда воздух, прилегающий к холодной бетонной стене подвала, охлаждается, становится тяжелее и падает, втягивая теплый влажный воздух в верхнюю часть изолированной стены.
Типовые материалы, которые соответствуют указанным выше требованиям к утечке воздуха, следующие (Bombaru, Jutras, and Patenaude, CMHC, 1988 ).
УТЕЧКА ВОЗДУХА ИЗ МАТЕРИАЛА | |||||
---|---|---|---|---|---|
Толщина неизмеримого воздушного потока | Измеряемый воздушный поток | CFM на 0,3 дюйма wg | л / (с / м²) при 75 Па | ||
0,006 « | * Полиэтилен | 0,315 « | Фанера | 0,001 | 0,0067 |
0,060 дюйма | Кровельная мембрана | 0.63 « | Вафельный картон | 0,001 | 0,0069 |
0,106 « | Горелка модифицированного асфальта | 0,5 « | Внешний гипс | 0,002 | 0,0091 |
0,001 « | * Алюминиевая фольга | 0,433 « | Вафельный картон | 0,002 | 0,0108 |
0,060 дюйма | Листовой асфальтобетон | 0,5 « | ДСП | 0.003 | 0,0155 |
0,374 дюйма | Фанера | * Полиолефин, спанбонд, неперфорированный | 0,004 | 0,0195 | |
1 « | Экструдированный полистирол | 0,5 « | Гипсокартон интерьерный | 0,004 | 0,0196 |
1 « | Уретан на фольгированной основе | ||||
0,5 « | Цементная плита | ||||
0.5 « | Гипсокартон на фольгированной основе |
* Мембраны должны выдерживать давление воздуха в обоих направлениях без смещения или повреждений. Если они не полностью приклеены, они должны быть зажаты между двумя плитами.
Если домашние обертки и другие пленочные мембраны не полностью поддерживаются с обеих сторон, как в случае кирпичной пустотелой стены, они не могут выдерживать отрицательные ветровые нагрузки без разрыва скоб и кирпичных анкеров или разрыва под нагрузкой (Bosack and Burnett, 1998).Покрытия в стенах кирпичных полостей вытесняются под воздействием отрицательного давления ветра и «накачивают» строительный воздух внутрь конструкции, что может вызвать конденсацию в холодном климате. Во время испытаний в Канаде с целью предварительной квалификации своей мембраны для использования в качестве материала для защиты от воздуха, производитель полиолефина, полученного методом фильерного производства, обнаружил, что для того, чтобы выдерживать отрицательное давление ветра, мембрана должна быть более прочной и устанавливаться с помощью крепежных элементов с пластиковыми шайбами диаметром 1 дюйм или кирпичная стяжка должна быть установлена через каждые 6 дюймов (150 мм) в стойку и на расстоянии 16 дюймов (400 мм) друг от друга (Рис.12). В качестве альтернативы можно использовать непрерывную обвязку с застежкой через каждые 12 дюймов (300 мм). Обратите внимание, что продукты, продаваемые в Канаде и США с одинаковыми названиями, могут не иметь одинаковых характеристик герметичности или прочности.
Рис. 12: Чертеж мембраны Tyvek HomeWrap с 25-миллиметровыми заглушками или кирпичными стяжками, установленными на 150 мм по центру.
Рис. 13: Прорывы полиэтиленового воздушного барьера в стене с изоляцией из стекловолокна.
Еще сложнее превратить полиэтилен в воздушную преграду.Ему не хватает структурной опоры, когда он противостоит стекловолоконным войлокам, и ему присуще свойство смещения и растяжения, даже разрыва при высоких ветровых нагрузках. Также сложно пришить к себе или другим материалам (рис. 13). Отверстия для крепления в полиэтилене могут растягиваться и нарушать его герметичность (Shaw, 1985).
Материалы, которые не квалифицируются как воздухонепроницаемые материалы без дополнительных покрытий: (Bombaru, Jutras and Patenaude, CMHC, 1988):
- Бетонный блок без покрытия
- Древесноволокнистая плита простая и пропитанная асфальтом
- Пенополистирол
- Изоляция из войлока и полужестких волокон
- Покрытия перфорированные
- Войлок, пропитанный асфальтом, 15 или 30 фунтов.
- Планка для паза и паза
- Утеплитель вермикулитовый
- Целлюлозный спрей изоляционный материал
Конечно, существует множество продуктов, которые можно отнести к материалам для создания барьеров для воздуха. Некоторые из них, а также спецификации, техническая помощь, обучение и сертификация подрядчиков и рабочих предоставляются Американской ассоциацией воздушных барьеров.
Материалы для воздушных барьеров
Самый простой подход к герметизации стены — выбрать один из слоев, например обшивку, и герметизировать его с помощью прочных лент, клейких листов, материалов, наносимых жидкостью, и т.п.Стены, построенные из материалов, которые очень проницаемы для воздуха, таких как бетонный блок, должны быть герметизированы с использованием эластомерного (гибкого) покрытия, либо в виде специально разработанной краски, либо специально разработанного листового продукта с воздушным барьером, либо наносимого жидкостью. материал, наносимый распылением или шпателем. Переходные мембраны с отрывом и липкостью чаще всего используются по периметру окон и дверей, а также при смене материалов или стеновых систем (рис. 14 и 15). В качестве альтернативы, на всю стену можно использовать листовую мембрану, такую как отрывная и липкая мембрана.
Рис. 14: Обрезка мембраны с отслаиванием и прилипанием и применяемые переходы. Джорджтаунская юридическая школа.
Шепли Булфинч, архитектор
Рис. 15: Воздушный барьер, наносимый жидкостью, применяется к балансировке стены. Джорджтаунская юридическая школа.
Шепли Булфинч, архитектор
Металлические задние панели часто используются как часть системы воздушного барьера в области перемычек навесных стен.
Расположение воздушного барьера
Рис.16
Воздушный барьер, в отличие от замедлителя парообразования (так как его функция заключается в остановке движения воздуха, а не в контроле диффузии), может быть расположен в любом месте корпуса. Если его разместить на преимущественно теплой и влажной стороне (сторона с высоким давлением пара) корпуса, он также может контролировать диффузию и будет пароизоляционным материалом с низкой проницаемостью. В таком случае это называется «воздухо- и пароизоляция». При размещении на преимущественно прохладной и сухой стороне стены (сторона с низким давлением пара) она должна быть паропроницаемой (5–10 перм и выше).
Наконец, стоит выделить сложности с герметизацией здания с использованием гипсокартона для внутренней отделки (рис. 16). Подход с использованием герметичного гипсокартона или «ADA», как его называют в Канаде, с использованием внутреннего гипсокартона в качестве воздухонепроницаемой плоскости (Lstiburek and Lischkoff, 1986) полезен в жилых домах, где ремонт не ожидается в течение многих лет. Однако в коммерческой работе замысел дизайнера, скорее всего, потеряется из-за ремонта. Кроме того, постоянное перенаправление линий передачи данных ставит под угрозу герметичность гипсокартона, поскольку подрядчик по обработке данных пробивает отверстия над потолком.Это очень сложная трехмерная проблема, и лучший совет автора: «Не ходи туда».
Воздушные барьеры, подверженные изменениям температуры
Воздушные барьеры на внешней стороне изоляции подвержены тепловым изменениям и сильным движениям из-за расширения и сжатия; поэтому эти стыки труднее поддерживать герметичными на протяжении всего срока службы здания из-за напряжений, прилагаемых к соединительной ленте или герметику в результате термоциклирования с течением времени. Для этих целей следует использовать лучшие соединительные материалы, например:
- Экструдированный силикон, покрытый влажным силиконом.
- Влажный силикон нанесен «пластырем» по стыкам.
- Прочие эластомерные воздушные барьеры с жидкостным нанесением.
- Отслаивание модифицированного асфальта с должным образом загрунтованной поверхностью.
Рис. 17 и 18: На двух вышеприведенных фотографиях показан пенопластовый герметик, нанесенный на все края изоляционной плиты, с последующим нанесением модифицированной отслаиваемой асфальтовой лентой на загрунтованные изоляционные панели обшивки, используемые в качестве воздушного барьера. Административное здание Бостонского колледжа.
Шепли Булфинч, архитектор
Кровельные воздушные барьеры
Кровельную мембрану можно рассматривать как воздушный барьер, поскольку она рассчитана на то, чтобы выдерживать ветровые нагрузки, если она полностью приклеена или подвергнута горячей или холодной швабре. Системы крыш с механическим креплением и балластом, поскольку они вытесняют и на мгновение поднимают или накачивают строительный воздух в систему, не выполняют требуемых функций по удержанию воздуха без вытеснения. В таких случаях в системе необходимо выбрать другой воздушный барьер.Либо отслаивающийся воздухо- и пароизоляция на внутренней стороне кровельной системы (внутренние условия и погодные условия), либо гипсовая подкладочная плита с лентой под изоляцией могут использоваться в системе с приклеенными нижними слоями теплоизоляционной плиты и изоляции. . Эти слои должны быть спроектированы таким образом, чтобы выдерживать максимальные ветровые нагрузки без смещения, и все проходы должны быть герметизированы. Из-за критической важности непрерывности стенового воздушного барьера, предварительная конференция по системе воздушного барьера должна включать в себя специалистов, участвующих в системе воздушного барьера, таких как субподрядчик стенового воздушного барьера, субподрядчик окон, субподрядчик герметика, а также кровельного субподрядчика, чтобы обсудить соединение между кровельным воздушным барьером и стеновым воздушным барьером, а также последовательность создания воздухонепроницаемого и гибкого соединения между узлами и ответственность за это соединение.Также важно убедиться, что соединяемые материалы совместимы.
Необходимо устранять проникновения в кровельные системы, такие как воздуховоды, вентиляционные отверстия и водостоки, возможно, с помощью распыляемой полиуретановой пены (или другого герметика) или мембран для герметизации этих проходов на целевом слое воздушного барьера .
Заключение
Воздушный барьер Система является важным компонентом ограждения здания, так что можно контролировать соотношение давления воздуха внутри здания, системы отопления, вентиляции и кондиционирования воздуха могут работать должным образом, а жители могут наслаждаться хорошим качеством воздуха в помещении и комфортной средой.Размер системы HVAC может быть уменьшен из-за уменьшения «фактора выдумки», добавленного для покрытия инфильтрации и неизвестных факторов, что приводит к снижению потребления энергии и спроса. Системы воздушного барьера в ограждении здания также контролируют концентрированную конденсацию и связанную с ней плесень, коррозию, гниение и преждевременный выход из строя; и они улучшают и способствуют долговечности и устойчивости. Строительные нормы и правила теперь требуют наличия систем воздушных барьеров, а проектировщики и строители должны осознавать негативные последствия игнорирования герметичности здания.
Приложения
Зданий с системой воздушных заслонок:
Научное здание колледжа Агнес Скотт, Джорджия
Расположение здания: Декейтер, Джорджия, США
Размер проекта (фут², м²): 60 000 квадратных футов.
Общие затраты на строительство: 22 миллиона долларов
Архитектор: Шепли Булфинч Ричардсон и Эбботт, Бостон, Массачусетс
Завершение: 2002
Конструктивная цель 104 000 SF.Новое здание науки должно было объединить науки с целью развития междисциплинарных исследований. В нем находятся научные классы, лаборатории, кабинеты факультетов, научный читальный зал и кафедры биологии, химии, физики и психологии. Классные комнаты расположены между учебными лабораториями, что позволяет легко переходить из лаборатории в классную среду для поддержки педагогики ASC. Атриум спроектирован как входной элемент в середине плана, чтобы символизировать «сближение» научных дисциплин.Новое научное учреждение расположено на южном краю игрового поля напротив библиотеки и центра кампуса, образуя зеленый цвет.
Система воздушного барьера является неотъемлемой частью ограждающей конструкции этого учебного заведения, позволяющей поддерживать расчетные перепады давления между лабораториями и остальной частью здания без нарушения целостности, вызванного проникновением. Стенки воздуха и пароизоляция представляет собой непрерывный Модифицированный битум мембраны на внешней стороне задней стенки вверх, со слоем непрерывной жесткой изоляции снаружи в кирпичной полости.
Методистская больница Бронсона, Мичиган
Название здания: Новый медицинский кампус, Методистская больница Бронсона
Расположение здания: Каламазу, Мичиган, США
Архитектор здания: Шепли Булфинч, Бостон, Массачусетс
Помощник архитектора: Diekema / Kalamaz / Hamann / MI
В 1996 году SBRA завершила генеральный план поэтапного развития кампуса, который включал новые амбулаторные и стационарные услуги; медицинские кабинеты в новом южном кампусе; и реконструкция существующих зданий в северном кампусе для административных и образовательных функций.
Новые 750 000 SF. Развитие южного кампуса обеспечивает горизонтальную непрерывность для различных медицинских специальностей в пределах ряда связанных зданий. Например, хирургия расположена на втором уровне вместе с стационарными и амбулаторными учреждениями, койками и кабинетами связанных врачей. Проект также включает в себя Центр для женщин и детей, отделения неотложной помощи, кардиологии и онкологии, а также интегрированный многопрофильный диагностический центр, который объединяет традиционные радиологические услуги в амбулаторных условиях.Новый гараж на 750 автомобилей соединяется на каждом уровне, чтобы обеспечить целостность каждого отдела.
Центральное пространство атриума в крыше является «сердцем» комплекса и включает в себя магазины, аптеку, часовню, ресторанный дворик, библиотеку и учебные помещения. Эти удобства создают живой и доступный объект, ориентированный на семейное и общественное пользование.
Новый кампус — краеугольный камень центра Каламазу. Расположенный на окраине центрального делового района и небольшого жилого квартала, новый комплекс подразделяется на комплекс небольших кирпичных зданий с отдельными входами с навесами, которые хорошо гармонируют с контекстом.
Руководству больницы потребовалась конструкция ограждения здания, которая способствовала бы поддержанию здоровой окружающей среды с особым требованием, чтобы стены всегда оставались сухими. Шелухи-и наклеить непрерывный воздух и пары барьер на внешней стороне задней стенки вверх, со слоем непрерывной изоляции снаружи делают это энергетически эффективный корпус здания. Соединения были сделаны с воздушной и пароизоляцией крыши, двумя слоями протертого асфальта, которые также служили временной кровлей во время строительства.Также были выполнены соединения с гидроизоляционной мембраной фундамента, чтобы завершить систему воздушного барьера.
Публичная библиотека Юджина, Орегон
Название здания: Публичная библиотека Юджина
Расположение здания: Юджин, Орегон, США
Архитектор: Шепли Булфинч, Бостон, Массачусетс
Помощник архитектора: Робертсон Шервуд, архитекторы
Здание сочетает классические пропорции гражданского здания с современными деталями и идеалами планировки.Этот зарегистрированный LEED проект включает в себя согласованную чувствительность к устойчивому развитию территории, качеству окружающей среды в помещении и энергосбережению.
120 000 SF. Объект занимает половину городского квартала, через главную улицу от Центра общественного транспорта Юджина. Монументальный изогнутый входной фасад превращает здание в городской пейзаж на 10-й авеню. Здание расположено в стороне от улицы, что дает просторную площадь и садовые площадки, а также обнесенный стеной «сад для чтения», примыкающий к детскому отделению.Открытые насаждения и подземный гараж повышают экологическую эффективность здания за счет минимизации тепловых потоков.
Эффектный трехэтажный стеклянный «зимний сад» предусматривает дополнительный вход, с кафе и книжным магазином с одной стороны и комнатами для собраний с другой. Интерьеры библиотеки обеспечивают теплоту и масштабные детали на основном уровне входа и в важных элементах интерьера, таких как цилиндрическая лестница и места для чтения двойной высоты.Обширное дневное освещение и «зеленые» строительные материалы улучшают восприятие внутреннего пространства как для персонала, так и для посетителей. Весь внутренний объем спроектирован так, чтобы обеспечить высочайшую степень простоты использования сообществом, облегчая работу библиотеки персоналом и обеспечивая максимальную гибкость для изменений в будущем.
Цели этого проекта в области энергоэффективности и качества внутренней среды требовали создания высокоэффективного ограждения здания. В нем используется внешняя воздухо- и пароизоляционная мембранная система со слоем непрерывного экструдированного полистирола.
Дополнительные ресурсы
WBDG
Руководства и спецификации
Руководство по проектированию ограждающих конструкций здания
Стеновые системы, Монолитные бетонные стены, Система внешней изоляции и отделки (EIFS), Каменные стены, Панельные системы металлических стен, Системы сборных бетонных стен, Системы тонких каменных стен
Ассоциация воздушных барьеров Америки
- Характеристики утечки воздуха, методы испытаний и спецификации для больших зданий Proskiw, G.и Филлипс Б. — Подготовлено для Канадской ипотечной и жилищной корпорации, 2001 г.
- Air Leakage Control от Lux, M.E., and Brown, W.C. NRC, 1986.
- Утечка воздуха в зданиях , Wilson, A.G. CBD 23, NRC, 1961.
- Испытания на утечку воздуха на полиэтиленовой мембране, установленной в стене деревянного каркаса , Шоу, C.Y. NRC, 1985.
- Воздухопроницаемость строительных материалов Бомбару, Джутрас и Патенауде. CMHC, 1988.
- Герметичный дом: использование герметичного гипсокартона Лишкофф, Дж.and Lstiburek, J. 1986. .
- Builders ‘Field Guides Лстибурек, Дж. Вестфорд, Массачусетс: Building Science Corp., 2001.
- Строительная наука для холодного климата Hutcheon, N. and Handegord, G.O.P. Национальный исследовательский совет Канады, 1983.
- Ввод в эксплуатацию системы воздушных барьеров , Анис, В., Журнал ASHRAE, март 2005 г.
- Контроль утечки воздуха важен by Garden, G. K., CBD 72, NRC, 1965.
- Разница между воздушным барьером и пароизоляцией Quirouette, R.NRC, 1985.
- Энергетическое воздействие инфильтрации и вентиляции в офисных зданиях в США с использованием многозонного моделирования воздушного потока Эммерих, С.Дж. и Персили, А.К. — доклад, представленный на конференции ASHRAE по качеству воздуха в помещении и энергетике, 1998 г.
- Исследование влияния герметичности ограждающих конструкций коммерческих зданий на энергопотребление систем отопления, вентиляции и кондиционирования воздуха . Emmerich, S.J .; McDowell, T .; Анис, В. — НИСТИР 7238.
- «Влияние герметичности на конструкцию системы», Анис, W. ASHRAE Journal , 2001.
- Эффект стека в зданиях Уилсон, А.Г. и Тамура, Г.Т. CBD 104, 1968.
- Понимание воздушных барьеров , Lstiburek, J., ASHRAE Journal, июль 2005 г.
- Использование домашней обшивки в стенах: характеристики монтажа и последствия by Bosack, E.J. и Бернетт, E.F.P. PHRC, 1998.
- Ветер на зданиях Дэлглиш В.А. и Бойд Д.В. CBD 28, NRC, 1962.
- Ветровое давление на здания Dalgliesh, W.А. и Шривер, W.R. CBD 34, NRC, 1962.
Пароизоляция | Ана Уайт
Черт, мы когда-нибудь приближаемся к тому дню.
Для тех из вас, кто здесь новичок, в тот день — это день, когда у нас будет полная изоляция Momplex, и не имеет значения, если на улице -50 градусов, если ветер дует 80 миль в час, если идет снег. . . даже если идет ледяной дождь. В тот день — это день, когда мы можем работать без -100 ниже ботинок и трех слоев пуха. Этот день — день, когда мы можем работать без перчаток, когда аккумуляторы могут заряжаться, а инструменты все еще работают.
Это будет большой день для нас!
Этот день — это также день, когда мы официально начнем работу над интерьером. Потому что сегодня и все дни до этого, даже если мы были внутри, конечно же, не кажется, что мы работаем внутри.
Теперь мы можем обрезать лишнее.
Вы просто используете универсальный нож, чтобы обрезать его, оставляя несколько дюймов или около того, чтобы перекрыть стены.
Я знаю, что это кажется довольно простой задачей, но все намного сложнее, когда вы работаете над своей головой на лестнице.А крыша Momplex — это два дома в одном — около 2000 квадратных футов. Так что сделать ее было непросто!
Что нам остается после завершения пароизоляции?
Ага, теперь мы повесим гипсокартон!
А после гипсокартона мы вдуваем утеплитель, и Момплекс будет полностью утеплен! Этот день так близок!
Шаг 1
У нас есть электрические коробки в потолке, и все другие коммуникации, которые необходимо провести через потолок, установлены.Провода проложены. Сам потолок был перекрыт по мере необходимости для навешивания гипсокартона. НАКОНЕЦ пора добивать крышу!
Сегодня день пароизоляции.
Теперь, прежде чем я перейду к этому процессу, знайте, что любой климат и тип здания требуют различной изоляции и контроля влажности. Показательный пример — наши стены из ICF и никакой пароизоляции не требуется. Поэтому сверьтесь с местными правилами и узнайте, что работает в вашем климате для контроля влажности.
Если мы живем на Аляске, вот что происходит, если у вас нет пароизоляции на потолке или пароизоляция установлена неправильно:
Влага накапливается внутри вашего дома просто из-за того, что вы в нем живете (при принятии душа или кипячения воды в ваш дом могут попасть чашки с водой!).Влажный воздух выходит из дома через потолок и становится инеем на чердаке, когда на чердаке он достигает -40 градусов ниже нуля. За зиму накапливаются морозы. Когда приходит весна, иней тает, вода пропитывает изоляцию и капает через потолок в дом, вызывая повреждения водой и проблемы с плесенью.
Пароизоляция — вещь хорошая!
Шаг 2 Инструкции
Но вот в чем проблема. Когда вы устанавливаете пароизоляцию скобами, скрепленные отверстия создают возможность для выхода влаги через потолок.Вы можете вернуться и заклеить скрепленные отверстия, но затем, когда вы установите гипсокартон и прикрутите его, у вас будет больше дыр в пароизоляции.
Я знаю, что это не большая проблема в другом климате, но здесь, где половину года зима, а в зимний день разница температур внутри и снаружи вашего дома может составлять 120 градусов (да, это может быть 70 градусов внутри и -50 снаружи), вы начнете видеть, как каждое отверстие под винт в потолке накапливает иней.
Итак, что мы делаем, это кладем эту смолу на стойки потолка.
Шаг 3 Инструкции
Этот материал никогда не сохнет. Это как жевательная резинка, которая никогда не сохнет. Это ужасно. Не допускайте попадания его на обувь или волосы, он никогда не вылезет наружу.
Шаг 4 Инструкции
Смола наносится на все потолочные стойки.
Шаг 5 Инструкции
И он стекает вниз, образуя на полу мины из смолы. Я очень осторожен, чтобы не допустить, чтобы эта штука капала мне на волосы — мытье волос бензином или чем-то подобным не похоже на хороший день в спа.
Шаг 6 Инструкции
Для пароизоляции раскатываем на пол.
Шаг 7 Инструкции
И отрежьте его до нужной длины универсальным ножом.
Шаг 8 Инструкции
Затем пароизоляция разложена в большом помещении.
Шаг 9 Инструкции
И принесут в комнату он будет установлен.
Шаг 10 Инструкции
Осторожно, чтобы на него не попала смола!
Шаг 11
Затем вы надеваете пароизоляцию на голову.
Шаг 13
И начни скреплять. Здесь нужно постараться и сделать аккуратную работу. Мы начинаем с одного угла и продвигаемся к другому.
Шаг 14
Он пристегивается к шпилькам крыши поверх смолистого материала.
Шаг 15
И затем полностью до другого угла.
Как установить пароизоляцию?
Как установить пароизоляцию?
Это сугубо технический вопрос, но отсутствие пароизоляции может привести к серьезным проблемам с влажностью. В частности, это относится к внутренней изоляции. Если вы хотите пропустить технические детали, просто помните, что при внутренней изоляции стен важно герметизировать обращенную к комнате поверхность изоляции, чтобы водяной пар не попадал на заднюю часть изоляции или в стену. и вызывая сырость.Любое небольшое количество пара, которому все же удастся проникнуть в стену, испарится наружу, поскольку кирпич довольно пористый.
Зачем устанавливать пароизоляцию?
Пароизоляция снижает риск образования межклеточной конденсации
Когда вы наносите внутреннюю изоляцию на внешнюю стену, стена становится холоднее (в течение 11 месяцев, когда в Великобритании не лето). Это создает опасность того, что теплый водяной пар изнутри дома попадет за изоляцию и при охлаждении может конденсироваться на стеновой ткани и внутри нее так же, как конденсат на поверхности одинарных застекленных окон.Этот невидимый конденсат внутри стены называется межузельным конденсатом.
Чтобы этот конденсат не оставался в стене, важно, чтобы водяной пар мог проходить через стену легче, чем проникать изнутри. Это особенно важно для предотвращения мокрого или сухого гниения при строительстве деревянных каркасов и там, где деревянные рейки прикреплены к стене для закрепления изоляции.
Чем лучше изоляция, тем холоднее будет стена позади здания, поэтому важнее предотвратить попадание в нее излишней влаги.
Существует школа мысли, согласно которой стенам нужно дать возможность дышать, как это делают неизолированные стены, особенно те, которые построены из известкового цемента и штукатурки, т.е. большинство домов, построенных до 1914 года.
Современный портландцемент и штукатурка имеют очень низкую проницаемость; большинство кирпичей довольно проницаемы, но разные типы очень сильно различаются. Эта дышащая конструкция работает до тех пор, пока сохраняется баланс между значительно большей воздухопроницаемостью снаружи, чем внутри.
На практике при внутренней изоляции существующего здания безопасным способом является установка пароизоляции изнутри, так как вы не знаете, насколько проницаемы стены.Если ваш дом оштукатурен, известковая штукатурка достаточно проницаема, но цементная штукатурка (которая в основном появилась после 1919 года) имеет очень низкую проницаемость для водяного пара, поэтому в этом случае вам следует обратить особое внимание на пароизоляцию внутри, убедившись, что есть в нем нет пробелов.
Если у вас все еще есть промежуточная конденсация, в крайнем случае удалите цементную штукатурку и замените ее дышащей штукатуркой из извести или некоторыми современными дышащими штукатурками.
Инструкции по пароизоляции изоляции
Если вы используете проницаемый изоляционный материал, такой как овечья шерсть, минеральная вата или стекловолокно, то на теплой стороне изоляции и прилагаемом к ней деревянном каркасе следует установить пароизоляцию, обычно это пластиковый лист достаточной плотности.Листы из пенополистирола (EPS) полупроницаемы, поэтому в целях безопасности также следует иметь один. См. Краткое обсуждение в Википедии.
Экструдированный полистирол (XPS) обладает хорошей паронепроницаемостью, в то время как большинство других изоляционных плит (полиуретан и др.) Имеют алюминиевую облицовку, которая делает их непроницаемыми. Однако стыки между изоляционными плитами, а также стыки между полом и т. Д. И плитами должны быть заделаны.
Я использую изоляционные плиты Celotex или Kingspan, облицованные фольгой, а затем покрываю их отдельным гипсокартоном.Таким образом, изоляция образует пароизоляцию, но при этом необходимо герметизировать все стыки и щели; Я использую алюминиевую ленту (продается для этой цели) для герметизации стыков между досками, так как она хорошо приклеивается к чистой новой алюминиевой фольге на досках.
Однако его адгезия к старым стенам, полам и т. Д. Сомнительна, поэтому здесь я оставляю намеренный 15-миллиметровый зазор, который заполняю расширяющейся полиуретановой пеной; расширяющаяся пена полупроницаема, но это лучше, чем непроницаемая лента, которая со временем может оторваться и оставить зазоры.Отдельный пистолет для пены (от 10 до 20 фунтов от Screwfix) неоценим для этого; канистры для пены для него немного отличаются от обычных.
Если вы используете изолированный гипсокартон, он должен иметь пароизоляцию из алюминиевой фольги между гипсокартоном и изоляцией, но проверьте угол, чтобы убедиться. Самый дешевый утепленный гипсокартон, в котором используется пенополистирол, НЕ имеет пароизоляции, поэтому не используйте его!
Тонкий слой штукатурки придаст швам некоторую степень паронепроницаемости, но убедитесь, что стык между нижней частью изолированного гипсокартона и полом герметичен, поскольку в Библии штукатуров, кажется, говорится, что они должны оставить зазор.Я рекомендую штукатуру оставить зазор шириной 20 мм, который затем можно заполнить расширяющейся пеной, прежде чем снова установить плинтус.
Дать выход парам
Вы должны убедиться, что непонятные частицы пара, которые все еще проходят, могут легко выходить наружу и не задерживаться на поверхности стены; это означает удаление всего непроницаемого, например, виниловых обоев или краски GLOSS с внутренней стороны штукатурки. Рекомендуется удалить все обои, так как в холодных и влажных условиях за изоляцией на бумаге может образоваться плесень.Снимать гипс необязательно.
Управление строителем
Многие строители и штукатуры не разбираются в пароизоляции, поэтому надзор за вами. Если ваш подрядчик не согласен, обратитесь к производителю изоляции, который должен подтвердить, что говорится в этой статье. Действительно важно убедиться, что в пароизоляции нет щелей и что он надежно и надежно прикреплен к боковым стенам, полу и потолку.
Некоторые строители хотят заделать стену, то есть изнаночную сторону утеплителя; стена должна иметь возможность проводить водяной пар наружу, предотвращая попадание дождя и протечек внутрь; Кирпич неплохо справляется с этим, за исключением условий особенно интенсивного и продолжительного проливного дождя или крупных протечек.
Конденсация на чердаке
Подобная конденсация может происходить в утепленных чердаках с непроницаемым рубероидом под сланцами, и здесь вы можете пройти на чердак и увидеть конденсат или образовавшуюся белую пушистую плесень на обратной стороне рубероида.Когда вы кладете изоляцию на пол чердака, пространство чердака становится холоднее, и теплый водяной пар, попадая на чердак, может образовывать конденсат на холодном рубероиде. Однако, если водяной пар может пройти через крышу легче, чем проникнуть снизу, проблем не возникнет.
Таким образом, хорошая практика, начиная примерно с 1980 года, заключается в использовании дышащего рубероида или установке вентиляторов на крыше, а на теплой стороне — для протягивания чердака и герметизации отверстий, в которые входят световые кабели и любые трубы (в шкафу для баллонов) чердак.Нижний потолок образует пароизоляцию, которой обычно достаточно, и проблема в основном возникает из-за щелей и отверстий в потолке.
Если ваша крыша не имеет войлока, она, как правило, имеет достаточную вентиляцию вокруг сланцев, чтобы предотвратить значительную конденсацию, то есть рано утром конденсат скоро испарится. Тем не менее, рекомендуется в любом случае обеспечить герметичность люка, труб, осветительной арматуры и т. Д., Чтобы уменьшить потери тепла из-за чрезмерного воздушного потока. Если у вас есть современное центральное отопление, то трубы из старой системы могут все еще проходить через потолок в (бывшем) шкафу для баллонов через большие отверстия.
Там, где используется внешняя изоляция стен, стена дома является пароизоляцией (в определенной степени), и любой конденсат будет находиться вне конструкции дома, в изоляции или штукатурке, поэтому, по крайней мере, сам дом должен быть сухим. Желательно, чтобы используемая штукатурка была проницаемой, чтобы избежать этой внешней конденсации.
© Мартин Нормантон, Walsall Ecohouse, январь 2013 г.
Узнайте больше — посетите отремонтированный дом
Подробнее о внешней и внутренней изоляции стен можно узнать на мероприятиях зеленых домов в сентябре.Поговорите с настоящими домовладельцами, когда они поделятся своим личным опытом ремонта своих домов в рамках дней открытых дверей SuperHome. SuperHomes — это старые дома, отремонтированные их владельцами для большего комфорта, более низких счетов и гораздо меньшего количества выбросов углерода — как минимум на 60%! Вход свободный. Забронируйте сейчас.
См. Также:
Защита от сквозняков — хорошая вещь?
межклеточный конденсат
изоляция внутренней стены
изоляция сплошной стены
Дополнительная информация:
Посетите Martin’s SuperHome, чтобы узнать больше.